Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update
Abstract
:1. Introduction
1.1. Thyroid Cancer: Origins and Classification
1.2. Thyroid Cancer Epidemiology
1.3. Thyroid Cancer: Risk Factors
1.4. Role of Genetic Factors in Pathogenesis of TC
1.4.1. MAPK Pathway
1.4.2. PI3K/AKT Pathway
1.4.3. Molecular Alterations in Receptor Tyrosine Kinases
1.4.4. Other Molecular Alterations
2. Current Diagnostic and Treatment Strategies
2.1. Diagnosis of TC: Ultrasonography (USG) and Fine-Needle Aspiration Biopsy (FNAB)
2.2. Surgical Treatment of TC
2.3. RAI Treatment
3. Currently Used and Investigated Targeted Therapies in TCs
3.1. Targeted Therapies for DTC Treatment
3.1.1. MKI-Based Therapies of DTC
3.1.2. Single Kinase-Targeted Therapies of DTC
3.2. Targeted Therapies for ATC Treatment
3.2.1. MKI-Based Therapies of ATC
3.2.2. Single Kinase-Targeted Therapies of ATC
3.3. Targeted Therapies for MTC Treatment
3.3.1. MKI-Based Therapies of MTC
3.3.2. Single Kinase-Targeted Therapies of MTC
4. Treatment-Related Toxicities
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AEs | adverse events |
ALK | anaplastic lymphoma kinase |
AST | aspartate aminotransferase |
ATA | American Thyroid Association |
ATC | anaplastic thyroid cancer |
BMI | body mass index |
BRAF | B-Raf proto-oncogene |
CT | computer tomography |
CTLA-4 | cytotoxic T-lymphocyte antigen-4 |
DeTC | dedifferentiated thyroid cancer |
DIT | diiodotyrosine |
DTC | differentiated thyroid cancer |
EBRT | external beam radiation therapy |
eIF1A | eukaryotic translation initiation factor 1A |
EMA | European Medical Agency |
FAP | familial adenomatous polyposis |
FDA | Food and Drug Administration |
18FDG | 18F-fluoro-2-deoxy-D-glucose |
FNAB | fine-needle aspiration biopsy |
FTC | follicular thyroid carcinoma |
FVPTC | follicular variant of PTC |
GTP | guanosine triphosphate |
HCC | Hürtle cell carcinoma |
HNHA | N-hydroxy-7-(2-naphthylthio) heptanamide |
HT | hypertension |
IDH1 | isocitrate dehydrogenase 1 |
IDH2 | isocitrate dehydrogenase 2 |
IMRT | intensity-modulated radiation therapy |
KIs | kinase inhibitors |
MAPK | mitogen-activated protein kinase |
MEN | multiple endocrine neoplasia |
MEN2 | multiple endocrine neoplasia type 2 |
MIT | monoiodotyrosine |
MKIs | multi-kinase inhibitors |
MRI | magnetic resonance imaging |
MTC | medullary thyroid cancer |
ND | not defined |
NIS | sodium iodide symporter |
ORR | overall response rate |
OS | overall survival |
PAX8 | paired box 8 |
PD | progressive disease |
PDCT | poorly differentiated thyroid carcinoma |
PET | positron emission tomography |
PFS | progression-free survival |
PI3K | phosphatidylinositol 3-kinase |
PIK3CA | phosphatidylinositol-4,5-bisphosphate 3-kinase |
PLC-γ | phospholipase C |
PPARγ | peroxisome proliferator activated receptor γ |
PPES | palmar-plantar erythrodysesthesia syndrome |
PR | partial response |
PTC | papillary thyroid carcinoma |
RAI | radioactive iodine; radioiodine |
RAIR | radioactive iodine refractory; radioiodine refractory |
RANKL | receptor activator of nuclear factor κ-Β ligand |
RETf | RET fusion-positive |
RETm | RET mutation-positive |
RTK | receptor tyrosine kinase |
RWS | Real-Word Studies |
SD | stable disease |
SKIs | specific kinase inhibitors |
T3 | triiodothyronine |
T4 | thyroxine |
TBSRTC | The Bethesda System for Reporting Thyroid Cytopathology |
TC | thyroid cancer |
TCGA | The Cancer Genome Atlas |
TERT | telomerase reverse transcriptase |
Tg | thyroglobulin |
THs | thyroid hormones |
TPO | thyroid peroxidase |
TRK | tropomyosin receptor kinase |
TSH | thyroid-stimulating hormone |
USG | ultrasonography |
WBC | white blood cell |
WHO | World Health Organization |
wt | wild type |
References
- Godlewska, M.; Banga, P.J. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019, 160, 34–45. [Google Scholar] [CrossRef]
- Ceolin, L.; Duval, M.A.D.S.; Benini, A.F.; Ferreira, C.V.; Maia, A.L. Medullary thyroid carcinoma beyond surgery: Advances, challenges, and perspectives. Endocr. Relat. Cancer 2019, 26, R499–R518. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Classification of Tumours of Endocrine Organs, 4th ed.; Lloyd, R., Osamura, R., Klèoppel, G., Rosai, J., Eds.; International Agency for Research on Cancer: Lyon, France, 2017; Volume 10. [Google Scholar]
- Kure, S.; Ohashi, R. Thyroid Hürthle Cell Carcinoma: Clinical, Pathological, and Molecular Features. Cancers 2020, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; et al. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [Green Version]
- Asa, S.L.; Giordano, T.J.; Livolsi, V.A. Implications of the TCGA Genomic Characterization of Papillary Thyroid Carcinoma for Thyroid Pathology: Does Follicular Variant Papillary Thyroid Carcinoma Exist? Thyroid 2015, 25, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-K.; Lee, S.; Kim, S.-J.; Jee, H.-G.; Kim, B.-A.; Cho, H.; Song, Y.S.; Cho, S.W.; Won, J.-K.; Shin, J.-Y.; et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016, 12, e1006239. [Google Scholar] [CrossRef] [PubMed]
- Pietrowska, M.; Diehl, H.C.; Mrukwa, G.; Kalinowska-Herok, M.; Gawin, M.; Chekan, M.; Elm, J.; Drazek, G.; Krawczyk, A.; Lange, D.; et al. Molecular profiles of thyroid cancer subtypes: Classification based on features of tissue revealed by mass spectrometry imaging. Biochim. Biophys. Acta (BBA)-Proteins Proteomic 2017, 1865, 837–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Clayman, G.L. Medullary Thyroid Cancer Genetics. Available online: https://www.thyroidcancer.com/thyroid-cancer/medullary/genetics (accessed on 27 September 2021).
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.; Newbold, K.; Papotti, M.; Berruti, A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moses, W.; Weng, J.; Khanafshar, E.; Duh, Q.-Y.; Clark, O.H.; Kebebew, E. Multiple Genetic Alterations in Papillary Thyroid Cancer are Associated with Younger Age at Presentation. J. Surg. Res. 2010, 160, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Youn, S.; Jung, S.; Kim, K.; Chai, Y.J.; Chung, Y.S.; Park, W.S.; Lee, K.E.; Yi, K.H. A national database analysis for factors associated with thyroid cancer occurrence. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Miller, K.D.; Ortiz, A.P.; Pinheiro, P.S.; Bandi, P.; Minihan, A.; Fuchs, H.E.; Tyson, D.M.; Tortolero-Luna, G.; Fedewa, S.A.; Jemal, A.M.; et al. Cancer statistics for the US Hispanic/Latino population. CA Cancer J. Clin. 2021, 1–22. [Google Scholar] [CrossRef]
- LeClair, K.; Bell, K.J.L.; Furuya-Kanamori, L.; Doi, S.A.; Francis, D.O.; Davies, L. Evaluation of Gender Inequity in Thyroid Cancer Diagnosis. JAMA Intern. Med. 2021, 181, 1351. [Google Scholar] [CrossRef]
- Rahbari, R.; Zhang, L.; Kebebew, E. Thyroid cancer gender disparity. Futur. Oncol. 2010, 6, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Peterson, E.; De, P.; Nuttall, R. BMI, Diet and Female Reproductive Factors as Risks for Thyroid Cancer: A Systematic Review. PLoS ONE 2012, 7, e29177. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Su, L.; Xiao, H. Review of Factors Related to the Thyroid Cancer Epidemic. Int. J. Endocrinol. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.-V.-T.; Kitahara, C.M.; De Vathaire, F.; Boutron-Ruault, M.-C.; Journy, N. Thyroid dysfunction and cancer incidence: A systematic review and meta-analysis. Endocr. Relat. Cancer 2020, 27, 245–259. [Google Scholar] [CrossRef]
- Nagayama, Y. Thyroid Autoimmunity and Thyroid Cancer—The Pathogenic Connection: A 2018 Update. Horm. Metab. Res. 2018, 50, 922–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economides, A.; Giannakou, K.; Mamais, I.; Economides, P.A.; Papageorgis, P. Association Between Aggressive Clinicopathologic Features of Papillary Thyroid Carcinoma and Body Mass Index: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 692879. [Google Scholar] [CrossRef]
- Jin, S.; Borkhuu, O.; Bao, W.; Yang, Y.-T. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J. Clin. Med. Res. 2016, 8, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Mo, L.; Li, C.; Han, S.; Zhao, W.; Liu, L. FOXN3 suppresses the growth and invasion of papillary thyroid cancer through the inactivation of Wnt/β-catenin pathway. Mol. Cell. Endocrinol. 2020, 515, 110925. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 2011, 7, 569–580. [Google Scholar] [CrossRef]
- Dralle, H.; Machens, A.; Basa, J.; Fatourechi, V.; Franceschi, S.; Hay, I.D.; Nikiforov, Y.E.; Pacini, F.; Pasieka, J.L.; Sherman, S.I. Follicular cell-derived thyroid cancer. Nat. Rev. Dis. Prim. 2015, 1, 15077. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, L.; Cappagli, V.; Valerio, L.; Giani, C.; Viola, D.; Puleo, L.; Gambale, C.; Minaldi, E.; Campopiano, M.; Matrone, A.; et al. Thyroid Cancers: From Surgery to Current and Future Systemic Therapies through Their Molecular Identities. Int. J. Mol. Sci. 2021, 22, 3117. [Google Scholar] [CrossRef] [PubMed]
- Chmielik, E.; Rusinek, D.; Oczko-Wojciechowska, M.; Jarząb, M.; Krajewska, J.; Czarniecka, A.; Jarząb, B. Heterogeneity of Thyroid Cancer. Pathobiology 2018, 85, 117–129. [Google Scholar] [CrossRef]
- Riesco-Eizaguirre, G.; Santisteban, P. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: Lessons from the cancer genome. Eur. J. Endocrinol. 2016, 175, R203–R217. [Google Scholar] [CrossRef]
- Zaman, A.; Wu, W.; Bivona, T.G. Targeting Oncogenic BRAF: Past, Present, and Future. Cancers 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Nylén, C.; Mechera, R.; Maréchal-Ross, I.; Tsang, V.; Chou, A.; Gill, A.J.; Clifton-Bligh, R.J.; Robinson, B.G.; Sywak, M.S.; Sidhu, S.B.; et al. Molecular Markers Guiding Thyroid Cancer Management. Cancers 2020, 12, 2164. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, J.I.; Kim, J.-W.; Ki, C.-S.; Oh, Y.L.; Choi, Y.-L.; Shin, J.H.; Kim, H.K.; Jang, H.W.; Chung, J.H. BRAFV600E Mutation Analysis in Fine-Needle Aspiration Cytology Specimens for Evaluation of Thyroid Nodule: A Large Series in aBRAFV600E-Prevalent Population. J. Clin. Endocrinol. Metab. 2010, 95, 3693–3700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusinek, D.; Pfeifer, A.; Krajewska, J.; Oczko-Wojciechowska, M.; Handkiewicz-Junak, D.; Pawlaczek, A.; Zebracka-Gala, J.; Kowalska, M.; Cyplinska, R.; Zembala-Nozynska, E.; et al. Coexistence of TERT Promoter Mutations and the BRAF V600E Alteration and Its Impact on Histopathological Features of Papillary Thyroid Carcinoma in a Selected Series of Polish Patients. Int. J. Mol. Sci. 2018, 19, 2647. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Lorch, J.H.; Wong, K.S.; Barletta, J.A. Histological features of BRAF V600E-mutant anaplastic thyroid carcinoma. Histopathology 2020, 77, 314–320. [Google Scholar] [CrossRef]
- Jhiang, S.M.; Konda, B.; Sipos, J.A.; Nabhan, F.A. Prospects for Redifferentiating Agents in the Use of Radioactive Iodine Therapy for Thyroid Cancer. Thyroid 2020, 30, 471–473. [Google Scholar] [CrossRef]
- Fullmer, T.; Cabanillas, M.E.; Zafereo, M. Novel Therapeutics in Radioactive Iodine-Resistant Thyroid Cancer. Front. Endocrinol. 2021, 12, 720723. [Google Scholar] [CrossRef]
- Lamartina, L.; Anizan, N.; Dupuy, C.; Leboulleux, S.; Schlumberger, M. Redifferentiation-facilitated radioiodine therapy in thyroid cancer. Endocr. Relat. Cancer 2021, 28, T179–T191. [Google Scholar] [CrossRef]
- Czarniecka, A.; Oczko-Wojciechowska, M.; Barczyński, M. BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence. Gland. Surg. 2016, 5, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oczko-Wojciechowska, M.; Kotecka-Blicharz, A.; Krajewska, J.; Rusinek, D.; Barczyński, M.; Jarząb, B.; Czarniecka, A. European perspective on the use of molecular tests in the diagnosis and therapy of thyroid neoplasms. Gland. Surg. 2020, 9, S69–S76. [Google Scholar] [CrossRef]
- Skubisz, K.; Januszkiewicz-Caulier, J.; Cybula, P.; Bakuła-Zalewska, E.; Goryca, K.; Paziewska, A.; Ambrożkiewicz, F.; Woliński, K.; Mikula, M.; Ostrowski, J.; et al. Higher EU-TIRADS-Score Correlated with BRAF V600E Positivity in the Early Stage of Papillary Thyroid Carcinoma. J. Clin. Med. 2021, 10, 2304. [Google Scholar] [CrossRef] [PubMed]
- Laha, D.; Nilubol, N.; Boufraqech, M. New Therapies for Advanced Thyroid Cancer. Front. Endocrinol. 2020, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Marotta, V.; Bifulco, M.; Vitale, M. Significance of RAS Mutations in Thyroid Benign Nodules and Non-Medullary Thyroid Cancer. Cancers 2021, 13, 3785. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Zhang, M.; Maloney, R.; Jang, H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys. Rev. 2021, 13, 489–505. [Google Scholar] [CrossRef]
- Tang, D.; Kroemer, G.; Kang, R. Oncogenic KRAS blockade therapy: Renewed enthusiasm and persistent challenges. Mol. Cancer 2021, 20, 1–24. [Google Scholar] [CrossRef]
- Ciampi, R.; Mian, C.; Fugazzola, L.; Cosci, B.; Romei, C.; Barollo, S.; Cirello, V.; Bottici, V.; Marconcini, G.; Rosa, P.M.; et al. Evidence of a Low Prevalence ofRASMutations in a Large Medullary Thyroid Cancer Series. Thyroid 2013, 23, 50–57. [Google Scholar] [CrossRef]
- Censi, S.; Cavedon, E.; Bertazza, L.; Galuppini, F.; Watutantrige-Fernando, S.; De Lazzari, P.; Nacamulli, D.; Pennelli, G.; Fassina, A.; Iacobone, M.; et al. Frequency and Significance of Ras, Tert Promoter, and Braf Mutations in Cytologically Indeterminate Thyroid Nodules: A Monocentric Case Series at a Tertiary-Level Endocrinology Unit. Front. Endocrinol. 2017, 8, 273. [Google Scholar] [CrossRef]
- Ciampi, R.; Romei, C.; Ramone, T.; Prete, A.; Tacito, A.; Cappagli, V.; Bottici, V.; Viola, D.; Torregrossa, L.; Ugolini, C.; et al. Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next-Generation Targeted Sequencing. iScience 2019, 20, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Tirrò, E.; Martorana, F.; Romano, C.; Vitale, S.R.; Motta, G.; Di Gregorio, S.; Massimino, M.; Pennisi, M.S.; Stella, S.; Puma, A.; et al. Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes 2019, 10, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganly, I.; Makarov, V.; Deraje, S.; Dong, Y.; Reznik, E.; Seshan, V.; Nanjangud, G.; Eng, S.; Bose, P.; Kuo, F.; et al. Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell 2018, 34, 256–270.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Borre, P.V.; LaBarbera, D.V.; Tan, A.C.; et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin. Cancer Res. 2018, 24, 3059–3068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Hou, P.; Ji, M.; Guan, H.; Studeman, K.; Jensen, K.; Vasko, V.; El-Naggar, A.K.; Xing, M. Highly Prevalent Genetic Alterations in Receptor Tyrosine Kinases and Phosphatidylinositol 3-Kinase/Akt and Mitogen-Activated Protein Kinase Pathways in Anaplastic and Follicular Thyroid Cancers. J. Clin. Endocrinol. Metab. 2008, 93, 3106–3116. [Google Scholar] [CrossRef] [Green Version]
- Murugan, A.K.; Xing, M. Anaplastic Thyroid Cancers Harbor Novel Oncogenic Mutations of the ALK Gene. Cancer Res. 2011, 71, 4403–4411. [Google Scholar] [CrossRef] [Green Version]
- Ricarte-Filho, J.C.; Ryder, M.; Chitale, D.; Rivera, M.; Heguy, A.; Ladanyi, M.; Janakiraman, M.; Solit, D.; Knauf, J.; Tuttle, R.M.; et al. Mutational Profile of Advanced Primary and Metastatic Radioactive Iodine-Refractory Thyroid Cancers Reveals Distinct Pathogenetic Roles for BRAF, PIK3CA, and AKT. Cancer Res. 2009, 69, 4885–4893. [Google Scholar] [CrossRef] [Green Version]
- Paulsson, J.O.; Rafati, N.; DiLorenzo, S.; Chen, Y.; Haglund, F.; Zedenius, J.; Juhlin, C.C. Whole-genome Sequencing of Follicular Thyroid Carcinomas Reveal Recurrent Mutations in MicroRNA Processing Subunit DGCR. J. Clin. Endocrinol. Metab. 2021, 106, 3265–3282. [Google Scholar] [CrossRef]
- Saji, M.; Narahara, K.; McCarty, S.K.; Vasko, V.V.; La Perle, K.M.; Porter, K.; Jarjoura, D.; Lu, C.; Cheng, S.-Y.; Ringel, M.D. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene 2011, 30, 4307–4315. [Google Scholar] [CrossRef] [PubMed]
- Saji, M.; Kim, C.S.; Wang, C.; Zhang, X.; Khanal, T.; Coombes, K.; La Perle, K.; Cheng, S.-Y.; Tsichlis, P.N.; Ringel, M.D. Akt isoform-specific effects on thyroid cancer development and progression in a murine thyroid cancer model. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, M.; Najem, A.; Krayem, M.; Awada, A.; Journe, F.; Ghanem, G. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers 2021, 13, 1685. [Google Scholar] [CrossRef]
- Esteban-Villarrubia, J.; Soto-Castillo, J.J.; Pozas, J.; Román-Gil, M.S.; Orejana-Martín, I.; Torres-Jiménez, J.; Carrato, A.; Alonso-Gordoa, T.; Molina-Cerrillo, J. Tyrosine Kinase Receptors in Oncology. Int. J. Mol. Sci. 2020, 21, 8529. [Google Scholar] [CrossRef] [PubMed]
- Oczko-Wojciechowska, M.; Czarniecka, A.; Gawlik, T.; Jarzab, B.; Krajewska, J. Current status of the prognostic molecular markers in medullary thyroid carcinoma. Endocr. Connect. 2020, 9, R251–R263. [Google Scholar] [CrossRef]
- Thein, K.Z.; Velcheti, V.; Mooers, B.H.; Wu, J.; Subbiah, V. Precision therapy for RET-altered cancers with RET inhibitors. Trends Cancer 2021. [Google Scholar] [CrossRef]
- Pérot, G.; Soubeyran, I.; Ribeiro, A.; Bonhomme, B.; Savagner, F.; Boutet-Bouzamondo, N.; Hostein, I.; Bonichon, F.; Godbert, Y.; Chibon, F. Identification of a Recurrent STRN/ALK Fusion in Thyroid Carcinomas. PLoS ONE 2014, 9, e87170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, I.; Ibrahimpasic, T.; Boucai, L.; Sinha, R.; Knauf, J.A.; Shah, R.; Dogan, S.; Ricarte-Filho, J.C.; Krishnamoorthy, G.P.; Xu, B.; et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 2016, 126, 1052–1066. [Google Scholar] [CrossRef] [Green Version]
- Yakushina, V.D.; Lerner, L.V.; Lavrov, A.V. Gene Fusions in Thyroid Cancer. Thyroid 2018, 28, 158–167. [Google Scholar] [CrossRef]
- Leeman-Neill, R.J.; Bs, L.M.K.; Liu, P.; Brenner, A.V.; Leeman-Neill, R.J.; Bogdanova, T.I.; Evdokimova, V.N.; Hatch, M.; Zurnadzy, L.Y.; Nikiforova, M.N.; et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014, 120, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, M.L.; Vyas, M.; Horne, M.J.; Virk, R.K.; Morotti, R.; Liu, Z.; Tallini, G.; Nikiforova, M.N.; Christison-Lagay, E.R.; Udelsman, R.; et al. NTRKfusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 2016, 122, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Marino, F.Z.; Pagliuca, F.; Ronchi, A.; Cozzolino, I.; Montella, M.; Berretta, M.; Errico, M.E.; Donofrio, V.; Bianco, R.; Franco, R. NTRK Fusions, from the Diagnostic Algorithm to Innovative Treatment in the Era of Precision Medicine. Int. J. Mol. Sci. 2020, 21, 3718. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Dias-Santagata, D.; Farahani, A.A.; Boyraz, B.; Faquin, W.C.; Nosé, V.; Sadow, P.M. Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC). Mod. Pathol. 2020, 33, 2186–2197. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Yang, H.; Yip, L.; Ohori, N.P.; McCoy, K.L.; Stang, M.T.; Hodak, S.P.; Nikiforova, M.N.; Carty, S.E.; Nikiforov, Y.E. PAX8/PPARγ Rearrangement in Thyroid Nodules Predicts Follicular-Pattern Carcinomas, in Particular the Encapsulated Follicular Variant of Papillary Carcinoma. Thyroid 2014, 24, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Raman, P.; Koenig, R.J. Pax-8–PPAR-γ fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 2014, 10, 616–623. [Google Scholar] [CrossRef]
- Giordano, T.J.; Haugen, B.R.; Sherman, S.I.; Shah, M.H.; Caoili, E.M.; Koenig, R.J. Pioglitazone Therapy of PAX8-PPARγ Fusion Protein Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2018, 103, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Manzella, L.; Stella, S.; Pennisi, M.S.; Tirrò, E.; Massimino, M.; Romano, C.; Puma, A.; Tavarelli, M.; Vigneri, P. New Insights in Thyroid Cancer and p53 Family Proteins. Int. J. Mol. Sci. 2017, 18, 1325. [Google Scholar] [CrossRef] [PubMed]
- Nikitski, A.V.; Nikiforova, M.N.; Yip, L.; Karslioglu-French, E.; Carty, S.E.; Nikiforov, Y.E. Can TP53-mutant follicular adenoma be a precursor of anaplastic thyroid carcinoma? Endocr. Relat. Cancer 2021, 28, 621–630. [Google Scholar] [CrossRef]
- Liu, R.; Xing, M. TERT promoter mutations in thyroid cancer. Endocr. Relat. Cancer 2016, 23, R143–R155. [Google Scholar] [CrossRef] [Green Version]
- Rusinek, D.; Pfeifer, A.; Cieslicka, M.; Kowalska, M.; Pawlaczek, A.; Krajewska, J.; Szpak-Ulczok, S.; Tyszkiewicz, T.; Halczok, M.; Czarniecka, A.; et al. TERT Promoter Mutations and Their Impact on Gene Expression Profile in Papillary Thyroid Carcinoma. Cancers 2020, 12, 1597. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, T.; Zhu, G.; Xing, M. Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/GABP in human cancer. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Liu, R.; Zhu, G.; Umbricht, C.B.; Xing, M. TERTpromoter mutation determines apoptotic and therapeutic responses ofBRAF-mutant cancers to BRAF and MEK inhibitors: Achilles Heel. Proc. Natl. Acad. Sci. USA 2020, 117, 15846–15851. [Google Scholar] [CrossRef]
- Karunamurthy, A.; Panebianco, F.; Hsiao, S.J.; Vorhauer, J.; Nikiforova, M.N.; Chiosea, S.; Nikiforov, Y.E. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr. Relat. Cancer 2016, 23, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões-Pereira, J.; Moura, M.M.; Marques, I.J.; Rito, M.; Cabrera, R.A.; Leite, V.; Cavaco, B.M. The role of EIF1AX in thyroid cancer tumourigenesis and progression. J. Endocrinol. Investig. 2019, 42, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, G.P.; Davidson, N.R.; Leach, S.D.; Zhao, Z.; Lowe, S.W.; Lee, G.; Landa, I.; Nagarajah, J.; Saqcena, M.; Singh, K.; et al. EIF1AX and RAS Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discov. 2019, 9, 264–281. [Google Scholar] [CrossRef] [Green Version]
- Martin-Orozco, E.; Sanchez-Fernandez, A.; Ortiz-Parra, I.; Nicolas, M.A.-S. WNT Signaling in Tumors: The Way to Evade Drugs and Immunity. Front. Immunol. 2019, 10, 2854. [Google Scholar] [CrossRef]
- Wang, N.; Wen, J.; Ren, W.; Wu, Y.; Deng, C. Upregulation of TRIB2 by Wnt/β-catenin activation in BRAFV600E papillary thyroid carcinoma cells confers resistance to BRAF inhibitor vemurafenib. Cancer Chemother. Pharmacol. 2021, 88, 155–164. [Google Scholar] [CrossRef]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Murugan, A.K.; Bojdani, E.; Xing, M. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem. Biophys. Res. Commun. 2010, 393, 555–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemerly, J.P.; Bastos, A.U.; Cerutti, J.M. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur. J. Endocrinol. 2010, 163, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, A.K.; Qasem, E.; Al-Hindi, H.; Alzahrani, A.S. Analysis of ALK, IDH1, IDH2 and MMP8 somatic mutations in differentiated thyroid cancers. Mol. Clin. Oncol. 2021, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fagin, J.A.; Wells, S.A. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016, 375, 1054–1067. [Google Scholar] [CrossRef] [Green Version]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef]
- Dean, D.S.; Gharib, H. Epidemiology of thyroid nodules. Best Pr. Res. Clin. Endocrinol. Metab. 2008, 22, 901–911. [Google Scholar] [CrossRef]
- Fresilli, D.; David, E.; Pacini, P.; Del Gaudio, G.; Dolcetti, V.; Lucarelli, G.; Di Leo, N.; Bellini, M.; D’Andrea, V.; Sorrenti, S.; et al. Thyroid Nodule Characterization: How to Assess the Malignancy Risk. Update of the Literature. Diagnostics 2021, 11, 1374. [Google Scholar] [CrossRef]
- Papini, E.; Guglielmi, R.; Bianchini, A.; Crescenzi, A.; Taccogna, S.; Nardi, F.; Panunzi, C.; Rinaldi, R.; Toscano, V.; Pacella, C.M. Risk of Malignancy in Nonpalpable Thyroid Nodules: Predictive Value of Ultrasound and Color-Doppler Features. J. Clin. Endocrinol. Metab. 2002, 87, 1941–1946. [Google Scholar] [CrossRef]
- Nam-Goong, I.S.; Kim, H.Y.; Gong, G.; Lee, H.K.; Shong, Y.K.; Kim, W.B. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: Correlation with pathological findings. Clin. Endocrinol. 2004, 60, 21–28. [Google Scholar] [CrossRef]
- Moon, W.-J.; Jung, S.L.; Lee, J.H.; Na, D.G.; Baek, J.-H.; Lee, Y.H.; Kim, J.; Kim, H.S.; Byun, J.S.; Lee, D.H. Benign and Malignant Thyroid Nodules: US Differentiation—Multicenter Retrospective Study. Radiology 2008, 247, 762–770. [Google Scholar] [CrossRef]
- Horvath, E.; Majlis, S.; Rossi, R.; Franco, C.; Niedmann, J.P.; Castro, A.; Dominguez, M. An Ultrasonogram Reporting System for Thyroid Nodules Stratifying Cancer Risk for Clinical Management. J. Clin. Endocrinol. Metab. 2009, 94, 1748–1751. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.-H.; Lee, Y.H.; Lim, H.K.; Moon, W.-J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid. J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Yin, L.; Wei, X.; Zhang, S.; Song, Y.; Luo, B.; Li, J.; Qian, L.; Cui, L.; Chen, W.; et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: The C-TIRADS. Endocrine 2020, 70, 256–279. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Eustatia-Rutten, C.F.A.; Corssmit, E.P.M.; Biermasz, N.R.; Pereira, A.M.; Romijn, J.A.; Smit, J.W. Survival and Death Causes in Differentiated Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2006, 91, 313–319. [Google Scholar] [CrossRef]
- Ibrahimpasic, T.; Ghossein, R.; Carlson, D.L.; Chernichenko, N.; Nixon, I.; Palmer, F.L.; Lee, N.Y.; Shaha, A.R.; Patel, S.G.; Tuttle, R.M.; et al. Poorly Differentiated Thyroid Carcinoma Presenting with Gross Extrathyroidal Extension: 1986–2009 Memorial Sloan-Kettering Cancer Center Experience. Thyroid 2013, 23, 997–1002. [Google Scholar] [CrossRef]
- Ho, A.S.; Luu, M.; Ba, L.B.; Balzer, B.L.; Bose, S.; Fan, X.; Walgama, E.; Clair, J.M.-S.; Alam Bs, U.; Shafqat, I.; et al. Prognostic Impact of Histologic Grade for Papillary Thyroid Carcinoma. Ann. Surg. Oncol. 2021, 28, 1731–1739. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 337–386. [Google Scholar] [CrossRef]
- Schlumberger, M.; Bastholt, L.; Dralle, H.; Jarząb, B.; Pacini, F.; Smit, J.; European Thyroid Association Task Force. 2012 European Thyroid Association Guidelines for Metastatic Medullary Thyroid Cancer. Eur. Thyroid. J. 2012, 1, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, S.A.; Asa, S.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.Y.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, M.; Gawel, D.; Buckle, A.M.; Banga, J.P. Thyroid Peroxidase Revisited—What’s New? Horm. Metab. Res. 2019, 51, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Mayson, S.E.; Chan, C.M.; Haugen, B.R. Tailoring the approach to radioactive iodine treatment in thyroid cancer. Endocr. Relat. Cancer 2021, 28, T125–T140. [Google Scholar] [CrossRef] [PubMed]
- Zarnegar, R.; Brunaud, L.; Kanauchi, H.; Wong, M.; Fung, M.; Ginzinger, D.; Duh, Q.-Y.; Clark, O.H. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using Trichostatin A, a histone deacetylase inhibitor. Surgery 2002, 132, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Worden, F. Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther. Adv. Med Oncol. 2014, 6, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Xing, M.; Haugen, B.R.; Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet 2013, 381, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Van Nostrand, D.; Cheng, L.; Liu, M.; Chen, L. Radioiodine refractory differentiated thyroid cancer. Crit. Rev. Oncol. 2018, 125, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.J.M.; Baek, S.H.; Gangadaran, P.; Hong, C.M.; Rajendran, R.L.; Lee, H.W.; Zhu, L.; Gopal, A.; Kalimuthu, S.; Jeong, S.Y.; et al. A Novel Tyrosine Kinase Inhibitor Can Augment Radioactive Iodine Uptake Through Endogenous Sodium/Iodide Symporter Expression in Anaplastic Thyroid Cancer. Thyroid 2020, 30, 501–518. [Google Scholar] [CrossRef]
- Riesco-Eizaguirre, G.; Santisteban, P.; De la Vieja, A. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues. Endocr. Relat. Cancer 2021, 28, T141–T165. [Google Scholar] [CrossRef]
- Gild, M.L.; Tsang, V.H.M.; Clifton-Bligh, R.J.; Robinson, B.G. Multikinase inhibitors in thyroid cancer: Timing of targeted therapy. Nat. Rev. Endocrinol. 2021, 17, 225–234. [Google Scholar] [CrossRef]
- Ringel, M.D. New Horizons: Emerging Therapies and Targets in Thyroid Cancer. J. Clin. Endocrinol. Metab. 2021, 106, e382–e388. [Google Scholar] [CrossRef] [PubMed]
- Lubitz, C.C.; Sadow, P.M.; Daniels, G.H.; Wirth, L.J. Progress in Treating Advanced Thyroid Cancers in the Era of Targeted Therapy. Thyroid 2021, 31, 1451–1462. [Google Scholar] [CrossRef]
- Kiyota, N.; Schlumberger, M.; Muro, K.; Ando, Y.; Takahashi, S.; Kawai, Y.; Wirth, L.J.; Robinson, B.G.; Sherman, S.; Suzuki, T.; et al. Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci. 2015, 106, 1714–1721. [Google Scholar] [CrossRef] [Green Version]
- Fleeman, N.; Houten, R.; Bagust, A.; Richardson, M.; Beale, S.; Boland, A.; Dundar, Y.; Greenhalgh, J.; Hounsome, J.; Duarte, R.; et al. Lenvatinib and sorafenib for differentiated thyroid cancer after radioactive iodine: A systematic review and economic evaluation. Health Technol. Assess. 2020, 24, 1–180. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Zhang, X.; Wang, C.; Liu, Y.-Q.; Guan, W.-M.; Liang, J. Long-Term Results of a Phase II Trial of Apatinib for Progressive Radioiodine Refractory Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2021, 106, 3027. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, H.; Zhao, J.; Hu, L.; Zhi, J.; Wei, S.; Ruan, X.; Hou, X.; Li, D.; Zhang, J.; et al. Apatinib Inhibits Cell Proliferation and Induces Autophagy in Human Papillary Thyroid Carcinoma via the PI3K/Akt/mTOR Signaling Pathway. Front. Oncol. 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-S.; Yang, H.; Ding, Y.; Cheng, Y.-Z.; Shi, F.; Tan, J.; Deng, Z.-Y.; Chen, Z.-D.; Wang, R.-F.; Ji, Q.-H.; et al. Donafenib in Progressive Locally Advanced or Metastatic Radioactive Iodine-Refractory Differentiated Thyroid Cancer: Results of a Randomized, Multicenter Phase II Trial. Thyroid 2021, 31, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Robinson, B.; Sherman, S.I.; Krajewska, J.; Lin, C.-C.; Vaisman, F.; Hoff, A.O.; Hitre, E.; Bowles, D.W.; Hernando, J.; et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021, 22, 1126–1138. [Google Scholar] [CrossRef]
- Kish, J.K.; Chatterjee, D.; Wan, Y.; Yu, H.-T.; Liassou, D.; Feinberg, B.A. Lenvatinib and Subsequent Therapy for Radioactive Iodine-Refractory Differentiated Thyroid Cancer: A Real-World Study of Clinical Effectiveness in the United States. Adv. Ther. 2020, 37, 2841–2852. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tahara, M.; Ito, K.; Tori, M.; Kiyota, N.; Yoshida, K.; Sakata, Y.; Yoshida, A. Safety and Effectiveness of Lenvatinib in 594 Patients with Unresectable Thyroid Cancer in an All-Case Post-Marketing Observational Study in Japan. Adv. Ther. 2020, 37, 3850–3862. [Google Scholar] [CrossRef]
- Koehler, V.F.; Berg, E.; Adam, P.; Weber, G.-L.; Pfestroff, A.; Luster, M.; Kutsch, J.M.; Lapa, C.; Sandner, B.; Rayes, N.; et al. Real world efficacy and safety of multi-tyrosine kinase inhibitors in radioiodine refractory thyroid cancer. Thyroid 2021, 31, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Kim, M.; Kim, E.Y.; Kim, B.H.; Shin, D.Y.; Kang, H.-C.; Ahn, B.-C.; Kim, W.B.; Shong, Y.K.; Jeon, M.J.; et al. Lenvatinib for Radioactive Iodine-Refractory Differentiated Thyroid Carcinoma and Candidate Biomarkers Associated with Survival: A Multicenter Study in Korea. Thyroid 2020, 30, 732–738. [Google Scholar] [CrossRef]
- Ito, Y.; Onoda, N.; Kudo, T.; Masuoka, H.; Higashiyama, T.; Kihara, M.; Miya, A.; Miyauchi, A. Sorafenib and Lenvatinib Treatment for Metastasis/Recurrence of Radioactive Iodine-refractory Differentiated Thyroid Carcinoma. In Vivo 2021, 35, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Luo, Y.; Zhang, Q.; Zeng, F.; Xu, J.; Zhu, J. Sorafenib and radioiodine-refractory differentiated thyroid cancer (RR-DTC): A systematic review and meta-analysis. Endocrine 2020, 68, 56–63. [Google Scholar] [CrossRef]
- Sherman, E.J.; Foster, N.R.; Su, Y.B.; Shergill, A.; Ho, A.L.; Konda, B.; Ghossein, R.A.; Ganly, I.; Schwartz, G.K. Randomized phase II study of sorafenib with or without everolimus in patients with radioactive iodine refractory Hürthle cell thyroid cancer (HCC) (Alliance A091302/ ITOG 1706). J. Clin. Oncol. 2021, 39, 6076. [Google Scholar] [CrossRef]
- Suzuki, K.; Iwai, H.; Utsunomiya, K.; Kono, Y.; Kobayashi, Y.; Van Bui, D.; Sawada, S.; Yun, Y.; Mitani, A.; Kondo, N.; et al. Combination therapy with lenvatinib and radiation significantly inhibits thyroid cancer growth by uptake of tyrosine kinase inhibitor. Exp. Cell Res. 2021, 398, 112390. [Google Scholar] [CrossRef]
- Bonaldi, E.; Gargiuli, C.; De Cecco, L.; Micali, A.; Rizzetti, M.; Greco, A.; Borrello, M.; Minna, E. BRAF Inhibitors Induce Feedback Activation of RAS Pathway in Thyroid Cancer Cells. Int. J. Mol. Sci. 2021, 22, 5744. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Saindane, M.; Yang, E.Y.; Jin, T.; Rallabandi, H.R.; Heil, A.; Nam, S.E.; Yoo, Y.B.; Yang, J.-H.; Bin Kim, J.; et al. Selective inhibition of V600E-mutant BRAF gene induces apoptosis in thyroid carcinoma cell lines. Ann. Surg. Treat. Res. 2021, 100, 127–136. [Google Scholar] [CrossRef]
- Su, X.; Li, P.; Han, B.; Jia, H.; Liang, Q.; Wang, H.; Gu, M.; Cai, J.; Li, S.; Zhou, Y.; et al. Vitamin C sensitizes BRAFV600E thyroid cancer to PLX4032 via inhibiting the feedback activation of MAPK/ERK signal by PLX. J. Exp. Clin. Cancer Res. 2021, 40, 1–12. [Google Scholar] [CrossRef]
- Salama, A.K.S.; Li, S.; Macrae, E.R.; Park, J.-I.; Mitchell, E.P.; Zwiebel, J.A.; Chen, H.X.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. Dabrafenib and Trametinib in Patients With Tumors With BRAFV600E Mutations: Results of the NCI-MATCH Trial Subprotocol H. J. Clin. Oncol. 2020, 38, 3895–3904. [Google Scholar] [CrossRef]
- Ullmann, T.M.; Liang, H.; Moore, M.D.; Al-Jamed, I.; Gray, K.D.; Limberg, J.; Stefanova, D.; Buicko, J.L.; Finnerty, B.; Beninato, T.; et al. Dual inhibition of BRAF and MEK increases expression of sodium iodide symporter in patient-derived papillary thyroid cancer cells in vitro. Surgery 2020, 167, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Luckett, K.A.; Cracchiolo, J.R.; Krishnamoorthy, G.P.; Leandro-Garcia, L.J.; Nagarajah, J.; Saqcena, M.; Lester, R.; Im, S.Y.; Zhao, Z.; Lowe, S.W.; et al. Co-inhibition of SMAD and MAPK signaling enhances 124I uptake in BRAF-mutant thyroid cancers. Endocr. Relat. Cancer 2021, 28, 391–402. [Google Scholar] [CrossRef]
- Leboulleux, S.; Cao, C.D.; Zerdoud, S.; Attard, M.; Bournaud, C.; Benisvy, D.; Taieb, D.; Bardet, S.; Terroir-Cassou-Mounat, M.; Betrian, S.; et al. MERAIODE: A Redifferentiation Phase II Trial With Trametinib and Dabrafenib Followed by Radioactive Iodine Administration for Metastatic Radioactive Iodine Refractory Differentiated Thyroid Cancer Patients with a BRAFV600E Mutation (NCT 03244956). J. Endocr. Soc. 2021, 5, A876. [Google Scholar] [CrossRef]
- Desai, J.; Gan, H.; Barrow, C.; Jameson, M.; Atkinson, V.; Haydon, A.; Millward, M.; Begbie, S.; Brown, M.; Markman, B.; et al. Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients with Solid Tumors. J. Clin. Oncol. 2020, 38, 2140–2150. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Lee, Y.A.; Lee, H.; Im, S.-W.; Song, Y.S.; Oh, D.-Y.; Kang, H.J.; Won, J.-K.; Jung, K.C.; Kwon, D.; Chung, E.-J.; et al. NTRK and RET fusion–directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J. Clin. Investig. 2021, 131, 131. [Google Scholar] [CrossRef]
- Groussin, L.; Bessiene, L.; Arrondeau, J.; Garinet, S.; Cochand-Priollet, B.; Lupo, A.; Zerbit, J.; Clerc, J.; Huillard, O. Selpercatinib-Enhanced Radioiodine Uptake in RET-Rearranged Thyroid Cancer. Thyroid 2021, 31, 1603–1604. [Google Scholar] [CrossRef]
- Aydemirli, M.D.; van Eendenburg, J.D.; van Wezel, T.; Oosting, J.; Corver, W.; Kapiteijn, E.; Morreau, H. Targeting EML4-ALK gene fusion variant 3 in thyroid cancer. Endocr. Relat. Cancer 2021, 28, 377–389. [Google Scholar] [CrossRef]
- Moore, A.; Bar, Y.; Maurice-Dror, C.; Finkel, I.; Goldvaser, H.; Dudnik, E.; Goldstein, D.A.; Gordon, N.; Billan, S.; Gutfeld, O.; et al. Next-generation sequencing in thyroid cancers: Do targetable alterations lead to a therapeutic advantage? Medicine 2021, 100, e26388. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, T.; Kono, T.; Taruya, T.; Ishino, T.; Ueda, T.; Takeno, S. A long survival patient of anaplastic thyroid carcinoma treated with lenvatinib. Auris Nasus Larynx 2020. [Google Scholar] [CrossRef]
- Tanaka, A.; Uemura, H.; Masui, T.; Kanazawa, S.; Yoshii, Y.; Kanno, M.; Morita, G.; Obayashi, C.; Yamanaka, T.; Kitahara, T. Anaplastic thyroid cancer with long-term survival with lenvatinib therapy and preservation of laryngeal function after one-stage reconstruction: A case report. Mol. Clin. Oncol. 2021, 15, 1–5. [Google Scholar] [CrossRef]
- Wirth, L.J.; Brose, M.S.; Sherman, E.J.; Licitra, L.; Schlumberger, M.; Sherman, S.I.; Bible, K.C.; Robinson, B.; Rodien, P.; Godbert, Y.; et al. Open-Label, Single-Arm, Multicenter, Phase II Trial of Lenvatinib for the Treatment of Patients With Anaplastic Thyroid Cancer. J. Clin. Oncol. 2021, 39, JCO2003093. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, K.; Hirayama, S.; Kumashiro, N.; Jing, X.; Kimura, T.; Tamagawa, S.; Matsuzaki, I.; Murata, S.-I.; Hotomi, M. Synergistic Effects of Lenvatinib (E7080) and MEK Inhibitors against Anaplastic Thyroid Cancer in Preclinical Models. Cancers 2021, 13, 862. [Google Scholar] [CrossRef]
- Wu, J.; Lin, C.; Huang, C.; Cheng, Y.; Chien, C.; Sung, Y. Potential synergistic effects of sorafenib and CP-31398 for treating anaplastic thyroid cancer with p53 mutations. Oncol. Lett. 2020, 19, 3021–3026. [Google Scholar] [CrossRef]
- Yun, H.J.; Kim, H.J.; Kim, J.; Kim, S.Y.; Chang, H.-S.; Park, C.S.; Chang, H.-J.; Park, K.C. Synergistic Anticancer Activity of N-Hydroxy-7-(2-Naphthylthio) Heptanomide, Sorafenib, and Radiation Therapy in Patient-Derived Anaplastic Thyroid Cancer Models. Int. J. Mol. Sci. 2021, 22, 536. [Google Scholar] [CrossRef]
- Park, J.; Jung, H.A.; Shim, J.H.; Park, W.-Y.; Kim, T.H.; Lee, S.-H.; Kim, S.W.; Ahn, M.-J.; Park, K.; Chung, J.H. Multimodal treatments and outcomes for anaplastic thyroid cancer before and after tyrosine kinase inhibitor therapy: A real-world experience. Eur. J. Endocrinol. 2021, 184, 837–845. [Google Scholar] [CrossRef]
- Arıkan, R.; Telli, T.A.; Demircan, N.C.; Başoğlu, T.; Ercelep, Ö.; Atasoy, B.M.; Özgüven, S.; Dane, F.; Yumuk, P.F. Rechallenge with dabrafenib plus trametinib in anaplastic thyroid cancer: A case report and review of literature. Curr. Probl. Cancer 2021, 45, 100668. [Google Scholar] [CrossRef]
- Lungulescu, C. Durable Response in a Case of Metastatic Anaplastic Thyroid Cancer Using a Combination of Tyrosine Kinase Inhibitors and a Check Point Inhibitor. Acta Endocrinol. 2020, 16, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Gao, Y.; Chang, A.; Li, Z.; Wang, H.; Cao, J.; Gu, W.; Tang, R. Melatonin synergizes BRAF-targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/hTERT signalling. J. Cell. Mol. Med. 2020, 24, 12119–12130. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Ma, W.; Niu, Y.; Su, J.; Zhang, L.; Zhao, P. Signal transducer and activator of transcription 3 inhibition alleviates resistance to BRAF inhibition in anaplastic thyroid cancer. Investig. New Drugs 2021, 39, 764–774. [Google Scholar] [CrossRef]
- Subbiah, V.; Yang, D.; Velcheti, V.; Drilon, A.; Meric-Bernstam, F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J. Clin. Oncol. 2020, 38, 1209–1221. [Google Scholar] [CrossRef]
- Thiesmeyer, J.W.; Limberg, J.; Ullmann, T.M.; Stefanova, D.; Bains, S.; Beninato, T.; Zarnegar, R.; Fahey, T.J.; Finnerty, B.M. Impact of multikinase inhibitor approval on survival and physician practice patterns in advanced or metastatic medullary thyroid carcinoma. Surgery 2021, 169, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Kreissl, M.C.; Bastholt, L.; Elisei, R.; Haddad, R.; Hauch, O.; Jarząb, B.; Robinson, B.; Colzani, R.; Foster, M.; Weiss, R.; et al. Efficacy and Safety of Vandetanib in Progressive and Symptomatic Medullary Thyroid Cancer: Post Hoc Analysis from the ZETA Trial. J. Clin. Oncol. 2020, 38, 2773–2781. [Google Scholar] [CrossRef]
- Valerio, L.; Bottici, V.; Matrone, A.; Piaggi, P.; Viola, D.; Cappagli, V.; Agate, L.; Molinaro, E.; Ciampi, R.; Tacito, A.; et al. Medullary thyroid cancer treated with vandetanib: Predictors of a longer and durable response. Endocr. Relat. Cancer 2020, 27, 97–110. [Google Scholar] [CrossRef]
- Koehler, V.F.; Adam, P.; Frank-Raue, K.; Raue, F.; Berg, E.; Hoster, E.; Allelein, S.; Schott, M.; Kroiss, M.; Spitzweg, C.; et al. Real-World Efficacy and Safety of Cabozantinib and Vandetanib in Advanced Medullary Thyroid Cancer. Thyroid 2021, 31, 459–469. [Google Scholar] [CrossRef]
- Matrone, A.; Prete, A.; Nervo, A.; Ragni, A.; Agate, L.; Molinaro, E.; Giani, C.; Valerio, L.; Minaldi, E.; Piovesan, A.; et al. Lenvatinib as a salvage therapy for advanced metastatic medullary thyroid cancer. J. Endocrinol. Investig. 2021, 44, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chi, Y.; Chen, X.; Ge, M.-H.; Zhang, Y.; Guo, Z.; Wang, J.; Chen, J.; Zhang, J.; Cheng, Y.; et al. Anlotinib in Locally Advanced or Metastatic Medullary Thyroid Carcinoma: A Randomized, Double-Blind Phase IIB Trial. Clin. Cancer Res. 2021, 27, 3567–3575. [Google Scholar] [CrossRef]
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef]
- Subbiah, V.; Shen, T.; Terzyan, S.; Liu, X.; Hu, X.; Patel, K.; Hu, M.; Cabanillas, M.; Behrang, A.; Meric-Bernstam, F.; et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 2021, 32, 261–268. [Google Scholar] [CrossRef]
- Shen, T.; Hu, X.; Liu, X.; Subbiah, V.; Mooers, B.H.M.; Wu, J. The L730V/I RET roof mutations display different activities toward pralsetinib and selpercatinib. NPJ Precis. Oncol. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Resteghini, C.; Cavalieri, S.; Galbiati, D.; Granata, R.; Alfieri, S.; Bergamini, C.; Bossi, P.; Licitra, L.; Locati, L. Management of tyrosine kinase inhibitors (TKI) side effects in differentiated and medullary thyroid cancer patients. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Bible, K.C.; Chow, L.Q.; Gilbert, J.; Grande, C.; Worden, F.; Haddad, R. Management of treatment-related toxicities in advanced medullary thyroid cancer. Cancer Treat. Rev. 2018, 66, 64–73. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Takahashi, S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. Semin. Oncol. 2019, 46, 57–64. [Google Scholar] [CrossRef]
- Verburg, F.A.; Amthauer, H.; Binse, I.; Brink, I.; Buck, A.; Darr, A.; Dierks, C.; Koch, C.; König, U.; Kreissl, M.C.; et al. Questions and Controversies in the Clinical Application of Tyrosine Kinase Inhibitors to Treat Patients with Radioiodine-Refractory Differentiated Thyroid Carcinoma: Expert Perspectives. Horm. Metab. Res. 2021, 53, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Presciuttini, F.; Deiana, M.G.; Motta, C.; Mori, F.; Renzelli, V.; Stigliano, A.; Toscano, V.; Pugliese, G.; Poggi, M. Cortisol deficiency in Lenvatinib treatment of thyroid cancer: An underestimated, common adverse event. Thyroid 2021. [Google Scholar] [CrossRef] [PubMed]
- Basolo, A.; Matrone, A.; Elisei, R.; Santini, F. Effects of tyrosine kinase inhibitors on thyroid function and thyroid hormone metabolism. Semin. Cancer Biol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, T.; Luongo, C.; Sessa, F.; Klain, M.; Masone, S.; Troncone, G.; Bellevicine, C.; Schlumberger, M.; Salvatore, D. Long-term management of lenvatinib-treated thyroid cancer patients: A real-life experience at a single institution. Endocrine 2021, 73, 358–366. [Google Scholar] [CrossRef]
- Subbiah, V.; Baik, C.; Kirkwood, J.M. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Cancer 2020, 6, 797–810. [Google Scholar] [CrossRef]
- Robey, R.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-X.; Yang, Y.; Wang, J.-Q.; Zhou, W.-M.; Chen, J.; Fu, Y.-G.; Patel, K.; Chen, Z.-S.; Zhang, J.-Y. Elevated ABCB1 Expression Confers Acquired Resistance to Aurora Kinase Inhibitor GSK-1070916 in Cancer Cells. Front. Pharmacol. 2021, 11, 615824. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, D.-H.; Yang, Y.; Wang, J.-Q.; Cai, C.-Y.; Lei, Z.-N.; Teng, Q.-X.; Wu, Z.-X.; Zhao, L.; Chen, Z.-S. Overexpression of ABCB1 Transporter Confers Resistance to mTOR Inhibitor WYE-354 in Cancer Cells. Int. J. Mol. Sci. 2020, 21, 1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cancer Type | Agent (Brand Name(s)) | Time of Approval | Point of Action | Indication |
---|---|---|---|---|
DTC | ||||
Entrectinib (Rozlytrek) | FDA 2019 EMA 2020 | NTRK | Solid tumors with a NTRK gene fusion without a drug-resistance mutation in certain TRK proteins | |
Larotrectinib (Vitrakvi) | FDA 2018 EMA 2019 | NTRK | Solid tumors with a NTRK gene fusion without a drug-resistance mutation in certain TRK proteins | |
Lenvatinib (Lenvima) | FDA 2015 EMA 2014 | MKI | Progressive, recurrent or metastatic RAIR-DTC | |
Pralsetinib (Gavreto) | FDA 2020 | RET | Metastatic or advanced TCs with a RET fusion gene | |
Selpercatinib (Retevmo, Retsevmo) | FDA 2020 EMA 2021 | RET | FDA: metastatic or advanced RAIR-DTC patients aged ≥ 12 years with a RET fusion gene; EMA: advanced DTC patients with changes in RET gene previously treated with sorafenib and/or lenvatinib | |
Cabozantinib (Cabometyx, Cometriq) | FDA 2021 | MKI | Advanced or metastatic RAIR-DTC that has progressed following prior VEGFR-targeted therapy | |
Sorafenib (Nexavar) | FDA 2005 EMA 2006 | MKI | Progressive, recurrent or metastatic RAIR-TC | |
ATC | ||||
Dabrafenib (Tafinlar) | FDA 2018 | BRAF | Locally advanced or metastasized ATC that cannot receive local treatment; Therapy in combination with trametinib | |
Entrectinib (Rozlytrek) | FDA 2019 EMA 2020 | NTRK | Solid tumors with a NTRK gene fusion without a drug-resistance mutation in certain TRK proteins | |
Larotrectinib (Vitrakvi) | FDA 2018 EMA 2019 | NTRK | Solid tumors with a NTRK gene fusion without a drug-resistance mutation in certain TRK proteins | |
Pralsetinib (Gavreto) | FDA 2020 | RET | Metastatic or advanced TCs with a RET fusion gene | |
Selpercatinib (Retevmo, Retsevmo) | FDA 2020 EMA 2021 | RET | FDA: metastatic or advanced ATC patients aged ≥ 12 years with a RET fusion gene; EMA: advanced ATC patients with changes in RET gene previously treated with sorafenib and/or lenvatinib | |
Trametinib (Mekinist) | FDA 2018 | MEK | Locally advanced or metastasized ATC that cannot receive local treatment; Therapy in combination with dabrafenib | |
MTC | ||||
Cabozantinib (Cabometyx, Cometriq) | FDA 2012 EMA 2014 | MKI | Progressive or metastasized MTC | |
Pralsetinib (Gavreto) | FDA 2020 | RET | Advanced or metastatic MTC with a mutation in the RET gene | |
Selpercatinib (Retevmo, Retsevmo) | FDA 2020 EMA 2021 | RET | FDA: advanced or metastatic MTC aged ≥ 12 years with a mutation in the RET gene; EMA: advanced MTC patients aged ≥ 12 years with changes in RET gene previously treated with cabozantinib and/or vandetanib | |
Vandetanib (Caprelsa) | FDA 2011 EMA 2013 | MKI | Locally advanced or metastasized MTC |
Agent (Drug Name) | Alternative/Control Treatment | Study Phase | Specific Inclusion Criteria | Study Start/ Estimated Completion Date | Status | Trial Number |
---|---|---|---|---|---|---|
MKIs | ||||||
Anlotinib | ND | II | ND | 01.12.2020/ 07.12.2022 | Recruiting | NCT05007093 |
Apatinib | ND | II | VEGFR2 | 10.04.2019/ 30.05.2020 | Recruiting | NCT04180007 (APT-01) |
Apatinib | Placebo | III | VEGFR2 | 12.2016/ 06.2022 | Active, not recruiting | NCT03048877 |
Cabozantinib | ND | II | ND | 01.2014/ 05.2022 | Active, not recruiting | NCT02041260 |
Cabozantinib | Placebo | III | ND | 05.10.2018/ 12.2022 | Active, not recruiting | NCT03690388 |
Donafenib | Placebo | III | ND | 29.04.2018/ 12.2021 | Recruiting | NCT03602495 |
Lenvatinib | ND | I/II | FTC, PTC | 29.12.2014/ 31.03.2022 | Active, not recruiting | NCT02432274 (in Cohort 2A) |
Lenvatinib | ND | II | ND | 01.05.2021/ 01.01.2024 | Not yet recruiting | NCT04858867 |
Lenvatinib | ND | III | ND | 11.01.2017/ 30.10.2021 | Active, not recruiting | NCT02966093 |
Entrectinib | ND | II | NTRK, ROS1 or ALK PTC | 01.12.2022/ 02.12.2024 | Recruiting | NCT02568267 (STARTRK-2) |
Imatinib | ND | I | PTC | 18.09.2018/ 30.12.2021 | Recruiting | NCT03469011 |
Vandetanib | Placebo | II | FTC, PTC | 29.09.2007/ 12.2021 | Active, not recruiting | NCT00537095 |
Vandetanib | Placebo | III | ND | 17.09.2013/ 31.12.2021 | Active, not recruiting | NCT01876784 |
TRK inhibitors | ||||||
Larotrectinib | ND | II | NTRK | 30.09.2015/ 30.09.2025 | Recruiting | NCT02576431 (NAVIGATE) |
ALK inhibitors | ||||||
Alectinib | ND | II | ALK-mutant PTC | 24.05.2021/ 01.12.2025 | Recruiting | NCT04644315 |
Repotrectinib | ND | I | ALK, ROS1 or NTRK rearrangements | 27.02.2017/ 12.2022 | Recruiting | NCT03093116 (TRIDENT-1) |
MEK and BRAF inhibitors (combination therapies) | ||||||
Cobimetinib/ ABM-1310 | ND | I | BRAF V600E | 16.06.2020/ 12.2021 | Recruiting | NCT04190628 |
Encorafenib/ Binimetinib | Encorafenib/ Binimetinib/ Nivolumab 1 | II | BRAF V600E/M | 30.10.2020/ 01.08.2024 | Recruiting | NCT04061980 |
Trametinib/I131 | ND | II | RAS-mutant or RAS/BRAF wt | 14.08.2014/ 31.12.2021 | Active, not recruiting | NCT02152995 |
Dabrafenib/ Trametinib | ND | II | BRAF V600E or RAS | 27.12.2017/ 12.2022 | Recruiting | NCT03244956 (MERAIODE) |
Trametinib | Trametinib/ Dabrafenib | II | BRAF wt (Trametinib) and BRAF V600E (Trametinib/ Dabrafenib) | 05.02.2018/ 30.06.2022 | Recruiting | NCT04619316 (ERRITI) |
Dabrafenib/ Trametinib | ND | II | BRAF V600E or RAS | 30.12.2020/ 04.2022 | Recruiting | NCT04554680 |
Trametinib | Trametinib/ Dabrafenib | I (pilot study) | BRAF wt (Trametinib) and BRAF V600E (Trametinib/ Dabrafenib) RAIR-PTC | ND | Ongoing | 2016-002941-4 (ERRITI) |
Dabrafenib/ Trametinib | Placebo | III | BRAF V600E | 01.10.2021/ 30.10.2026 | Not yet recruiting | NCT04940052 |
Vemurafenib | ND | II | PTC | 07.11.2012/ 30.11.2020 | Active, not recruiting | NCT01709292 |
Other combination therapies | ||||||
Anlotinib/I131 | ND | II | ND | 15.08.2021/ 20.07.2024 | Not yet recruiting | NCT04952493 |
Apatinib/ Camrelizumab 1 | ND | II | ND | 23.09.2020/ 30.06.2023 | Recruiting | NCT04560127 |
Cabozantinib/ Nivolumab 1/ Ipilimumab 2 | ND | II | ND | 15.07.2019/ 15.01.2022 | Recruiting | NCT03914300 |
Cabozantinib/ Atezolizumab 1 | ND | I | ND | 05.09.2017/ 12.2022 | Recruiting | NCT03170960 |
Lenvatinib/ Pembrolizumab 1 | ND | II | ND | 08.10.2021/ 30.09.2022 | Recruiting | NCT02973997 |
Lapatinib/ Dabrafenib | ND | I | BRAF | 29.08.2013/ 01.07.2022 | Active, not recruiting | NCT01947023 |
Lenvatinib/ Denosumab 3 | ND | II | ND | 26.07.2019/ 15.06.2022 | Recruiting | NCT03732495 (LENVOS) |
Sorafenib/ Everolimus 4 | ND | II | TC | 06.2010/ 06.2022 | Active, not recruiting | NCT01141309 |
Sorafenib/ Everolimus 4 | ND | II | DTC progressed on monotherapy with Sorafenib | 10.2010/ 03.2021 | Active, not recruiting | NCT01263951 |
Regorafenib/ Avelumab 1 | ND | I/II | ND | 04.05.2018/ 05.2022 | Recruiting | NCT03475953 (REGOMUNE) |
Sorafenib/ Everolimus 4 | Sorafenib alone | II | RAIR-HCC | 01.10.2014/ 28.01.2021 | Active, not recruiting | NCT02143726 |
Selumetinib | Selumetinib/I131 | II | ND | 04.05.2015/ 20.02.2022 | Active, not recruiting | NCT02393690 |
Surufatinib/ Toripalimab 1 | ND | II | ND | 01.10.2020/ 30.09.2022 | Not yet recruiting | NCT04524884 |
Dabrafenib | Dabrafenib/ Lenvatinib | II | BRAF | 07.11.2012/ 31.12.2021 | Active, not recruiting | NCT01723202 |
Trametinib/I131 | Trametinib/ Dabrafenib/ I131 | ND | RAS (Trametinib/I131) or BRAF (Trametinib/ Dabrafenib/I131) | ND | Ongoing | NCT03244956 (MERAIODE) |
PDR001 1/ Trametinib (Cohort A) or Dabrafenib (Cohort B) | ND | II | Cohort A: BRAF wt Cohort B: BRAF-mutant, resistant to previous BRAF inhibitors | 02.09.2020/ 02.09.2022 | Recruiting | NCT04544111 |
Vemurafenib/ Copanlisib 5 | ND | I | BRAF V600E | 26.06.2020/ 06.2022 | Recruiting | NCT04462471 |
Agent (Drug Name) | Alternative/Control Treatment | Study Phase | Specific Inclusion Criteria | Study Start/ Estimated Completion Date | Status | Trial Number |
---|---|---|---|---|---|---|
MEK and BRAF inhibitors (combination therapies) | ||||||
Dabrafenib/ Trametinib | ND | II | Mutated BRAF | 22.01.2021/ 01.2026 | Recruiting | NCT04739566 (ANAPLAST-NEO) |
Dabrafenib/ Trametinib | ND | I | BRAF V600E | 04.05.2020/ 30.04.2025 | Recruiting | NCT03975231 |
Cobimetinib/ ABM-1310 | ABM-1310 | I | BRAF V600E | 16.06.2020/ 12.2021 | Recruiting | NCT04190628 |
RET inhibitors | ||||||
Selpercatinib | ND | II | Mutated RET | 26.02.2021/ 10.09.2024 | Recruiting | NCT04759911 |
TRK inhibitors | ||||||
Larotrectinib | ND | II | NTRK | 30.09.2015/ 30.09.2025 | Recruiting | NCT02576431 (NAVIGATE) |
MKIs in combination with other agents | ||||||
MKI (ND)/ Anti-PD-1 antibody (ND) | ND | II | Arm C: ATC | 30.12.2019/ 30.06.2023 | Recruiting | NCT04521348 |
Cabozantinib/ Atezolizumab 1 | ND | II | ND | 07.10.2020/ 03.2024 | Recruiting | NCT04400474 (CABETEN) |
Lenvatinib/ Pembrolizumab 1 | ND | II | ND | 02.03.2021/ 31.08.2022 | Not yet recruiting | NCT04171622 |
Pazopanib/ Paclitaxel 2/IMRT | Placebo/ Paclitaxel 2/IMRT | II | ND | 28.10.2010/ lack of data | Active, not recruiting | NCT01236547 |
SKIs in combination with other agents | ||||||
Repotrectinib | ND | I | ALK, ROS1, NTRK rearrangements | 27.02.2017/ 12.2022 | Recruiting | NCT03093116 (TRIDENT-1) |
Cobimetinib/ Atezolizumab 1 (/Vemurafenib if BRAF V600E) (Cohort A) | Cobimetinib/ Atezolizumab 1 (Cohort B) | II | Mutated BRAF (Cohort A) vs. RAS, NF1, NF2 and MAPK pathway proteins at or above MEK mutations (Cohort B) | 27.07.2017/ 27.07.2023 | Recruiting | NCT03181100 |
Dabrafenib/ Trametinib/ Cemiplimab 1 | ND | II | BRAF V600E | 20.01.2020/ 20.06.2022 | Recruiting | NCT04238624 |
Trametinib/ Dabrafenib/ Pembrolizumab 1 | ND | II | Mutated BRAF | 24.06.2021/ 30.06.2024 | Recruiting | NCT04675710 |
Trametinib/ Paclitaxel 2 | ND | I (pilot study) | ND | 03.2017/ 09.2023 | Recruiting | NCT03085056 |
Agent (Drug Name) | Alternative/Control Treatment | Study Phase | Specific Inclusion Criteria | Study Start/ Estimated Completion Date | Status | Trial Number |
---|---|---|---|---|---|---|
MKIs | ||||||
Anlotinib | ND | II | ND | 01.01.2019/ 01.06.2022 | Active, not recruiting | NCT04309136 |
Cabozantinib | ND | II | Pediatric MTC | 08.05.2017/ 01.07.2022 | Active, not recruiting | NCT02867592 |
Cabozantinib 60 mg | Cabozantinib 140 mg | IV | ND | 12.2014/ 12.2022 | Active, not recruiting | NCT01896479 (EXAMINER) |
Ponatinib | ND | II | ND | 26.07.2019/ 06.2022 | Recruiting | NCT03838692 |
Regorafenib | ND | II | ND | 01.2016/ 10.2022 | Recruiting | NCT02657551 |
Sorafenib | ND | II | Hereditary vs. sporadic MTC | 05.10.2006/ 30.01.2017 | Active, not recruiting | NCT00390325 |
Sunitinib | ND | II | ND | 08.08.2006/ 31.12.2016 | Active, not recruiting | NCT00381641 |
Vandetanib | Placebo | III | ND | 30.11.2016/ 30.12.2021 | Active, not recruiting | NCT00410761 |
Vandetanib 150 mg | Vandetanib 300 mg | IV | ND | 06.2014/ 30.12.2020 | Active, not recruiting | NCT01496313 |
SKIs | ||||||
BOS172738 | ND | I | RET; MTC | 12.12.2018/ 06.2022 | Active, not recruiting | NCT03780517 |
Pralsetinib | ND | I/II | RET; MTC and PTC | 17.03.2017/ 29.02.2024 | Recruiting | NCT03037385 (ARROW) |
TPX-0046 | ND | I/II | RET; MTC and other TCs | 16.12.2019/ 03.2025 | Recruiting | NCT04161391 |
Selpercatinib | ND | II | RET; MTC and other TCs | 16.03.2020/ 20.10.2025 | Active, not recruiting | NCT04280081 (LIBRETTO-321) |
Selpercatinib | ND | I/II | RET; MTC and other TCs | 02.05.2017/ 21.11.2023 | Recruiting | NCT03157128 (LIBRETTO-001) |
Selpercatinib | ND | II | RET; MTC | 26.02.2021/ 10.09.2024 | Recruiting | 2017-000800-59 |
Kinase inhibitors in combination with other agents | ||||||
MKIs | ||||||
MKI (not precised)/ Anti-PD-1 antibody (not precised) | ND | II | Arm B: MTC | 30.12.2019/ 30.06.2023 | Recruiting | NCT04521348 |
Apatinib/ Camrelizumab 1 | ND | II | ND | 01.12.2020/ 31.12.2023 | Not yet recruiting | NCT04612894 |
SKIs vs. MKIs | ||||||
Pralsetinib | Cabozantinib or Vandetanib | III | Mutated RET | 01.09.2021/ 15.04.2028 | Not yet recruiting | NCT04760288 (AcceleRET-MTC) |
Selpercatinib | Cabozantinib or Vandetanib | III | Mutated RET | 30.12.2019/ 30.06.2023 | Recruiting | NCT04211337 (LIBRETTO-531) 2019-001978-28 |
Research | Study Phase | Agent (Dose or Group) | No of Patients: Total/ Dropouts due to AEs | Dose Reduction (No of Patients) | ORR | DCR | CR | PR | SD | PD | OS (Months) | PFS (Months) | All-Grade Most Common AEs (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MKIs | |||||||||||||
Li et al. [161] | IIB | Anlotinib vs. placebo vs. open label | 62 vs. 29 vs. 12 | 10 vs. 1 vs. 1 | 48% vs. 0% vs. 33% | 89% vs. 86% vs. 83% | ND | ND | ND | ND | 50 vs. 19 vs. ND | 21 vs. 11 vs. 15 | PPES (63% vs. 10% vs. ND) Proteinuria (61% vs. 10% vs. ND) Hypertriglyceridemia (48% vs. 24% vs. ND) |
Lin et al. [119] | II | Apatinib (500 mg vs. 750 mg) | 10 vs. 10 | 5 vs. 9 | 70% vs. 90% | 90% vs. 100% | 0% vs. 0% | 70% vs. 90% | 20% vs. 10% | ND | 34 vs. 52 | 14 vs. 35 | PPES (95%) Proteinuria (90%) HT (80%) |
Brose et al. [122] | III | Cabozantinib vs. placebo | 125/6 vs. 62/0 | 70 vs. 3 | 35% vs. 2% | 43% vs. 16% | 0% vs. 0% | 9% vs. 0% | 61% vs. 34% | 6% vs. 50% | ND | 6 vs. 2 | Diarrhoea (51% vs. 3%) PPES (45% vs. 0%) HT (28% vs. 5%) |
Lin et al. [121] | II | Donafenib (200 mg vs. 300 mg) | 17/1 vs. 18/3 | 8 vs. 13 | 13% vs. 13% | 100% vs. 100% | ND | 13% vs. 13% | 88% vs. 87% | ND | ND | 9 vs. 15 | PPES (88% vs. 78%) Alopecia (65% vs. 78%) HT (47% vs. 44%) |
Wirth et al. [146] | II | Lenvatinib | 34/6 | 14 | 3% | 53% | 0% | 3% | 50% | 27% | 3 | 3 | HT (56%) Decreased appetite (29%) Fatigue (29%) Stomatitis (29%) |
Takahashi et al. [124] | ND | Lenvatinib (DTC or ATC or MTC) | 442 or 124 or 28 | 105 or 37 or 6 | 59% or 44% or 45% | 92% or 76% or 100% | 3% or 3% or 5% | 57% or 41% or 40% | 33% vs. 32% vs. 55% | 4% vs. 24% vs. 0% | ND or ND or 4 | ND | HT (79% or 70% or 64%) Proteinuria (43% or 30% or 39%) PPES (39% or 26% or 50%) |
Song et al. [126] | ND | Lenvatinib | 43/6 | 30 | ND | 98% | ND | 65% | 56% | 2% | ND | 22 | Fatigue or asthenia (72%) Diarrhoea (67%) HT (63%) Proteinuria (58%) |
Porcelli et al. [172] | ND | Lenvatinib | 23/3 | 23 | ND | ND | ND | 26% | 61% | 4% | 46 | 25 | HT (78%) Fatigue (74%) Weight loss (65%) |
Matrone et al. [160] | ND | Lenvatinib | 9 | 7 | 36% | 80% | ND | 11% | 89% | ND | ND | ND | Asthenia (50%) Nausea (40%) Diarrhoea (30%) Weight loss (30%) |
Ito et al. [127] | ND | Sorafenib vs. Lenvatinib | 21 vs. 18 | ND | ND | ND | ND | 22% vs. 65% | 72% vs. 24% | 6% vs. 2% | ND | ND | PPES (81% vs. 39%) HT (19% vs. 94%) Thrombocytopenia (ND vs. 50%) Hypocalcemia (38% vs. ND) Proteinuria (33% vs 33%) |
Koehler et al. [125] | ND | Sorafenib vs. Lenvatinib vs. Pazopanib | 33/14 vs. 53/23 vs. 15/4 | 16 vs. 31 vs. 6 | 18% vs. 70% vs. 60% | ND | 0% vs. 2% vs. 7% | 18% vs. 68% vs. 53% | 21% vs. 9% vs. 13% | ND | 37 vs. 47 vs. 34 | 9 vs. 12 vs. 12 | Loss of appetite/weight (46% vs. 49% vs. 25%) Diarrhoea (43% vs. 44% vs. 42%) Fatigue (ND vs. 44% vs. 29%) |
Valerio et al. [158] | ND | Vandetanib (short-term vs. long-term treatment) | 25 vs. 54 | ND | ND | ND | ND | ND vs. 26% | ND vs. 72% | ND vs. 2% | ND | 47 vs. 87 | Hypothyroidism (92% vs. 100%) Rash (28% vs. 48%) Diarrhoea (12% vs. 39%) |
SKIs | |||||||||||||
Salama et al. [134] | II | Dabrafenib and Trametinib | 29 | ND | 38% | 76 | ND | 38% | 38% | 7% | 29 | 11 | Fatigue (74%) Nausea (57%) Chills (54%) |
Doebele et al. [139] | I /II | Entrectinib | 68/3 | 27 | 57% | ND | 7% | 50% | 17% | 7% | 21 | 11 | Dysgeusia (47%) Fatigue (35%) Constipation (28%) |
Desai et al. [138] | I | Lifirafenib (dose escalation vs. dose expansion) | 35/5 vs. 96/19 | ND | ND | ND | ND | ND | ND | ND | ND | ND | Fatigue (69% vs. 49%) Acneiform dermatitis (43% vs. 18%) Decreased appetite (40% vs. 36%) Constipation (40% vs. 27%) |
Subbiah et al. [162] | I/II | Pralsetinib (RETm MTC previously treated or RETm MTC with no previous treatment or RETf TC) | 55 or 21 or 9 | 5 (and 8 deaths) | 60% or 71% or 89% | 93% or 100% or 100% | 2% or 5% or 0% | 58% or 67% or 89% | 33% vs. 29% vs. 11% | 4% vs. 0% vs. 0% | 17 or 19 or 16 | 15 or 15 or 13 | Neutropenia (34%) Decreased WBC count (34%) Increased AST level (34%) |
Wirth et al. [163] | I/II | Selpercatinib (RETm MTC previously treated or RETm MTC with no previous treatment or RETf TC previously treated) | 55 or 88 or 19 | ND | 62% or 71% or 58% | 69% or 67% or 58% | 5% or 3% or 0% | 56% or 67% or 58% | 29% vs. 27% vs. 37% | 5% vs. 0% vs. 0% | ND | 27 or 24 or ND | Dry mouth (46%) HT (43%) Diarrhoea (38%) Fatigue (38%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratajczak, M.; Gaweł, D.; Godlewska, M. Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update. Int. J. Mol. Sci. 2021, 22, 11829. https://doi.org/10.3390/ijms222111829
Ratajczak M, Gaweł D, Godlewska M. Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update. International Journal of Molecular Sciences. 2021; 22(21):11829. https://doi.org/10.3390/ijms222111829
Chicago/Turabian StyleRatajczak, Maciej, Damian Gaweł, and Marlena Godlewska. 2021. "Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update" International Journal of Molecular Sciences 22, no. 21: 11829. https://doi.org/10.3390/ijms222111829
APA StyleRatajczak, M., Gaweł, D., & Godlewska, M. (2021). Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update. International Journal of Molecular Sciences, 22(21), 11829. https://doi.org/10.3390/ijms222111829