Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of NaHCO3 on the Activity of OXA-48
2.2. Residues Involved in the Hydrolysis of β-Lactam Ring
2.3. Residues Involved in Interaction between the R Groups of β-Lactam Antibiotics
2.4. Mechanisms of Substrate Recognition and Specificity by OXA-48
3. Materials and Methods
3.1. Antibiotics and Media
3.2. Recombinant OXA-48 and Site-Directed Mutagenesis
3.3. Expression and Purification of OXA-48 and Mutants
3.4. Antimicrobial Susceptibility Testing
3.5. Effect of NaHCO3 on the Kinetic Parameters
3.6. Structure Modelling and Analysis
3.7. Detection of Acyl-Enzyme Intermediate by ESI-TOF-MS
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. Beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Young, H.K.; Amyes, S.G. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2005, 11, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.M.; Livermore, D.M.; Gur, D.; Akova, M.; Akalin, H.E. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1993, 37, 1637–1644. [Google Scholar]
- Evans, B.A.; Amyes, S.G. OXA β-lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar]
- Verma, V.; Testero, S.A.; Amini, K.; Wei, W.; Liu, J.; Balachandran, N.; Monoharan, T.; Stynes, S.; Kotra, L.P.; Golemi-Kotra, D. Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D beta-lactamase from Acinetobacter baumannii. J. Biol. Chem. 2011, 286, 37292–37303. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, N.T.; Fisher, J.F. Acquired Class D beta-Lactamases. Antibiotics 2014, 3, 398–434. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mairi, A.; Pantel, A.; Sotto, A.; Lavigne, J.P.; Touati, A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 587–604. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102–e00119. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Saxena, A.; Singh, H. Identification of group specific motifs in beta-lactamase family of proteins. J. Biomed. Sci. 2009, 16, 109. [Google Scholar] [CrossRef] [Green Version]
- Schneider, I.; Queenan, A.M.; Bauernfeind, A. Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrob. Agents Chemother. 2006, 50, 1330–1335. [Google Scholar] [CrossRef] [Green Version]
- Leiros, H.K.S.; Thomassen, A.M.; Samuelsen, Ø.; Flach, C.F.; Kotsakis, S.D.; Larsson, D.J. Structural insights into the enhanced carbapenemase efficiency of OXA-655 compared to OXA-10. FEBS Open Bio 2020, 10, 1821–1832. [Google Scholar] [PubMed]
- Matagne, A.; Lamotte-Brasseur, J.; Frere, J.M. Catalytic properties of class A beta-lactamases: Efficiency and diversity. Biochem. J. 1998, 330 Pt 2, 581–598. [Google Scholar] [CrossRef]
- Chen, Y.; Bonnet, R.; Shoichet, B.K. The acylation mechanism of CTX-M beta-lactamase at 0.88 a resolution. J. Am. Chem Soc. 2007, 129, 5378–5380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pemberton, O.A.; Noor, R.E.; Kumar, M.V.V.; Sanishvili, R.; Kemp, M.T.; Kearns, F.L.; Woodcock, H.L.; Gelis, I.; Chen, Y. Mechanism of proton transfer in class A beta-lactamase catalysis and inhibition by avibactam. Proc. Natl. Acad. Sci. USA 2020, 117, 5818–5825. [Google Scholar] [CrossRef]
- Paetzel, M.; Danel, F.; de Castro, L.; Mosimann, S.C.; Page, M.G.; Strynadka, N.C. Crystal structure of the class D beta-lactamase OXA-10. Nat. Struct. Biol. 2000, 7, 918–925. [Google Scholar] [CrossRef]
- Vercheval, L.; Bauvois, C.; di Paolo, A.; Borel, F.; Ferrer, J.L.; Sauvage, E.; Matagne, A.; Frere, J.M.; Charlier, P.; Galleni, M.; et al. Three factors that modulate the activity of class D beta-lactamases and interfere with the post-translational carboxylation of Lys70. Biochem. J. 2010, 432, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Golemi, D.; Maveyraud, L.; Vakulenko, S.; Samama, J.P.; Mobashery, S. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc. Natl. Acad. Sci. USA 2001, 98, 14280–14285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maveyraud, L.; Golemi, D.; Kotra, L.P.; Tranier, S.; Vakulenko, S.; Mobashery, S.; Samama, J.-P. Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 2000, 8, 1289–1298. [Google Scholar] [PubMed]
- De Belder, D.; Ghiglione, B.; Pasteran, F.; de Mendieta, J.M.; Corso, A.; Curto, L.; Di Bella, A.; Gutkind, G.; Gomez, S.A.; Power, P. Comparative Kinetic Analysis of OXA-438 with Related OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamases. ACS Infect. Dis. 2020, 6, 3026–3033. [Google Scholar] [PubMed]
- Docquier, J.D.; Calderone, V.; De Luca, F.; Benvenuti, M.; Giuliani, F.; Bellucci, L.; Tafi, A.; Nordmann, P.; Botta, M.; Rossolini, G.M.; et al. Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. Chem. Biol. 2009, 16, 540–547. [Google Scholar] [CrossRef]
- Schneider, K.D.; Bethel, C.R.; Distler, A.M.; Hujer, A.M.; Bonomo, R.A.; Leonard, D.A. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009, 48, 6136–6145. [Google Scholar] [CrossRef] [Green Version]
- Lietz, E.J.; Truher, H.; Kahn, D.; Hokenson, M.J.; Fink, A.L. Lysine-73 is involved in the acylation and deacylation of beta-lactamase. Biochemistry 2000, 39, 4971–4981. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Stewart, N.K.; Toth, M.; Vakulenko, S.B. Structural Insights into the Mechanism of Carbapenemase Activity of the OXA-48 beta-Lactamase. Antimicrob. Agents Chemother. 2019, 63, e01202–e01219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, A.; Pemberton, O.A.; Chen, Y. Structural Basis for Substrate Specificity and Carbapenemase Activity of OXA-48 Class D beta-Lactamase. ACS Infect. Dis. 2020, 6, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Stojanoski, V.; Hu, L.; Sankaran, B.; Wang, F.; Tao, P.; Prasad, B.V.; Palzkill, T. Mechanistic basis of OXA-48-like β-lactamases’ hydrolysis of carbapenems. ACS Infect. Dis. 2021, 7, 445–460. [Google Scholar] [CrossRef]
- Pernot, L.; Frenois, F.; Rybkine, T.; L’Hermite, G.; Petrella, S.; Delettre, J.; Jarlier, V.; Collatz, E.; Sougakoff, W. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem. J. Mol. Biol. 2001, 310, 859–874. [Google Scholar] [CrossRef]
- Schneider, K.D.; Karpen, M.E.; Bonomo, R.A.; Leonard, D.A.; Powers, R.A. The 1.4 A crystal structure of the class D beta-lactamase OXA-1 complexed with doripenem. Biochemistry 2009, 48, 11840–11847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Kumar, V.; Zeiser, E.T.; Becka, S.A.; van den Akker, F. Structural Analysis of The OXA-48 Carbapenemase Bound to A “Poor” Carbapenem Substrate, Doripenem. Antibiotics 2019, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- De Luca, F.; Benvenuti, M.; Carboni, F.; Pozzi, C.; Rossolini, G.M.; Mangani, S.; Docquier, J.D. Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D beta-lactamase OXA-10 by rational protein design. Proc. Natl. Acad. Sci. USA 2011, 108, 18424–18429. [Google Scholar] [CrossRef] [Green Version]
- Drawz, S.M.; Babic, M.; Bethel, C.R.; Taracila, M.; Distler, A.M.; Ori, C.; Caselli, E.; Prati, F.; Bonomo, R.A. Inhibition of the class C beta-lactamase from Acinetobacter spp.: Insights into effective inhibitor design. Biochemistry 2010, 49, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Endimiani, A.; Doi, Y.; Bethel, C.R.; Taracila, M.; Adams-Haduch, J.M.; O’Keefe, A.; Hujer, A.M.; Paterson, D.L.; Skalweit, M.J.; Page, M.G.; et al. Enhancing resistance to cephalosporins in class C beta-lactamases: Impact of Gly214Glu in CMY-2. Biochemistry 2010, 49, 1014–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugonnet, J.E.; Tremblay, L.W.; Boshoff, H.I.; Barry, C.E., III; Blanchard, J.S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 2009, 323, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Lohans, C.T.; van Groesen, E.; Kumar, K.; Tooke, C.L.; Spencer, J.; Paton, R.S.; Brem, J.; Schofield, C.J. A New Mechanism for beta-Lactamases: Class D Enzymes Degrade 1beta-Methyl Carbapenems through Lactone Formation. Angew. Chem. Int. Ed. Engl. 2018, 57, 1282–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesheim, B.H.B. Characterization and Structural Analysis of Class D β-Lactamases: Variants and Mutants of OXA-Type Carbapenemases. Master‘s Thesis, UiT The Arctic University of Norway, Tromsø, Norway, 2016. [Google Scholar]
- Smith, C.A.; Antunes, N.T.; Toth, M.; Vakulenko, S.B. Crystal structure of carbapenemase OXA-58 from Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Meziane-Cherif, D.; Bonnet, R.; Haouz, A.; Courvalin, P. Structural insights into the loss of penicillinase and the gain of ceftazidimase activities by OXA-145 β-lactamase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2016, 71, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, A.S.; Peng, R.H.; Zhuang, J.; Gao, F.; Li, Y.; Cheng, Z.M.; Yao, Q.H. Chemical gene synthesis: Strategies, softwares, error corrections, and applications. FEMS Microbiol. Rev. 2008, 32, 522–540. [Google Scholar] [CrossRef] [Green Version]
- Chiou, J.; Li, R.; Chen, S. CARB-17 family of beta-lactamases mediated intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrob. Agents Chemother. 2015, 59, 3593–3595. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Approved Standard; CLSI Document M100; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLano, W.L. The PyMOL Molecular Graphics System. 2002. Available online: http://www.pymol.org (accessed on 30 January 2018).
AMP a | AMX | CAR | PIP | OXA | IPM | MEM | |
---|---|---|---|---|---|---|---|
pET28 | <1 | 2 | 4 | 0.5 | 8 | <0.25 | <0.004 |
WT OXA-48 | 512 | 512 | 256 | 4096 | 1024 | 2 | 1 |
S70A | <1 | 1 | 8 | 0.5 | 16 | <0.25 | <0.004 |
K73A | <1 | 2 | 8 | 0.5 | 16 | <0.25 | <0.004 |
S118A | <1 | 2 | 16 | <0.25 | 16 | <0.25 | <0.004 |
K208A | <1 | 2 | 8 | 0.5 | 16 | <0.25 | <0.004 |
T209A | 512 | 1024 | 256 | 2048 | 2048 | <0.25 | 0.5 |
G210A | 256 | 256 | 256 | 1024 | 2048 | 1 | 0.5 |
Y211A | 512 | 256 | 256 | 2048 | 2048 | 1 | 0.5 |
R250A | 64 | 128 | 128 | 1024 | 1024 | <0.25 | 0.06 |
I102A | 1024 | 512 | 256 | 2048 | 2048 | 1 | 1 |
T104A | 512 | 512 | 256 | 1024 | 1024 | 1 | 1 |
W105A | 128 | 128 | 256 | 1024 | 512 | <0.25 | 0.125 |
L158A | 64 | 64 | 128 | 128 | 256 | <0.25 | 0.125 |
T213A | 128 | 64 | 128 | 1024 | 1024 | 0.5 | 0.25 |
S244A | 1024 | 512 | 256 | 2048 | 1024 | 2 | 1 |
L247A | 2048 | 512 | 256 | 2048 | 2048 | 1 | 1 |
Constants | OXA-48 WT | S118A | K208A | T209A | R250A | W105A | L158A | |
---|---|---|---|---|---|---|---|---|
AMP a | Km (μM) | 86 ± 6 | >800 | 117 ± 8 | 125 ± 9 | 92 ± 7 | 81 ± 9 | 60 ± 11 |
kcat (s−1) | 817 ± 29 | >10 | 3 ± 0.1 | 164 ± 5.8 | 234 ± 8.1 | 75 ± 3.7 | 20 ± 1.3 | |
kcat/Km (μM−1 s−1) | 9.5 | 1.7 × 10−2 | 2.6 × 10−2 | 1.3 | 2.5 | 0.9 | 0.3 | |
CAR | Km (μM) | 57 ± 7 | >500 | 421 ± 36 | 269 ± 23 | 147 ± 19 | 217 ± 12 | 79 ± 6 |
kcat (s−1) | 311 ± 22 | >1 | 4 ± 0.2 | 323 ± 19 | 160 ± 12 | 127 ± 12 | 18 ± 0.7 | |
kcat/Km (μM−1 s−1) | 5.5 | 6.6 × 10−3 | 9.5 × 10−3 | 1.2 | 1.1 | 0.6 | 0.2 | |
PIP | Km (μM) | 96 ± 10 | >500 | 385 ± 12 | 93 ± 20 | 195 ± 35 | 162 ± 38 | 461 ± 91 |
kcat (s−1) | 197 | >0.4 | 4 ± 0.1 | 61 ± 6.3 | 109 ± 12 | 58 ± 9.1 | 98 ± 14 | |
kcat/Km (μM−1 s−1) | 2.1 | 3.0 × 10−3 | 1.0 × 10−2 | 0.7 | 0.6 | 0.4 | 0.2 | |
OXA | Km (μM) | 34 ± 3 | 337 ± 20 | 130 ± 11 | 81 ± 15 | 138 ± 13 | 116 ± 15 | 184 ± 11 |
kcat (s−1) | 162 ± 5.4 | 1.4 ± 0.1 | 2 ± 0.1 | 52 ± 4.6 | 94 ± 5.2 | 60 ± 4.4 | 20 ± 1.1 | |
kcat/Km (μM−1 s−1) | 4.8 | 4.2 × 10−3 | 1.5 × 10−2 | 0.6 | 0.7 | 0.5 | 0.1 | |
IPM | Km (μM) | 4 ± 0.2 | >150 | >150 | 232 ± 87 | 926 ± 48 | 24 ± 2.9 | >150 |
kcat (s−1) | 6 ± 0.02 | >0.05 | >0.005 | 0.4 ± 0.1 | 4 ± 1.9 | 0.03 ± 0.01 | >1 | |
kcat/Km (μM−1 s−1) | 1.5 | 7.1 × 10−4 | 3.0 × 10−5 | 1.8 × 10−3 | 2.2 × 10−3 | 1.3 × 10−3 | 1.0 × 10−2 | |
MEM | Km (μM) | 40 ± 0.3 | >300 | >300 | 60 ± 6.3 | >300 | 65 ± 5.8 | 55 ± 4.9 |
kcat (s−1) | 0.1 ± 0.01 | >0.02 | >0.01 | 0.1 ± 0.01 | >0.01 | 0.01 ± 0.001 | 0.04 ± 0.001 | |
kcat/Km (μM−1 s−1) | 2.5 × 10−3 | 6.3 × 10−5 | 3.1 × 10−5 | 1.7 × 10−3 | 7.0 × 10−5 | 1.5 × 10−4 | 7.3 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiou, J.; Cheng, Q.; Shum, P.T.-f.; Wong, M.H.-y.; Chan, E.W.-c.; Chen, S. Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity. Int. J. Mol. Sci. 2021, 22, 11480. https://doi.org/10.3390/ijms222111480
Chiou J, Cheng Q, Shum PT-f, Wong MH-y, Chan EW-c, Chen S. Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity. International Journal of Molecular Sciences. 2021; 22(21):11480. https://doi.org/10.3390/ijms222111480
Chicago/Turabian StyleChiou, Jiachi, Qipeng Cheng, Perry Tim-fat Shum, Marcus Ho-yin Wong, Edward Wai-chi Chan, and Sheng Chen. 2021. "Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity" International Journal of Molecular Sciences 22, no. 21: 11480. https://doi.org/10.3390/ijms222111480