Supercritical Carbon Dioxide Treatment of Porous Silicon Increases Biocompatibility with Cardiomyocytes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Silicon Wafer, after Etching, and Plasma or scCO2 Treatments
3.2. Characterization of Silicon Wafers after Etching, and Plasma or scCO2 Treatments
3.3. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Low, S.P.; Voelcker, N.H. Biocompatibility of porous silicon. In Handbook of Porous Silicon; Springer: Berlin/Heidelberg, Germany, 2014; pp. 381–393. [Google Scholar]
- Low, S.P.; Voelcker, N.H.; Canham, L.T.; Williams, K.A. The biocompatibility of porous silicon in tissues of the eye. Biomaterials 2009, 30, 2873–2880. [Google Scholar] [CrossRef]
- Santos, A.H.; Bimbo, M.L.; Lehto, V.-P.; Airaksinen, J.A.; Salonen, J.; Hirvonen, J. Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr. Drug Discov. Technol. 2011, 8, 228–249. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Massad-Ivanir, N.; Segal, E.; Weiss, S. Porous silicon-based photonic biosensors: Current status and emerging applications. Anal. Chem. 2018, 91, 441–467. [Google Scholar] [CrossRef]
- Janshoff, A.; Dancil, K.-P.S.; Steinem, C.; Greiner, D.P.; Lin, V.S.-Y.; Gurtner, C.; Motesharei, K.; Sailor, M.J.; Ghadiri, M.R. Macroporous p-Type silicon Fabry− Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 1998, 120, 12108–12116. [Google Scholar] [CrossRef]
- Dhanekar, S.; Jain, S. Porous silicon biosensor: Current status. Biosens. Bioelectron. 2013, 41, 54–64. [Google Scholar] [CrossRef]
- Kankala, R.K.; Zhu, K.; Sun, X.-N.; Liu, C.-G.; Wang, S.-B.; Chen, A.-Z. Cardiac tissue engineering on the nanoscale. ACS Biomater. Sci. Eng. 2018, 4, 800–818. [Google Scholar] [CrossRef]
- Bonaventura, G.; Iemmolo, R.; La Cognata, V.; Zimbone, M.; La Via, F.; Fragalà, M.E.; Barcellona, M.L.; Pellitteri, R.; Cavallaro, S. Biocompatibility between Silicon or Silicon Carbide surface and Neural Stem Cells. Sci. Rep. 2019, 9, 11540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, H.-P.; Zhong, Y.; Nguyen, T.-K.; Park, Y.; Dinh, T.; Song, E.; Vadivelu, R.K.; Masud, M.K.; Li, J.; Shiddiky, M.J.A.; et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 2019, 13, 11572–11581. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.M.A.; Baek, H.; Sato, T.; Nakao, A.; Uozumi, Y. Metallically gradated silicon nanowire and palladium nanoparticle composites as robust hydrogenation catalysts. Commun. Chem. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Srivastava, N.; Shripathi, T.; Srivastava, P. Core level X-ray photoelectron spectroscopy study of exchange coupled Fe/NiO bilayer interfaced with Si substrate (Fe/NiO–nSi structure). J. Electron Spectrosc. Relat. Phenom. 2013, 191, 20–26. [Google Scholar] [CrossRef]
- Senna, M.; Noda, H.; Xin, Y.; Hasegawa, H.; Takai, C.; Shirai, T.; Fuji, M. Solid-state reduction of silica nanoparticles via oxygen abstraction from SiO4 units by polyolefins under mechanical stressing. RSC Adv. 2018, 8, 36338–36344. [Google Scholar] [CrossRef] [Green Version]
- Mesarwi, A.; Ignatiev, A. X-ray photoemission study of the Ba/Si (100) interface and the oxidation of Si promoted by Ba overlayers. J. Vac. Sci. Technol. A Vac. Surf. Films 1991, 9, 2264–2268. [Google Scholar] [CrossRef]
- Thøgersen, A.; Selj, J.H.; Marstein, E.S. Oxidation effects on graded porous silicon anti-reflection coatings. J. Electrochem. Soc. 2012, 159, D276–D281. [Google Scholar] [CrossRef] [Green Version]
- Simón, Z.J.H.; López, J.A.L.; De La Luz, A.D.H.; García, S.A.P.; Lara, A.B.; Salgado, G.G.; López, J.C.; Conde, G.O.M.; Hernández, H.P.M. Spectroscopic Properties of Si-nc in SiOx Films Using HFCVD. Nanomaterials 2020, 10, 1415. [Google Scholar] [CrossRef]
- Guruvenket, S.; Hoey, J.M.; Anderson, K.J.; Frohlich, M.T.; Krishnan, R.; Sivaguru, J.; Sibi, M.P.; Boudjouk, P. Synthesis of silicon quantum dots using cyclohexasilane (Si6H12). J. Mater. Chem. C 2016, 4, 8206–8213. [Google Scholar] [CrossRef]
- Bashouti, M.Y.; Sardashti, K.; Ristein, J.; Christiansen, S. Kinetic study of H-terminated silicon nanowires oxidation in very first stages. Nanoscale Res. Lett. 2013, 8, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, J.; Khung, Y.L. Influences of doping and crystal orientation on surface roughening upon alcohol grafting onto silicon hydride. Appl. Sci. 2017, 7, 859. [Google Scholar] [CrossRef] [Green Version]
- Domashevskaya, E.; Kashkarov, V.; Manukovskii, E.Y.; Shchukarev, A.; Terekhov, V. XPS, USXS and PLS investigations of porous silicon. J. Electron Spectrosc. Relat. Phenom. 1998, 88–91, 969–972. [Google Scholar] [CrossRef]
- Pistillo, B.R.; Detomaso, L.; Sardella, E.; Favia, P.; d’Agostino, R. RF-plasma deposition and surface characterization of stable (COOH)-rich thin films from cyclic L-lactide. Plasma Process. Polym. 2007, 4, S817–S820. [Google Scholar] [CrossRef]
- Fernández, H.M.; Rogler, D.; Sauthier, G.; Thomasset, M.; Dietsch, R.; Carlino, V.; Pellegrin, E. Characterization of Carbon-Contaminated B 4 C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerofolini, G.F.; Galati, C.; Reina, S.; Renna, L.; Giannazzo, F.; Raineri, V. Hydrosilation of 1-alkyne at nearly flat, terraced, homogeneously hydrogen terminated silicon (100) surfaces. Surf. Interface Anal. 2004, 36, 71–76. [Google Scholar] [CrossRef]
- Alam, A.U.; Howlader, M.M.R.; Deen, M.J. Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding. ECS J. Solid State Sci. Technol. 2013, 2, P515–P523. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Bisi, O.; Ossicini, S.; Pavesi, L. Porous silicon: A quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 2000, 38, 1–126. [Google Scholar] [CrossRef]
- Tzur-Balter, A.; Shatsberg, Z.; Beckerman, M.; Segal, E.; Artzi, N. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nat. Commun. 2015, 6, 6208. [Google Scholar] [CrossRef] [Green Version]
State | Binding Energy (EB) [eV] | |||||
---|---|---|---|---|---|---|
Si2p | ||||||
Metallic Silicon | 98.4 [10,11,12,13] | |||||
p-type Si | Si0 3/2 | 99.2 [10] | ||||
Si–(Si4) | Si0 3/2 | 99.4 [14] | 99.5 [15] | 99.6 [16] | 99.6 [17] | |
Si0 1/2 | 100.0 [14] | 100.0 [15] | 100.5 [16] | 100.2 [17] | ||
Si–(Si3O) | Si+ | 100.4 [14] | 101.0 [15] | 100.4 [16] | 100.6 [17] | |
Si–(Si2O2) | Si2+ | 101.4 [14] | 101.5 [15] | 101.9 [16] | 101.4 [17] | |
Si–(SiO3) | Si3+ | EB3/2: 102.5 [14] EB1/2: 103.1 [14] | 102.5 [15] | 102.6 [16] | 102.1 [17] | |
Si–(O4) | Si4+ | EB3/2: 103.6 [14] EB1/2: 104.2 [14] | 103.6 [15] | 103.7 [16] | 103.5 [17] | |
Si–O–C | 102.2~102.5 [18] | |||||
Si–O–R | 102.3 [16] | |||||
Si–R | 101.8 [16] | |||||
Si–C | 101.3 [16] | |||||
(CH3CH2)3SiOH | 101.3 [19] | |||||
C1s | ||||||
C=C | 284.5 [14,16] | |||||
C–C, C–H | 285 [20] | 284.9 [21] | 285.1 [16] | |||
C–O–C, C–OH | 286.6 ± 0.2 [20] | 286.7 [21] | 286.5 [14] | |||
O–C–O, O–C=O | 288.2 ± 0.2 [20] | 288.8 [21] | ||||
C–Si | 283.9 [16] | |||||
Carbide | 283.7 [22] | 282.8~283.6 (B4C) [21] | ||||
O1s | ||||||
Si–(OH)x | 531.1 [23]@Si | |||||
Si–(O2) | 531.9 [23]@Si | |||||
Si–(O4), SiO2 | 532.9 [23]@Si | 532.5~533.1 [14] | ||||
C–OH, C–O–C | ~533.4 [14] | |||||
Chemisorbed Oxygen & Water | 534.6~535.4 [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.J.-Y.; Lin, H.-Y.; Thomas, J.L.; Wang, H.-Y.; Lin, C.-Y.; Chen, C.-Y.; Liu, K.-H.; Lee, M.-H. Supercritical Carbon Dioxide Treatment of Porous Silicon Increases Biocompatibility with Cardiomyocytes. Int. J. Mol. Sci. 2021, 22, 10709. https://doi.org/10.3390/ijms221910709
Feng DJ-Y, Lin H-Y, Thomas JL, Wang H-Y, Lin C-Y, Chen C-Y, Liu K-H, Lee M-H. Supercritical Carbon Dioxide Treatment of Porous Silicon Increases Biocompatibility with Cardiomyocytes. International Journal of Molecular Sciences. 2021; 22(19):10709. https://doi.org/10.3390/ijms221910709
Chicago/Turabian StyleFeng, David Jui-Yang, Hung-Yin Lin, James L. Thomas, Hsing-Yu Wang, Chien-Yu Lin, Chen-Yuan Chen, Kai-Hsi Liu, and Mei-Hwa Lee. 2021. "Supercritical Carbon Dioxide Treatment of Porous Silicon Increases Biocompatibility with Cardiomyocytes" International Journal of Molecular Sciences 22, no. 19: 10709. https://doi.org/10.3390/ijms221910709
APA StyleFeng, D. J. -Y., Lin, H. -Y., Thomas, J. L., Wang, H. -Y., Lin, C. -Y., Chen, C. -Y., Liu, K. -H., & Lee, M. -H. (2021). Supercritical Carbon Dioxide Treatment of Porous Silicon Increases Biocompatibility with Cardiomyocytes. International Journal of Molecular Sciences, 22(19), 10709. https://doi.org/10.3390/ijms221910709