Thrombolytic Enzymes of Microbial Origin: A Review
Abstract
:1. Introduction
1.1. Mechanism of Thrombus Formation
1.2. Fibrinolysis and Thrombolysis
2. Microbes in Thrombolytic Therapy
2.1. Promising Microbial Producers of Thrombolytic Enzymes
2.1.1. Bacteria
2.1.2. Fungi
2.1.3. Algae
3. Microbial-Derived Drugs in Thrombolytic Therapy
3.1. Streptokinase
3.1.1. Action Mechanism
3.1.2. A Potential Therapeutic Tool
3.2. Staphylokinase (SAK)
3.2.1. Action Mechanism
3.2.2. A Potential Therapeutic Tool
3.3. Nattokinase (NK)
Clinical Trials
3.4. Reteplase (Recombinant Plasminogen Activator, r-PA)
4. Use of Waste Biomass/by-Products for Thrombolytic/Fibrinolytic Enzyme Production
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weisel, J.W.; Litvinov, R.I. Visualizing thrombosis to improve thrombus resolution. Res. Pract. Thromb. Haemost. 2021, 5, 38–50. [Google Scholar] [CrossRef]
- Mackman, N. Triggers, targets and treatments for thrombosis. Nature 2008, 451, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Adivitiya; Khasa, Y.P. The evolution of recombinant thrombolytics: Current status and future directions. Bioengineered 2017, 8, 331–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.-S.; Sapkota, K.; Choi, J.-H.; Shin, C.-H.; Kim, S.; Kim, S.-J. Herinase: A Novel Bi-functional Fibrinolytic Protease from the Monkey Head Mushroom, Hericium erinaceum. Appl. Biochem. Biotechnol. 2013, 170, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Choi, B.-S.; Sapkota, K.; Kim, S.; Lee, H.J.; Yoo, J.C.; Kim, S.-J. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process. Biochem. 2011, 46, 1545–1553. [Google Scholar] [CrossRef]
- Rajaselvam, J.; Benit, N.; Alotaibi, S.S.; Rathi, M.A.; Srigopalram, S.; Biji, G.D.; Vijayaraghavan, P. In vitro fibrinolytic activity of an enzyme purified from Bacillus amyloliquefaciens strain KJ10 isolated from soybean paste. Saudi J. Biol. Sci. 2021, 28, 4117–4123. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Makris, M.; Lillicrap, D. (Eds.) Practical Hemostasis and Thrombosis; John Wiley & Sons, Ltd.: Chichester, UK, 2017; ISBN 9781118344729. [Google Scholar]
- Weisel, J.W.; Litvinov, R.I. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017, 82, 405–456. [Google Scholar] [CrossRef] [Green Version]
- Asada, Y.; Yamashita, A.; Sato, Y.; Hatakeyama, K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol. Int. 2020, 70, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Asada, Y.; Yamashita, A.; Sato, Y.; Hatakeyama, K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J. Atheroscler. Thromb. 2018, 25, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Johnson, T.A.; Duru, N.; Buzza, M.S.; Pawar, N.R.; Sarkar, R.; Antalis, T.M. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front. Immunol. 2019, 10, 1348. [Google Scholar] [CrossRef] [Green Version]
- Tatli, E.; Ozcelik, F.; Aktoz, M. Plasma fibrinogen level may predict critical coronary artery stenosis in young adults with myocardial infarction. Cardiol. J. 2009, 16, 317–320. [Google Scholar]
- Liu, J.; Zhang, Y.; Lavie, C.J.; Tabung, F.K.; Xu, J.; Hu, Q.; He, L.; Zhang, Y. Associations of C-reactive protein and fibrinogen with mortality from all-causes, cardiovascular disease and cancer among U.S. adults. Prev. Med. 2020, 139, 106044. [Google Scholar] [CrossRef]
- Parry, D.J.; Al-Barjas, H.S.; Chappell, L.; Rashid, T.; Ariens, R.; Scott, D.J.A. Haemostatic and fibrinolytic factors in men with a small abdominal aortic aneurysm. Br. J. Surg. 2009, 96, 870–877. [Google Scholar] [CrossRef]
- Kapetanios, D.; Karkos, C.D.; Pliatsios, I.; Mitka, M.; Giagtzidis, I.T.; Konstantinidis, K.; Papazoglou, K.O. Association Between Perioperative Fibrinogen Levels and the Midterm Outcome in Patients Undergoing Elective Endovascular Repair of Abdominal Aortic Aneurysms. Ann. Vasc. Surg. 2019, 56, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Klovaite, J.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Benn, M. Elevated Fibrinogen Levels Are Associated with Risk of Pulmonary Embolism, but Not with Deep Venous Thrombosis. Am. J. Respir. Crit. Care Med. 2013, 187, 286–293. [Google Scholar] [CrossRef]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.O.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. J. Am. Med. Assoc. 2005, 294, 1799–1809. [Google Scholar]
- Chelluboina, B.; Vemuganti, R. Chronic kidney disease in the pathogenesis of acute ischemic stroke. J. Cereb. Blood Flow Metab. 2019, 39, 1893–1905. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C. Hemostasis based on a novel ‘two-path unifying theory’ and classification of hemostatic disorders. Blood Coagul. Fibrinolysis 2018, 29, 573–584. [Google Scholar] [CrossRef]
- D’Alessandro, E.; Posma, J.; Spronk, H.; Cate, H.T. Tissue factor (:Factor VIIa) in the heart and vasculature: More than an envelope. Thromb. Res. 2018, 168, 130–137. [Google Scholar] [CrossRef]
- Kapoor, S.; Opneja, A.; Nayak, L. The role of neutrophils in thrombosis. Thromb. Res. 2018, 170, 87–96. [Google Scholar] [CrossRef]
- Cesarman-Maus, G.C.; Hajjar, K.A. Molecular mechanisms of fibrinolysis. Br. J. Haematol. 2005, 129, 307–321. [Google Scholar] [CrossRef]
- Mican, J.; Toul, M.; Bednar, D.; Damborsky, J. Structural Biology and Protein Engineering of Thrombolytics. Comput. Struct. Biotechnol. J. 2019, 17, 917–938. [Google Scholar] [CrossRef]
- Longstaff, C.; Thelwell, C. Understanding the enzymology of fibrinolysis and improving thrombolytic therapy. FEBS Lett. 2005, 579, 3303–3309. [Google Scholar] [CrossRef] [Green Version]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogesh, D.; Halami, P.M. A fibrin degrading serine metallo protease of Bacillus circu lans with α-chain specificity. Food Biosci. 2015, 11, 72–78. [Google Scholar] [CrossRef]
- Mahajan, P.M.; Nayak, S.; Lele, S.S. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: Media optimization, purification and characterization. J. Biosci. Bioeng. 2012, 113, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Sarmah, B.; Gogoi, D.; Banerjee, S.; Ghosh, S.S.; Banerjee, S.; Chattopadhyay, P.; Mukherjee, A.K. Characteriza-tion, mechanism of anticoagulant action, and assessment of therapeutic potential of a fibrinolytic serine protease (Brevithrombolase) purified from Brevibacillusbrevis strain FF02B. Biochimie 2014, 103, 50–60. [Google Scholar] [CrossRef]
- Raj, A.; Khess, N.; Pujari, N.; Bhattacharya, S.; Das, A.; Rajan, S.S. Enhancement of protease production by Pseudomonas aeru-ginosa isolated from dairy effluent sludge and determination of its fibrinolytic potential. Asian Pac. J. Trop. Biomed. 2012, 2, S1845–S1851. [Google Scholar] [CrossRef]
- Khursade, P.S.; Galande, S.H.; Krishna, P.S.; Prakasham, R. Stenotrophomonas maltophilia Gd2: A potential and novel isolate for fibrinolytic enzyme production. Saudi J. Biol. Sci. 2019, 26, 1567–1575. [Google Scholar] [CrossRef]
- Liu, X.; Kopparapu, N.-K.; Li, Y.; Deng, Y.; Zheng, X. Biochemical characterization of a novel fibrinolytic enzyme from Cordyceps militaris. Int. J. Biol. Macromol. 2017, 94, 793–801. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Heo, K.; Park, J.Y.; Lee, K.W.; Park, J.-Y.; Joo, S.H.; Kim, J.H. Characterization of AprE176, a fibrinolytic enzyme from Bacillus subtilis HK176. J. Microbiol. Biotechnol. 2015, 25, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Leedagger, S.-Y.; Yudagger, S.-N.; Choi, H.-J.; Kim, K.-Y.; Kim, S.-H.; Choi, Y.-L.; Kim, C.-M.; Ahn, S.-C. Cloning and characterization of a thermostable and alkaline fibrinolytic enzyme from a soil metagenome. Afr. J. Biotechnol. 2013, 12, 6389–6399. [Google Scholar] [CrossRef]
- Han, F.; Yao, W.; Yang, X.; Liu, X.; Gao, X. Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysaccharide YCP. Int. J. Biol. Macromol. 2005, 36, 201–207. [Google Scholar] [CrossRef]
- Narasimhan, M.K.; Chandrasekaran, M.; Rajesh, M. Fibrinolytic enzyme production by newly isolated Bacillus cereus SRM-001 with enhanced in-vitro blood clot lysis potential. J. Gen. Appl. Microbiol. 2015, 61, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, X.; Cao, X.; Sun, Y.; Wang, Z.; Cao, C.; Liu, J.; Jiang, J. Purification and characterization of a fibrinolytic enzyme from Streptomyces sp. XZNUM 00004. World J. Microbiol. Biotechnol. 2012, 28, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Chitlur, M.; Simpson, M. Role of global assays in thrombosis and thrombophilia. In Pediatric Thrombotic Disorders; Goldenberg, N., Manco-Johnson, M., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 142–157. [Google Scholar] [CrossRef]
- Nordby, E.; Arnesen, H.; Andersen, P.; Godal, H.C. The euglobulin clot lysis time, a rapid and sensitive method for the as-say of fibrinolytic activity after venous stasis. Scand. J. Haematol. 1981, 25, 407–411. [Google Scholar] [CrossRef]
- Artang, R.; Galloway, G.; Nielsen, J.D. Monitoring Novel Anticoagulants Dabigatran, Rivaroxaban and Apixaban Using Thrombelastography. J. Am. Coll. Cardiol. 2014, 63, A439. [Google Scholar] [CrossRef] [Green Version]
- Simkhada, J.R.; Cho, S.S.; Mander, P.; Choi, Y.H.; Yoo, J.C. Purification, biochemical properties and antithrombotic effect of a novel Streptomyces enzyme on carrageenan-induced mice tail thrombosis model. Thromb. Res. 2012, 129, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.D.; Cunningham, M.T.; Higgins, R.A.; Eby, C.S.; Brandt, J.T. D-dimer: Simple test, tough problems. Arch. Pathol. Lab. Med. 2013, 137, 1030–1038. [Google Scholar] [CrossRef]
- Eckly, A.; Hechler, B.; Freund, M.; Zerr, M.; Cazenave, J.-P.; Lanza, F.; Mangin, P.H.; Gachet, C. Mechanisms underlying FeCl3-induced arterial thrombosis. J. Thromb. Haemost. 2011, 9, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Wallmichrath, J.; Baumeister, R.G.; Gottschalk, O.; Giunta, R.E.; Frick, A. The free groin flap in the rat: A model for improving microsurgical skills and for microvascular perfusion studies. J. Plast. Surg. Hand Surg. 2014, 48, 191–196. [Google Scholar] [CrossRef]
- Choi, N.S.; Yoo, K.H.; Hahm, J.H.; Yoon, K.S.; Chang, K.T.; Hyun, B.H.; Maeng, P.J.; Kim, S.H. Purification and characteriza-tion of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: Produces by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 2005, 15, 72–79. [Google Scholar]
- Agrebi, R.; Haddar, A.; Hmidet, N.; Jellouli, K.; Manni, L.; Nasri, M. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. Process. Biochem. 2009, 44, 1252–1259. [Google Scholar] [CrossRef]
- Agrebi, R.; Hmidet, N.; Hajji, M.; Ktari, N.; Haddar, A.; Fakhfakh-Zouari, N.; Nasri, M. Fibrinolytic Serine Protease Isolation from Bacillus amyloliquefaciens An6 Grown on Mirabilis jalapa Tuber Powders. Appl. Biochem. Biotechnol. 2010, 162, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Deepak, V.; Ilangovan, S.; Sampathkumar, M.V.; Victoria, M.J.; Pasha, S.P.B.S.; Pandian, S.R.K.; Gurunathan, S. Medium optimization and immobilization of purified fibrinolytic URAK from Bacillus cereus NK1 on PHB nanoparticles. Enzym. Microb. Technol. 2010, 47, 297–304. [Google Scholar] [CrossRef]
- Venkata Naga Raju, E.; Divakar, G. Bacillus Cereus GD 55 Strain Improvement by Physical and Chemical Mutagenesis for Enhanced Production of Fibrinolytic Protease. Int. J. Pharma Sci. Res. 2013, 4, 81–93. [Google Scholar]
- Vijayaraghavan, P.; Vincent, S.G.P. Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic ActivityIn Vitro. BioMed Res. Int. 2014, 2014, 725064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, P.; Vincent, S.G.P.; Arasu, M.V.; Al-Dhabi, N.A. Bioconversion of agro-industrial wastes for the production of fibrinolytic enzyme from Bacillus halodurans IND18: Purification and biochemical characterization. Electron. J. Biotechnol. 2016, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, P.; Rajendran, P.; Vincent, S.G.P.; Arun, A.; Al-Dhabi, N.A.; Arasu, M.V.; Kwon, O.Y.; Kim, Y.O. Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation. BioMed Res. Int. 2017, 2017, 3909657. [Google Scholar] [CrossRef]
- Chandramohan, M.; Yee, C.Y.; Beatrice, P.H.K.; Ponnaiah, P.; Narendrakumar, G.; Samrot, A.V. Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA02 isolated from poultry slaughter house soils. Biocatal. Agric. Biotechnol. 2019, 22, 101371. [Google Scholar] [CrossRef]
- Sharma, C.; Salem, G.E.M.; Sharma, N.; Gautam, P.; Singh, R. Thrombolytic Potential of Novel Thiol-Dependent Fibrinolytic Protease from Bacillus cereus RSA1. Biomolecules 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, K.; Maejima, K.; Tomoda, K.; Isono, M. Serratia Protease Part I. Purification and General Properties of the Enzyme. Agric. Biol. Chem. 1970, 34, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, S.; Agarwal, M.; Roy, V. Serratiopeptidase: A systematic review of the existing evidence. Int. J. Surg. 2013, 11, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Rosen, G.; Naor, R.; Kutner, S.; Sela, M.N. Characterization of fibrinolytic activities of Treponema denticola. Infect. Immun. 1994, 62, 1749–1754. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, P.; Raj, S.F.; Vi, S.G.P. Purification and Characterization of Fibrinolytic Enzyme from Pseudoalteromonas sp., IND11 and its in vitro Activity on Blood Clot. Int. J. Biol. Chem. 2014, 9, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, P.; Vincent, S.P. A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium, Shewanella sp. IND20. Biotechnol. Rep. 2015, 7, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, P.; Vincent, S.G.P.; Arasu, M.V. Purification, Characterization of a Novel Fibrinolytic Enzyme from Paenibacillus sp. IND8, and its in Vitro Thrombolytic Activity. South Indian J. Biol. Sci. 2016, 2, 434. [Google Scholar] [CrossRef]
- Abdel-Fattah, A.F.; Ismail, A.-M.S. Purification and some properties of pure Cochliobolus lunatus fibrinolytic Enzyme. Biotechnol. Bioeng. 1984, 26, 407–411. [Google Scholar] [CrossRef]
- El-Aassar, S.; El-Badry, H.; Abdel-Fattah, A. The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl. Microbiol. Biotechnol. 1990, 33, 26–30. [Google Scholar] [CrossRef]
- El-Aassar, S.A. Production and properties of fibrinolytic enzyme in solid state cultures of Fusarium pallidoroseum. Biotechnol. Lett. 1995, 17, 943–948. [Google Scholar] [CrossRef]
- Batomunkueva, B.P.; Egorov, N.S. Isolation, Purification, and Resolution of the Extracellular Proteinase Complex of Aspergillus ochraceus 513 with Fibrinolytic and Anticoagulant Activities. Microbiology 2001, 70, 519–522. [Google Scholar] [CrossRef]
- Tharwat, N.A.T. Purification and Biochemical Characterization of Fibrinolytic Enzyme Produced by Thermophilic Fungus Oidiodendron flavum. Biotechnology 2006, 5, 160–165. [Google Scholar] [CrossRef]
- Ueda, M.; Kubo, T.; Miyatake, K.; Nakamura, T. Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl. Microbiol. Biotechnol. 2007, 74, 331–338. [Google Scholar] [CrossRef]
- Li, H.-P.; Hu, Z.; Yuan, J.-L.; Fan, H.-D.; Chen, W.; Wang, S.-J.; Zheng, S.-S.; Zheng, Z.-L.; Zou, G.-L. A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: Purification and characterization. Phytother. Res. 2007, 21, 1234–1241. [Google Scholar] [CrossRef]
- Cui, L.; Dong, M.S.; Chen, X.H.; Jiang, M.; Lv, X.; Yan, G. A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J. Microbiol. Biotechnol. 2008, 24, 483–489. [Google Scholar] [CrossRef]
- Lu, C.-L.; Chen, S.-N. Purification and characterization of a novel fibrinolytic protease from Schizophyllum commune. J. Food Drug Anal. 2010, 18, 4. [Google Scholar] [CrossRef]
- Shirasaka, N.; Naitou, M.; Okamura, K.; Fukuta, Y.; Terashita, T.; Kusuda, M. Purification and characterization of a fibrinolytic protease from Aspergillus oryzae KSK-3. Mycoscience 2012, 53, 354–364. [Google Scholar] [CrossRef]
- Rovati, J.I.; Delgado, O.D.; Figueroa, L.I.C.; Fariña, J.I. A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina). World J. Microbiol. Biotechnol. 2009, 26, 55–62. [Google Scholar] [CrossRef]
- Palanivel, P.; Ashokkumar, L.; Balagurunathan, R. Production, purification and fibrinolytic characterization of alkaline protease from extremophilic soil fungi. Int. J. Pharma Bio Sci. 2013, 4, 101–110. [Google Scholar]
- Kotb, E.; Helal, G.E.-D.A.; Edries, F.M. Screening for fibrinolytic filamentous fungi and enzymatic properties of the most potent producer, Aspergillus brasiliensis AUMC 9735. Biologia 2015, 70, 1565–1574. [Google Scholar] [CrossRef]
- Nascimento, T.P.; Sales, A.; Porto, C.S.; Brandão, R.M.P.; Campos-Takaki, G.M.; Teixeira, J.; Porto, T.; Porto, A.L.F.; Converti, A. Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1025, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Sumi, H.; Hamada, H.; Tsushima, H.; Mihara, H.; Muraki, H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 1987, 43, 1110–1111. [Google Scholar] [CrossRef]
- Jeong, Y.K.; Park, J.U.; Baek, H.; Park, S.H.; Kong, I.S.; Kim, D.W.; Joo, W.H. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 2001, 17, 89–92. [Google Scholar] [CrossRef]
- Ko, J.H.; Yan, J.P.; Zhu, L.; Qi, Y.P. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2004, 137, 65–74. [Google Scholar] [CrossRef]
- Wang, C.T.; Ji, B.P.; Li, B.; Nout, R.; Li, P.L.; Ji, H.; Chen, L.F. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 2006, 33, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.K.; Rai, S.K.; Thakur, R.; Chattopadhyay, P.; Kar, S.K. Bafibrinase: A non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie 2012, 94, 1300–1308. [Google Scholar] [CrossRef]
- Chang, C.-T.; Wang, P.-M.; Hung, Y.-F.; Chung, Y.-C. Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chem. 2012, 133, 1611–1617. [Google Scholar] [CrossRef]
- Bajaj, B.K.; Sharma, N.; Singh, S. Enhanced production of fibrinolytic protease from Bacillus cereus NS-2 using cotton seed cake as nitrogen source. Biocatal. Agric. Biotechnol. 2013, 2, 204–209. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Cho, K.M.; Lee, C.K.; Kim, G.M.; Shin, J.-H.; Kim, J.S.; Kim, J.H. Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2. J. Microbiol. Biotechnol. 2014, 24, 969–978. [Google Scholar] [CrossRef]
- Huang, S.; Pan, S.; Chen, G.; Huang, S.; Zhang, Z.; Li, Y.; Liang, Z. Biochemical characteristics of a fibrinolytic enzyme purified from a marine bacterium, Bacillus subtilis HQS-3. Int. J. Biol. Macromol. 2013, 62, 124–130. [Google Scholar] [CrossRef]
- De Souza, F.A.S.D.; Sales, A.E.; Silva, P.E.C.E.; Bezerra, R.P.; Silva, G.M.D.M.E.; De Araújo, J.M.; Takaki, G.M.D.C.; Porto, T.S.; Teixeira, J.A.C.; Porto, A.L.F. Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens. Macromol. Res. 2016, 24, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Hassanein, W.A.; Kotb, E.; Awny, N.M.; El-Zawahry, Y.A. Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J. Biosci. 2011, 36, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Xiong, J.; Chen, W.; Xu, A.; Du Zhu, D.; Liu, J. Purification and Characterization of a Novel Fibrinolytic Enzyme from Cipangopaludina Cahayensis. Iran. J. Biotechnol. 2021, 19, 121–127. [Google Scholar] [CrossRef]
- Simkhada, J.R.; Mander, P.; Cho, S.S.; Yoo, J.C. A novel fibrinolytic protease from Streptomyces sp. CS684. Process. Biochem. 2010, 45, 88–93. [Google Scholar] [CrossRef]
- Mander, P.; Cho, S.S.; Simkhada, J.R.; Choi, Y.H.; Yoo, J.C. A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624. Process. Biochem. 2011, 46, 1449–1455. [Google Scholar] [CrossRef]
- Chitte, R.; Dey, S. Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett. Appl. Microbiol. 2000, 31, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Uesugi, Y.; Usuki, H.; Iwabuchi, M.; Hatanaka, T. Highly potent fibrinolytic serine protease from Streptomyces. Enzym. Microb. Technol. 2011, 48, 7–12. [Google Scholar] [CrossRef]
- Cheng, G.; He, L.; Sun, Z.; Cui, Z.; Du, Y.; Kong, Y. Purification and Biochemical Characterization of a Novel Fibrinolytic Enzyme from Streptomyces sp. P3. J. Microbiol. Biotechnol. 2015, 25, 1449–1459. [Google Scholar] [CrossRef]
- Silva, G.M.D.M.E.; Bezerra, R.P.; Teixeira, J.; Silva, F.O.; Correia, J.M.; Porto, T.; Lima-Filho, J.L.; Porto, A.L.F. Sleção, produção e caracterização bioquímica de uma nova enzima fibrinolítica produzida por Streptomyces sp. (Streptomyce taceae) isolada de liquens da Amazônia. Acta Amaz. 2016, 46, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Bhargavi, P.L.; Prakasham, R. A fibrinolytic, alkaline and thermostable metalloprotease from the newly isolated Serratia sp RSPB11. Int. J. Biol. Macromol. 2013, 61, 479–486. [Google Scholar] [CrossRef]
- Taneja, K.; Bajaj, B.K.; Kumar, S.; Dilbaghi, N. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media. 3 Biotech 2017, 7, 184. [Google Scholar] [CrossRef]
- Anusree, M.; Swapna, K.; Aguilar, C.; Sabu, A. Optimization of process parameters for the enhanced production of fibrinolytic enzyme by a newly isolated marine bacterium. Bioresour. Technol. Rep. 2020, 11, 100436. [Google Scholar] [CrossRef]
- Bokarewa, M.; Jin, T.; Tarkowski, A. Staphylococcus aureus: Staphylokinase. Int. J. Biochem. Cell Biol. 2006, 38, 504–509. [Google Scholar] [CrossRef]
- Jhample, S.B.; Bhagwat, P.; Dandge, P. Statistical media optimization for enhanced production of fibrinolytic enzyme from newly isolated Proteus penneri SP-20. Biocatal. Agric. Biotechnol. 2015, 4, 370–379. [Google Scholar] [CrossRef]
- Taneja, K.; Taneja, K.; Bajaj, B.K.; Bajaj, B.K.; Kumar, S.; Kumar, S.; Dilbaghi, N.; Dilbaghi, N.; Taneja, K.; Taneja, K.; et al. Process optimization for production and purification of novel fibrinolytic enzyme from Stenotrophomonas sp. KG-16-3. Biocatal. Biotransform. 2018, 37, 124–138. [Google Scholar] [CrossRef]
- Kumar, S.S.; Haridas, M.; AbdulHameed, S. A novel fibrinolytic enzyme from marine Pseudomonas aeruginosa KU1 and its rapid in vivo thrombolysis with little haemolysis. Int. J. Biol. Macromol. 2020, 162, 470–479. [Google Scholar] [CrossRef]
- Lu, F.; Lu, Z.; Bie, X.; Yao, Z.; Wang, Y.; Lu, Y.; Guo, Y. Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thromb. Res. 2010, 126, e349–e355. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Chattopadhyay, P.; Mukherjee, A.K. In Vivo Anticoagulant and Thrombolytic Activities of a Fibrinolytic Serine Protease (Brevithrombolase) with the k-Carrageenan-Induced Rat Tail Thrombosis Model. Clin. Appl. Thromb. 2015, 22, 594–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.-S.; Shin, H.-H. Purification and Partial Characterization of a Fibrinolytic Protease in Pleurotus ostreatus. Mycologia 1998, 90, 674. [Google Scholar] [CrossRef]
- Choi, H.-S.; Sa, Y.-S. Fibrinolytic and Antithrombotic Protease from Ganoderma lucidum. Mycologia 2000, 92, 545. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, Y.S. Characterization of a Metalloenzyme from a Wild Mushroom, Tricholoma saponaceum. Biosci. Biotechnol. Biochem. 2001, 65, 356–362. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, J.-S.; Kim, J.-E.; Sapkota, K.; Shen, M.-H.; Kim, S.; Chun, H.-S.; Yoo, J.-C.; Choi, H.-S.; Kim, M.-K.; et al. Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr. Purif. 2005, 43, 10–17. [Google Scholar] [CrossRef]
- Lee, J.S.; Baik, H.S.; Park, S.S. Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella fraxinea. J. Microbiol. Biotechnol. 2006, 16, 264–271. [Google Scholar]
- Park, S.-E.; Li, M.-H.; Kim, J.-S.; Sapkota, K.; Kim, J.-E.; Choi, B.-S.; Yoon, Y.-H.; Lee, J.-C.; Lee, H.-H.; Kim, C.-S.; et al. Purification and Characterization of a Fibrinolytic Protease from a Culture Supernatant of Flammulina velutipes Mycelia. Biosci. Biotechnol. Biochem. 2007, 71, 2214–2222. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Kim, J.-E.; Choi, B.-S.; Park, S.-E.; Sapkota, K.; Kim, S.; Lee, H.-H.; Kim, C.-S.; Park, Y.; Kim, M.-K.; et al. Purification and characterization of fibrinolytic metalloprotease from Perenniporia fraxinea mycelia. Mycol. Res. 2008, 112, 990–998. [Google Scholar] [CrossRef]
- Meshram, V.; Saxena, S.; Paul, K. Xylarinase: A novel clot busting enzyme from an endophytic fungus Xylaria curta. J. Enzym. Inhib. Med. Chem. 2016, 31, 1502–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meshram, V.; Saxena, S.; Paul, K.; Gupta, M.; Kapoor, N. Production, Purification and Characterisation of a Potential Fibrinolytic Protease from Endophytic Xylaria curta by Solid Substrate Fermentation. Appl. Biochem. Biotechnol. 2016, 181, 1496–1512. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wu, L.; Chen, D.; Yang, Z.; Luo, M. Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J. Ind. Microbiol. Biotechnol. 2009, 36, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Cha, W.-S.; Park, N.; Kim, H.-W.; Lee, J.H.; Park, J.S.; Park, S.-S. Purification and characterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris. Bioresour. Technol. 2011, 102, 3279–3285. [Google Scholar] [CrossRef] [PubMed]
- Cha, W.-S.; Park, S.-S.; Kim, S.-J.; Choi, D. Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. Bioresour. Technol. 2010, 101, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-M.; Kim, J.-S.; Kim, H.-J.; Choi, M.S.; Park, B.R.; Kim, S.-G.; Ahn, H.; Chun, H.S.; Shin, Y.K.; Kim, J.-J.; et al. Purification and characterization of a novel fibrinolytic α chymotrypsin like serine metalloprotease from the edible mushroom, Lyophyllum shimeji. J. Biosci. Bioeng. 2013, 117, 544–550. [Google Scholar] [CrossRef]
- da Silva, M.M.; Rocha, T.A.; de Moura, D.F.; Chagas, C.A.; Júnior, F.C.A.D.A.; Santos, N.P.D.S.; Sobral, R.V.D.S.; Nascimento, J.M.D.; Leite, A.C.L.; Pastrana, L.; et al. Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regul. Toxicol. Pharmacol. 2019, 103, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-L.; Du, L.-X.; Lu, F.-P.; Zheng, X.-Q.; Xiao, J. Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis-12. Appl. Microbiol. Biotechnol. 2004, 67, 209–214. [Google Scholar] [CrossRef]
- Matsubara, K.; Sumi, H.; Hori, K.; Miyazawa, K. Purification and Characterization of Two Fibrinolytic Enzymes from a Marine Green Alga, Codium intricatum. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1998, 119, 177–181. [Google Scholar] [CrossRef]
- Matsubara, K.; Hori, K.; Matsuura, Y.; Miyazawa, K. A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 1999, 52, 993–999. [Google Scholar] [CrossRef]
- Matsubara, K.; Hori, K.; Matsuura, Y.; Miyazawa, K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 125, 137–143. [Google Scholar] [CrossRef]
- Choi, J.-H.; Sapkota, K.; Park, S.-E.; Kim, S.; Kim, S.-J. Thrombolytic, anticoagulant and antiplatelet activities of codiase, a bi-functional fibrinolytic enzyme from Codium fragile. Biochimie 2013, 95, 1266–1277. [Google Scholar] [CrossRef]
- Kim, D.-W.; Sapkota, K.; Choi, J.-H.; Kim, Y.-S.; Kim, S.; Kim, S.-J. Direct acting anti-thrombotic serine protease from brown seaweed Costaria costata. Process. Biochem. 2012, 48, 340–350. [Google Scholar] [CrossRef]
- Kang, S.-R.; Choi, J.-H.; Kim, D.-W.; Park, S.-E.; Sapkota, K.; Kim, S.; Kim, S.-J. A bifunctional protease from green alga Ulva pertusa with anticoagulant properties: Partial purification and characterization. Environ. Boil. Fishes 2015, 28, 599–607. [Google Scholar] [CrossRef]
- da Costa e Silva, P.E.; de Souza, F.A.S.D.; de Barros, R.C.; Marques, D.A.V.; Porto, A.L.F.; Bezerra, R.P. Enhanced Production of Fibrinolytic Protease from Microalgae Chlorella Vulgaris using Glycerol and Corn Steep Liquor as Nutrient. Ann. Microbiol. Res. 2017, 1, 9–19. [Google Scholar] [CrossRef]
- Silva, P.; de Barros, R.C.; Albuquerque, W.; Brandão, R.M.P.; Bezerra, R.P.; Porto, A.L.F. In vitro thrombolytic activity of a purified fibrinolytic enzyme from Chlorella vulgaris. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1092, 524–529. [Google Scholar] [CrossRef]
- de Barros, P.D.S.; e Silva, P.E.C.; Nascimento, T.P.; Costa, R.M.P.B.; Bezerra, R.P.; Porto, A.L.F. Fibrinolytic enzyme from Arthrospira platensis cultivated in medium culture supplemented with corn steep liquor. Int. J. Biol. Macromol. 2020, 164, 3446–3453. [Google Scholar] [CrossRef]
- Banerjee, A.; Chisti, Y.; Banerjee, U. Streptokinase—a clinically useful thrombolytic agent. Biotechnol. Adv. 2004, 22, 287–307. [Google Scholar] [CrossRef]
- Babu, V.; Devi, C.S. In vitro thrombolytic activity of purified streptokinase extracted from Streptococcus equinus VIT_VB2 isolated from bovine milk. J. Thromb. Thrombolysis 2014, 39, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Datt, M.; Singh, B.; Sahni, G. Role of the 88–97 loop in plasminogen activation by streptokinase probed through site-specific mutagenesis. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2008, 1784, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Vadla, P.K.; Tummuru, M.; Kumar, D. Purification and characterization of recombinant Streptokinase expressed in E.coli from Streptococcus equisimilis with N-terminal methionine. J. Teknol. Lab. 2019, 8, 8–17. [Google Scholar] [CrossRef]
- Anderson, J.L. Development and evaluation of anisoylated plasminogen streptokinase activator complex (APSAC) as a second generation thrombolytic agent. J. Am. Coll. Cardiol. 1987, 10, 22B–27B. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.T. High-level expression, purification and properties of a fully active even glycosylated staphylokinase variant SakfC from Staphylococcus aureus QT08 in Pichia pastoris. Afr. J. Microbiol. Res. 2012, 6, 2129–2136. [Google Scholar] [CrossRef]
- Johnson, A.J.; Tillett, W.S. The Lysis in Rabbits of Intravascular Blood Clots by The Streptococcal Fibrinolytic System (Streptokinase). J. Exp. Med. 1952, 95, 449–464. [Google Scholar] [CrossRef] [Green Version]
- Kline, D.L. The Purification and Crystallization of Plasminogen (Profibrinolysin). J. Biol. Chem. 1953, 204, 949–955. [Google Scholar] [CrossRef]
- Alkjaersig, N.; Fletcher, A.P.; Sherry, S. The Mechanism of Clot Dissolution by Plasmin. J. Clin. Investig. 1959, 38, 1086–1095. [Google Scholar] [CrossRef]
- Fletcher, A.P.; Sherry, S.; Alkjaersig, N.; Smyrniotis, F.E.; Jick, S. The maintenance of a sustained thrombolytic state in man. II. clinical observations on patients with myocardial infarction and other thromboembolic disorders. J. Clin. Investig. 1959, 38, 1111–1119. [Google Scholar] [CrossRef]
- Tillett, W.S.; Sherry, S. The effect in patients of streptococcal fibrinolysin (streptokinase) and streptococcal desoxyribonuclease on fibrinous, purulent, and sanguinous pleural exudations 1. J. Clin. Investig. 1949, 28, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Collen, D.; Moreau, H.; Stockx, L.; Vanderschueren, S. Recombinant Staphylokinase Variants with Altered Immunoreactivity.. II: Thrombolytic properties and antibody induction. Circulation 1996, 94, 207–216. [Google Scholar] [CrossRef]
- Roohvand, F. Streptokinase for treatment of thrombotic disorders: The end? Or the end of the beginning? Iran. Biomed. J. 2018, 22, 140–141. [Google Scholar]
- Malke, H.; Ferretti, J.J. Streptokinase: Cloning, expression, and excretion by Escherichia coli. Proc. Natl. Acad. Sci. USA 1984, 81, 3557–3561. [Google Scholar] [CrossRef] [Green Version]
- Nolan, M.; Bouldin, S.D.; Bock, P.E. Full Time Course Kinetics of the Streptokinase-Plasminogen Activation Pathway. J. Biol. Chem. 2013, 288, 29482–29493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhamme, I.M.; Bock, P.E. Rapid Binding of Plasminogen to Streptokinase in a Catalytic Complex Reveals a Three-step Mechanism. J. Biol. Chem. 2014, 289, 28006–28018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellino, F.J. Recent advances in the chemistry of the fibrinolytic system. Chem. Rev. 1981, 81, 431–446. [Google Scholar] [CrossRef]
- Kazemi, F.; Arab, S.S.; Mohajel, N.; Keramati, M.; Niknam, N.; Aslani, M.M.; Roohvand, F. Computational simulations assessment of mutations impact on streptokinase (SK) from a group G streptococci with enhanced activity—Insights into the functional roles of structural dynamics flexibility of SK and stabilization of SK–μplasmin catalytic complex. J. Biomol. Struct. Dyn. 2018, 37, 1944–1955. [Google Scholar] [CrossRef] [PubMed]
- Sazonova, I.Y.; Robinson, B.R.; Gladysheva, I.P.; Castellino, F.J.; Reed, G.L. α Domain Deletion Converts Streptokinase into a Fibrin-dependent Plasminogen Activator through Mechanisms Akin to Staphylokinase and Tissue Plasminogen Activator. J. Biol. Chem. 2004, 279, 24994–25001. [Google Scholar] [CrossRef] [Green Version]
- Aneja, R.; Datt, M.; Yadav, S.; Sahni, G. Multiple Exosites Distributed across the Three Domains of Streptokinase Co-Operate to Generate High Catalytic Rates in the Streptokinase–Plasmin Activator Complex. Biochemistry 2013, 52, 8957–8968. [Google Scholar] [CrossRef] [PubMed]
- Tharp, A.C.; Laha, M.; Panizzi, P.; Thompson, M.; Fuentes-Prior, P.; Bock, P.E. Plasminogen Substrate Recognition by the Streptokinase-Plasminogen Catalytic Complex Is Facilitated by Arg253, Lys256, and Lys257 in the Streptokinase β-Domain and Kringle 5 of the Substrate. J. Biol. Chem. 2009, 284, 19511–19521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruppo Italiano per lo Studio. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986, 327, 397–402. [Google Scholar] [CrossRef]
- ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. J. Am. Coll. Cardiol. 1988, 12, A3–A13. [Google Scholar] [CrossRef] [Green Version]
- Koren, G.; Weiss, A.T.; Hasin, Y.; Appelbaum, D.; Welber, S.; Rozenman, Y.; Lotan, C.; Mosseri, M.; Sapoznikov, D.; Luria, M.H.; et al. Prevention of Myocardial Damage in Acute Myocardial Ischemia by Early Treatment with Intravenous Streptokinase. N. Engl. J. Med. 1985, 313, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Ruegsegger, P.; Nydick, I.; Hutter, R.C.; Freiman, A.H.; Bang, N.U.; Cliffton, E.E.; Ladue, J.S. Fibrinolytic (Plasmin) Therapy of Experimental Coronary Thrombi with Alteration of the Evolution of Myocardial Infarction. Circulation 1959, 19, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Sezer, M.; Çimen, A.; Aslanger, E.; Elitok, A.; Umman, B.; Buğra, Z.; Yormaz, E.; Türkmen, C.; Adalet, I.; Nişanci, Y.; et al. Effect of Intracoronary Streptokinase Administered Immediately After Primary Percutaneous Coronary Intervention on Long-Term Left Ventricular Infarct Size, Volumes, and Function. J. Am. Coll. Cardiol. 2009, 54, 1065–1071. [Google Scholar] [CrossRef] [Green Version]
- Arabi, R.; Roohvand, F.; Norouzian, D.; Sardari, S.; Aghasadeghi, M.R.; Khanahmad, H.; Memarnejadian, A.; Motevalli, F. A Comparative Study on the Activity and Antigenicity of Truncated and Full-length Forms of Streptokinase. Pol. J. Microbiol. 2011, 60, 243–251. [Google Scholar] [CrossRef]
- Adivitiya; Babbal; Mohanty, S.; Khasa, Y.P. Engineering of deglycosylated and plasmin resistant variants of recombinant streptokinase in Pichia pastoris. Appl. Microbiol. Biotechnol. 2018, 102, 10561–10577. [Google Scholar] [CrossRef]
- Ali, M.R.; Salim Hossain, M.; Islam, M.A.; Saiful Islam Arman, M.; Sarwar Raju, G.; Dasgupta, P.; Noshin, T.F. Aspect of Thrombolytic Therapy: A Review. Sci. World J. 2014, 2014, 586510. [Google Scholar] [CrossRef]
- Vaidya, B.; Agrawal, G.; Vyas, S.P. Platelets directed liposomes for the delivery of streptokinase: Development and characterization. Eur. J. Pharm. Sci. 2011, 44, 589–594. [Google Scholar] [CrossRef]
- Baharifar, H.; Khoobi, M.; Bidgoli, S.A.; Amani, A. Preparation of PEG-grafted chitosan/streptokinase nanoparticles to improve biological half-life and reduce immunogenicity of the enzyme. Int. J. Biol. Macromol. 2019, 143, 181–189. [Google Scholar] [CrossRef]
- Hasanpour, A.; Esmaeili, F.; Hosseini, H.; Amani, A. Use of mPEG-PLGA nanoparticles to improve bioactivity and hemocompatibility of streptokinase: In-vitro and in-vivo studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 118, 111427. [Google Scholar] [CrossRef]
- Maheshwari, N.; Kantipudi, S.; Maheshwari, A.; Arora, K.; Vandana; Kwatra, N.; Sahni, G. Amino-Terminal Fusion of Epidermal Growth Factor 4,5,6 Domains of Human Thrombomodulin on Streptokinase Confers Anti-Reocclusion Characteristics along with Plasmin-Mediated Clot Specificity. PLoS ONE 2016, 11, e0150315. [Google Scholar] [CrossRef] [Green Version]
- Nedaeinia, R.; Faraji, H.; Javanmard, S.H.; Ferns, G.A.; Ghayour-Mobarhan, M.; Goli, M.; Mashkani, B.; Nedaeinia, M.; Haghighi, M.H.H.; Ranjbar, M. Bacterial staphylokinase as a promising third-generation drug in the treatment for vascular occlusion. Mol. Biol. Rep. 2020, 47, 819–841. [Google Scholar] [CrossRef] [PubMed]
- Schlott, B.; Hartmann, M.; Gührs, K.-H.; Birch-Hirschfeld, E.; Gase, A.; Vettermann, S.; Collen, D.; Lijnen, H.R. Functional properties of recombinant staphylokinase variants obtained by site-specific mutagenesis of methionine-26. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1994, 1204, 235–242. [Google Scholar] [CrossRef]
- Davidson, F.M. The activation of plasminogen by staphylokinase: Comparison with streptokinase. Biochem. J. 1960, 76, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Glanville, K.L.A. A simple method of purifying staphylokinase. Biochem. J. 1963, 88, 11–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A.M. New plasminogen activators: A clinical review. Clin. Cardiol. 1999, 22, 165–171. [Google Scholar] [CrossRef]
- Bodey, G.P.; Stewart, D. In Vitro Studies of Tobramycin. Antimicrob. Agents Chemother. 1972, 2, 109–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, J.H.; Kerber, C.W.; Wilson, J.H. Effects of fibrinolytic agents and heparin on intravascular clot lysis. Am. J. Physiol. 1964, 207, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.H.; Shirakawa, M. Effects of fibrinolytic agents and heparin on blood coagulation in dogs. Am. J. Physiol. Content 1964, 207, 1049–1052. [Google Scholar] [CrossRef] [Green Version]
- Sakai, M.; Watanuki, M.; Matsuo, O. Mechanism of fibrin-specific fibrinolysis by staphylokinase: Participation of α2-plasmin inhibitor. Biochem. Biophys. Res. Commun. 1989, 162, 830–837. [Google Scholar] [CrossRef]
- Lijnen, H.R.; Van Hoef, B.; Matsuo, O.; Collen, D. On the molecular interactions between plasminogen-staphylokinase, α2-antiplasmin and fibrin. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1992, 1118, 144–148. [Google Scholar] [CrossRef]
- Pulicherla, K.K.; Kumar, A.; Gadupudi, G.S.; Kotra, S.R.; Rao, K.R.S.S. In VitroCharacterization of a Multifunctional Staphylokinase Variant with Reduced Reocclusion, Produced from Salt InducibleE. coliGJ1158. BioMed Res. Int. 2013, 2013, 297305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ram, K.S.; Jb, P.; Kumar, A.; Rao, K.S.; Pulicherla, K. Staphylokinase: A boon in medical sciences. Mintage J. Pharm. Med. Sci. 2013, 2, 28–34. [Google Scholar]
- Laroche, Y.; Heymans, S.; Capaert, S.; De Cock, F.; Demarsin, E.; Collen, D. Recombinant staphylokinase variants with reduced antigenicity due to elimination of B-lymphocyte epitopes. Blood 2000, 96, 1425–1432. [Google Scholar] [CrossRef]
- Szemraj, J.; Walkowiak, B.; Kawecka, I.; Janiszewska, G.; Buczko, W.; Bartkowiak, J.; Chabielska, E. A new recombinant thrombolytic and antithrombotic agent with higher fibrin affinity—A staphylokinase variant. I. In vitro study. J. Thromb. Haemost. 2005, 3, 2156–2165. [Google Scholar] [CrossRef]
- Moreadith, R.W.; Collen, D. Clinical development of PEGylated recombinant staphylokinase (PEG–Sak) for bolus thrombolytic treatment of patients with acute myocardial infarction. Adv. Drug Deliv. Rev. 2003, 55, 1337–1345. [Google Scholar] [CrossRef]
- Moons, L.; Vanlinthout, I.; Roelants, I.; Moreadith, R.; Collen, D.; Rapold, H.J. Toxicology Studies with Recombinant Staphylokinase and with SY 161-P5, a Polyethylene Glycol-Derivatized Cysteine-Substitution Mutant. Toxicol. Pathol. 2001, 29, 285–291. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; He, J.; Wang, G.; Zhang, R.; Zhao, B. Effect of site-specific PEGylation on the fibrinolytic activity, immunogenicity, and pharmacokinetics of staphylokinase. Acta Biochim. Biophys. Sin. 2014, 46, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Mannully, S.T.; Shanthi, C.; Pulicherla, K.K. Lipid modification of staphylokinase and its implications on stability and activity. Int. J. Biol. Macromol. 2018, 121, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, M.; Brown, G.; Bieniasz, M.; Oszajca, K.; Chabielska, E.; Pietras, T.; Szemraj, Z.; Makandjou-Ola, E.; Bartkowiak, J.; Szemraj, J. Cloning and expression of a new recombinant thrombolytic and anthithrombotic agent—A staphylokinase variant. Acta Biochim. Pol. 2008, 56, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Cappello, M.; Li, S.; Chen, X.; Li, C.-B.; Harrison, L.; Narashimhan, S.; Beard, C.B.; Aksoy, S. Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans. Proc. Natl. Acad. Sci. USA 1998, 95, 14290–14295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Wang, Y.; Wang, J.; Zou, M.; Liu, S.; Xu, T.; Cai, X.; Wu, C.; Wang, J.; Xu, D. Construction and characterization of a novel staphylokinase variant with thrombin-inhibitory activity. Biotechnol. Lett. 2009, 31, 1923–1927. [Google Scholar] [CrossRef]
- Skrzypczak-Jankun, E.; Carperos, V.E.; Ravichandran, K.; Tulinsky, A.; Westbrook, M.; Maraganore, J.M. Structure of the hirugen and hirulog 1 complexes of α-thrombin. J. Mol. Biol. 1991, 221, 1379–1393. [Google Scholar] [CrossRef]
- van Zyl, W.B.; Pretorius, G.H.; Hartmann, M.; Kotzé, H.F. Production of a Recombinant Antithrombotic and Fibrinolytic Protein, PLATSAK, in Escherichia coli. Thromb. Res. 1997, 88, 419–426. [Google Scholar] [CrossRef]
- Icke, C.; Schlott, B.; Ohlenschläger, O.; Hartmann, M.; Gührs, K.-H.; Glusa, E. Fusion Proteins with Anticoagulant and Fibrinolytic Properties: Functional Studies and Structural Considerations. Mol. Pharmacol. 2002, 62, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Kotra, S.R.; Peravali, J.B.; Yanamadala, S.; Kumar, A.; Rao, K.R.S.S.S.; Pulicherla, K.K. Large scale production of soluble re-combinant staphylokinase variant from cold shock expression system using IPTG inducible E. coli BL21(DE3). Int. J. Bio-Sci. Bio-Technol. 2013, 5, 107–116. [Google Scholar]
- Sumi, H.; Hamada, H.; Nakanishi, K.; Hiratani, H. Enhancement of the Fibrinolytic Activity in Plasma by Oral Administration of Nattokinases. Acta Haematol. 1990, 84, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-J.; Kang, J.-I.; Kim, T.-S.; Yeo, I.-H. The Antithrombotic and Fibrinolytic Effect of Natto in Hypercholesterolemia Rats. Prev. Nutr. Food Sci. 2012, 17, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, M.; Hong, K.; Ito, Y.; Misawa, S.; Takeuchi, N.; Kariya, K.; Nishimuro, S. Transport of Nattokinase across the Rat Intestinal Tract. Biol. Pharm. Bull. 1995, 18, 1194–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urano, T.; Ihara, H.; Umemura, K.; Suzuki, Y.; Oike, M.; Akita, S.; Tsukamoto, Y.; Suzuki, I.; Takada, A. The Profibrinolytic Enzyme Subtilisin NAT Purified from Bacillus subtilis Cleaves and Inactivates Plasminogen Activator Inhibitor Type 1. J. Biol. Chem. 2001, 276, 24690–24696. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Ito, Y.; Hong, K.; Nishimuro, S. Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. Fibrinolysis 1995, 9, 157–164. [Google Scholar] [CrossRef]
- Fujita, M.; Hong, K.; Ito, Y.; Fujii, R.; Kariya, K.; Nishimuro, S. Thrombolytic Effect of Nattokinase on a Chemically Induced Thrombosis Model in Rat. Biol. Pharm. Bull. 1995, 18, 1387–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsia, C.-H.; Shen, M.-C.; Lin, J.-S.; Wen, Y.-K.; Hwang, K.-L.; Cham, T.-M.; Yang, N.-C. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutr. Res. 2009, 29, 190–196. [Google Scholar] [CrossRef]
- Kurosawa, Y.; Nirengi, S.; Homma, T.; Esaki, K.; Ohta, M.; Clark, J.F.; Hamaoka, T. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 2015, 5, 11601. [Google Scholar] [CrossRef] [Green Version]
- Jensen, G.S.; Lenninger, M.; Ero, M.P.; Benson, K.F. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr. Blood Press. Control. 2016, 9, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Yao, J.; Sparks, S.; Wang, K.Y. Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. Int. J. Mol. Sci. 2017, 18, 523. [Google Scholar] [CrossRef] [Green Version]
- Domsalla, A.; Görick, C.; Melzig, M.F. Proteolytic activity in latex of the genus Euphorbia—A chemotaxonomic marker? Pharmazie 2010, 65, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Kohnert, U.; Rudolph, R.; Verheijen, J.H.; Jacoline, E.; Weening-Verhoeff, D.; Stern, A.; Opitz, U.; Martin, U.; Lill, H.; Prinz, H.; et al. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng. Des. Sel. 1992, 5, 93–100. [Google Scholar] [CrossRef]
- Martin, U.; Von Möllendorff, E.; Akpan, W.; Kientsch-Engel, R.; Kaufmann, B.; Neugebauer, G. Pharmacokinetic and Hemostatic Properties of the Recombinant Plasminogen Activator BM 06.022 in Healthy Volunteers. Thromb. Haemost. 1991, 66, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Flemmig, M.; Melzig, M.F. Serine-proteases as plasminogen activators in terms of fibrinolysis. J. Pharm. Pharmacol. 2012, 64, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Martin, U.; Von Möllendorff, E.; Akpan, W.; Kientsch-Engel, R.; Kaufmann, B.; Neugebauer, G. Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers. Clin. Pharmacol. Ther. 1991, 50, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Smalling, R.W.; Bode, C.; Kalbfleisch, J.; Sen, S.; Limbourg, P.; Forycki, F.; Habib, G.; Feldman, R.; Hohnloser, S.; Seals, A. More Rapid, Complete, and Stable Coronary Thrombolysis With Bolus Administration of Reteplase Compared With Alteplase Infusion in Acute Myocardial Infarction. Circulation 1995, 91, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Smalling, R.W.; Berg, G.; Burnett, C.; Lorch, G.; Kalbfleisch, J.M.; Chernoff, R.; Christie, L.G.; Feldman, R.L.; Seals, A.A.; et al. Randomized Comparison of Coronary Thrombolysis Achieved With Double-Bolus Reteplase (Recombinant Plasminogen Activator) and Front-Loaded, Accelerated Alteplase (Recombinant Tissue Plasminogen Activator) in Patients With Acute Myocardial Infarction. Circulation 1996, 94, 891–898. [Google Scholar] [CrossRef] [PubMed]
- GUST-III Investigators. A comparison of reteplase with alteplase for acute myocardial infarction. The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO III) Investigators. N. Engl. J. Med. 1997, 337, 1118–1123. [Google Scholar] [CrossRef]
- Biji, G.D.; Arun, A.; Muthulakshmi, E.; Vijayaraghavan, P.; Arasu, M.V.; Al-Dhabi, N.A. Bio-prospecting of cuttle fish waste and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation. 3 Biotech 2016, 6, 231. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.Y.; Hahn, B.S.; Ryu, K.S.; Kim, J.W.; Kim, I.; Kim, Y.S. Purification and characterization of a serine protease with fibri nolytic activity from the dung beetles, Catharsius molossus. Thromb. Res. 2003, 112, 339–347. [Google Scholar] [CrossRef]
- Sumi, H.; Nakajima, N.; Mihara, H. Fibrinolysis relating substances in marine creatures. Comp. Biochem. Physiol. Part B Comp. Biochem. 1992, 102, 163–167. [Google Scholar] [CrossRef]
- Sugimoto, S.; Fujii, T.; Morimiya, T.; Johdo, O.; Nakamura, T. The Fibrinolytic Activity of a Novel Protease Derived from a Tempeh Producing Fungus, Fusarium sp. BLB. Biosci. Biotechnol. Biochem. 2007, 71, 2184–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salihu, A.; Sallau, A.B.; Adamu, A.; Kudu, F.A.; Tajo, M.M.; Bala, T.F.; Yashim, W.D. Utilization of Groundnut Husk as a Solid Substrate for Cellulase Production by Aspergillus niger Using Response Surface Methodology. Waste Biomass-Valorization 2013, 5, 585–593. [Google Scholar] [CrossRef]
- Prakasham, R.S.; Rao, C.S.; Sarma, P.N. Green gram husk—an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour Technol. 2006, 97, 1449–1454. [Google Scholar] [CrossRef]
- Dilipkumar, M.; Rajasimman, M.; Rajamohan, N. Enhanced inulinase production by Streptomyces sp. in solid state fermenta-tion through statistical designs. 3 Biotech 2013, 3, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Raol, G.G.; Raol, B.V.; Prajapati, V.S.; Bhavsar, N.H. Utilization of agro-industrial waste for β-galactosidase production under solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate. 3 Biotech 2015, 5, 411–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.T.; Fan, M.H.; Kuo, F.C.; Sung, H.Y. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 2000, 48, 3210–3216. [Google Scholar] [CrossRef]
- Yao, Z.; Kim, J.H. Gene Cloning, Expression, and Properties of a Fibrinolytic Enzyme Secreted by Bacillus pumilus BS15 Isolated from Gul (Oyster) Jeotgal. Biotechnol. Bioprocess Eng. 2018, 23, 293–301. [Google Scholar] [CrossRef]
- Wu, R.; Chen, G.; Pan, S.; Zeng, J.; Liang, Z. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Sci. Rep. 2019, 9, 6824. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, A.; Vegneshwaran vasudevan, R.; Brooks, M.; Budge, S.; Dave, D. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. J. Microb. Biochem. Technol. 2013, 2, 107–129. [Google Scholar]
Primary Hemostasis (Platelet Plug Formation) |
Secondary Hemostasis (Coagulation Cascade to Form Fibrin Network) |
---|---|
|
|
|
|
|
|
Modifications | Type | Examples | Mode of Action | References |
---|---|---|---|---|
Structural | Deletion | SK60-386 and SK143-386 | Fibrin-specific activity, lower immunogenicity | [151] |
Substitution | Lys59 and Lys386 for glutamine | Increases half-life | [152] | |
Chemical | PEGylation | cysteine-specific thiol-mediated | Increases half-life and stability | [125] |
Acylation | Human plasminogen-bacterial streptokinase complex | Enhances specificity | [153] | |
Delivery system | Liposomal entrapment or encapsulation | PEG or chitosan nanoparticles, platelet directed liposomes | Increases half-life and stability, reduced immunogenicity, improved clot penetration properties | [154,155,156] |
Domain fusion | Chimeric and conjugated protein | Fusion with epidermal growth factor 4, 5, and 6 domains of human thrombomodulin | Reduced risk of re-occlusion and hemorrhage | [157] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diwan, D.; Usmani, Z.; Sharma, M.; Nelson, J.W.; Thakur, V.K.; Christie, G.; Molina, G.; Gupta, V.K. Thrombolytic Enzymes of Microbial Origin: A Review. Int. J. Mol. Sci. 2021, 22, 10468. https://doi.org/10.3390/ijms221910468
Diwan D, Usmani Z, Sharma M, Nelson JW, Thakur VK, Christie G, Molina G, Gupta VK. Thrombolytic Enzymes of Microbial Origin: A Review. International Journal of Molecular Sciences. 2021; 22(19):10468. https://doi.org/10.3390/ijms221910468
Chicago/Turabian StyleDiwan, Deepti, Zeba Usmani, Minaxi Sharma, James W. Nelson, Vijay Kumar Thakur, Graham Christie, Gustavo Molina, and Vijai Kumar Gupta. 2021. "Thrombolytic Enzymes of Microbial Origin: A Review" International Journal of Molecular Sciences 22, no. 19: 10468. https://doi.org/10.3390/ijms221910468
APA StyleDiwan, D., Usmani, Z., Sharma, M., Nelson, J. W., Thakur, V. K., Christie, G., Molina, G., & Gupta, V. K. (2021). Thrombolytic Enzymes of Microbial Origin: A Review. International Journal of Molecular Sciences, 22(19), 10468. https://doi.org/10.3390/ijms221910468