A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma
Abstract
:1. Introduction
2. Results
2.1. Global Lipidomic Analysis of Human Melanocytic Cells
2.2. Different Lipid Signatures Feature Nonneoplastic and Neoplastic Melanocytic Cells
2.3. Changes in the Relative Abundance of Particular Lipid Species Reflect the Melanocyte Biology
Lipid | Adduct Characterized | m/z | RT | NM vs. HeM | PM vs. HeM | MM vs. HeM | PM vs. NM | MM vs. NM | MM vs. PM | PM+MM vs. HeM+NM |
---|---|---|---|---|---|---|---|---|---|---|
PC O-30:0 | [PC(O-30:0)+H]+ | 692.5601 | 4.39 | down *** | up *** | up ** | up *** | up *** | ||
PC O-32:1 | [PC(O-32:1)+H]+ | 718.5743 | 4.48 | down ** | up ** | up *** | up *** | up *** | ||
PC O-16:0/16:0 | [PC(O-16:0/16:0)+H]+ | 720.5921 | 5.02 | down *** | up *** | up *** | up *** | up *** | ||
PC O-16:0/18:1 | [PC(O-16:0/18:1)+H]+ | 746.6087 | 5.08 | down *** | up *** | up *** | up *** | up *** | ||
PC O-36:2 | [PC(O-36:2)+H]+ | 772.6240 | 5.13 | down *** | up *** | up * | up *** | up ** | ||
PE P-16:0/16:1 | [PE(P-16:0/16:1)-H]− | 672.4963 | 4.59 | up | ||||||
PE P-16:0/20:5 | [PE(P-16:0/20:5)-H]− | 720.4969 | 4.20 | up *** | up *** | up *** | up *** | up *** | ||
PE P-16:0/22:6 | [PE(P-16:0/22:6)-H]− | 746.5122 | 4.42 | up *** | up ** | up *** | up *** | up *** | ||
PE P-38:4 | [PE(P-38:4)-H]− | 750.5421 | 5.17 | down * | down | down *** | down *** | down *** | ||
PE P-38:3 | [PE(P-38:3)-H]− | 752.5569 | 5.45 | down | down | down *** | down ** | down *** | ||
PE P-18:0/22:6 | [PE(P-18:0/22:6)-H]− | 774.5456 | 5.03 | up *** | up *** | up *** | ||||
PE P-18:0/22:4 | [PE(P-18:0/22:4)-H]− | 778.5733 | 5.56 | down ** | down * | down ** | ||||
PG 32:0 | [PG(32:0)-H]− | 721.4996 | 4.21 | up *** | up *** | up *** | up *** | up *** | ||
PG 18:0/16:1 | [PG(18:0/16:1)-H]− | 747.5139 | 4.47 | up *** | up ** | up *** | up *** | up *** | ||
PG 36:1 | [PG(36:1)-H]− | 775.5451 | 5.04 | up *** | up *** | up *** | ||||
PG 18:1/18:2 | [PG(18:1/18:2)-H]− | 771.5170 | 3.13 | down *** | down ** | |||||
PG 18:1/20:2 | [PG(18:1/20:2)-H]− | 799.5449 | 3.62 | down *** | down *** | down *** | up *** | down *** | ||
PI 32:1 | [PI(32:1)-H]− | 807.5026 | 3.10 | up * | ||||||
PI 16:1/18:0 | [PI(16:1/18:0)-H]− | 835.5326 | 3.67 | up * | ||||||
PI 16:0/20:4 | [PI(16:0/20:4)-H]− | 857.5176 | 3.14 | up *** | ||||||
PI 18:0/18:2 | [PI(18:0/18:2)-H]− | 861.5506 | 3.75 | up *** | ||||||
PI 16:0/20:1 | [PI(16:0/20:1)-H]− | 863.5633 | 4.26 | up * | ||||||
PI 18:1/20:4 | [PI(18:1/20:4)-H]− | 883.5350 | 3.24 | up *** | ||||||
PI 18:0/20:2 | [PI(18:0/20:2)-H]− | 889.5792 | 4.31 | up *** | up ** | |||||
PI 40:6 | [PI(40:6)-H]− | 909.5487 | 3.59 | up *** | up *** | up *** | up *** | up *** | ||
PI 40:5 | [PI(40:5)-H]− | 911.5645 | 3.76 | up ** | up *** | up *** | up *** | |||
PE 18:0/20:3 | [PE(18:0/20:3)-H]− | 768.5539 | 5.25 | down | down * | down * | ||||
PE 18:0/22:4 | [PE(18:0/22:4)-H]− | 794.5681 | 5.25 | down *** | down *** | down *** | down * | down *** | ||
PC 38:3 | [PC(38:3)+H]+ | 812.6182 | 4.92 | down *** | down *** | down *** | down *** | |||
SM d18:1/14:0 | [SM(d18:1/14:0)+H]+ | 677.5562 | 3.38 | down ** | down *** | |||||
SM d18:1/16:0 | [SM(d18:1/16:0)+H]+ | 703.5790 | 3.93 | down *** | down *** | down *** | down *** | down *** | ||
SM d18:0/16:0 | [SM(d18:0/16:0)+H]+ | 705.5837 | 3.97 | down *** | down *** | down *** | down *** | down *** | ||
SM d18:1/22:1 | [SM(d18:1/22:1)+H]+ | 785.6613 | 5.23 | down * | down *** | down *** | ||||
SM d18:1/22:0 | [SM(d18:1/22:0)+H]+ | 787.6701 | 5.76 | down *** | down | down *** | down ** | down *** | ||
SM d18:1/24:1 | [SM(d18:1/24:1)+H]+ | 813.6875 | 5.74 | down *** | down *** | down *** | down *** | |||
SM d18:1/24:0 | [SM(d18:1/24:0)+H]+ | 815.7000 | 6.31 | down | down | down *** | down ** | down ** | ||
SM d18:1/26:1 | [SM(d18:1/26:1)+H]+ | 841.7153 | 6.27 | up | down *** | down ** | ||||
TG 50:4 | [TG(50:4)+NH4]+ | 844.7390 | 7.99 | down | down | down * | down *** | |||
TG 52:6 | [TG(52:6)+NH4]+ | 868.7380 | 7.76 | down *** | down *** | |||||
TG 52:5 | [TG(52:5)+NH4]+ | 870.7568 | 7.99 | down *** | down *** | |||||
TG 52:4 | [TG(52:4)+NH4]+ | 872.7720 | 8.22 | down *** | down *** | down *** | ||||
TG 54:5 | [TG(54:5)+NH4]+ | 898.7851 | 8.24 | down *** | down *** | down *** | down *** | |||
TG 54:4 | [TG(54:4)+NH4]+ | 900.8043 | 8.47 | down *** | down *** | down *** | ||||
TG 56:5 | [TG(56:5)+NH4]+ | 926.8162 | 8.55 | down *** | down *** | down *** | ||||
TG 56:4 | [TG(56:4)+NH4]+ | 928.8324 | 8.73 | down *** | down *** | |||||
TG 58:5 | [TG(58:5)+NH4]+ | 954.8464 | 8.77 | down ** | down *** | down ** | down *** | |||
TG 58:4 | [TG(58:4)+NH4]+ | 956.8638 | 8.92 | down *** | down *** | down ** | down *** | |||
FA 20:4 | [FA(20:4)-H]− | 303.2335 | 1.24 | down | down | down * | ||||
FA 20:3 | [FA(20:3)-H]− | 305.2482 | 1.52 | down *** | down *** | |||||
FA 20:2 | [FA(20:2)-H]− | 307.2624 | 1.82 | down | down *** | down *** | ||||
FA 22:4 | [FA(22:4)-H]− | 331.2637 | 1.62 | down *** | down *** | down *** | down *** | down *** | ||
FA 22:3 | [FA(22:3)-H]− | 333.2795 | 2.01 | down *** | down *** | down *** | down *** | down *** | ||
FA 22:2 | [FA(22:2)-H]− | 335.2944 | 2.43 | down *** | down *** | down *** | down ** | down *** |
3. Discussion
4. Materials and Methods
4.1. Subjects, Cell Culture and Sample Preparation for Lipidomic Analysis
4.2. UHPLC-MSE Analysis
4.3. Data Processing and Statistical Analysis
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufman, C.K.; Mosimann, C.; Fan, Z.P.; Yang, S.; Thomas, A.; Ablain, J.; Tan, J.L.; Fogley, R.D.; van Rooijen, E.; Hagedorn, E.; et al. A Zebrafish Melanoma Model Reveals Emergence of Neural Crest Identity during Melanoma Initiation. Science 2016, 351, aad2197. [Google Scholar] [CrossRef] [Green Version]
- Gogas, H.; Eggermont, A.M.M.; Hauschild, A.; Hersey, P.; Mohr, P.; Schadendorf, D.; Spatz, A.; Dummer, R. Biomarkers in Melanoma. Ann. Oncol. 2009, 20, vi8–vi13. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Nájera, L.; Alonso-Juarranz, M.; Garrido, M.; Ballestín, C.; Moya, L.; Martínez-Díaz, M.; Carrillo, R.; Juarranz, A.; Rojo, F.; Cuezva, J.M.; et al. Prognostic Metabolic Markers in Cutaneous Melanoma. Br. J. Dermatol. 2019, 181, e10. [Google Scholar] [CrossRef] [Green Version]
- Neagu, M. Metabolic Traits in Cutaneous Melanoma. Front. Oncol. 2020, 10, 851. [Google Scholar] [CrossRef]
- Avagliano, A.; Fiume, G.; Pelagalli, A.; Sanità, G.; Ruocco, M.R.; Montagnani, S.; Arcucci, A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk with Tumor Microenvironment. Front. Oncol. 2020, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab. 2008, 7, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBerardinis, R.J.; Sayed, N.; Ditsworth, D.; Thompson, C.B. Brick by Brick: Metabolism and Tumor Cell Growth. Curr. Opin. Genet. Dev. 2008, 18, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of Cancer Metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilvo, M.; Denkert, C.; Lehtinen, L.; Müller, B.; Brockmöller, S.; Seppänen-Laakso, T.; Budczies, J.; Bucher, E.; Yetukuri, L.; Castillo, S.; et al. Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Res. 2011, 71, 3236–3245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menendez, J.A.; Lupu, R. Fatty Acid Synthase and the Lipogenic Phenotype in Cancer Pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, J.-X. Direct Visualization of De Novo Lipogenesis in Single Living Cells. Sci. Rep. 2014, 4, 6807. [Google Scholar] [CrossRef]
- Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.-W.; Cravatt, B.F. Monoacylglycerol Lipase Regulates a Fatty Acid Network That Promotes Cancer Pathogenesis. Cell 2010, 140, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Baba, Y.; Funakoshi, T.; Mori, M.; Emoto, K.; Masugi, Y.; Ekmekcioglu, S.; Amagai, M.; Tanese, K. Expression of Monoacylglycerol Lipase as a Marker of Tumour Invasion and Progression in Malignant Melanoma. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 2038–2045. [Google Scholar] [CrossRef]
- Saito, K.; Arai, E.; Maekawa, K.; Ishikawa, M.; Fujimoto, H.; Taguchi, R.; Matsumoto, K.; Kanai, Y.; Saito, Y. Lipidomic Signatures and Associated Transcriptomic Profiles of Clear Cell Renal Cell Carcinoma. Sci. Rep. 2016, 6, 28932. [Google Scholar] [CrossRef] [Green Version]
- Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V. Cellular Fatty Acid Metabolism and Cancer. Cell Metab. 2013, 18, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Röhrig, F.; Schulze, A. The Multifaceted Roles of Fatty Acid Synthesis in Cancer. Nat. Rev. Cancer 2016, 16, 732–749. [Google Scholar] [CrossRef]
- Vogel, F.C.E.; Bordag, N.; Zügner, E.; Trajkovic-Arsic, M.; Chauvistré, H.; Shannan, B.; Váraljai, R.; Horn, S.; Magnes, C.; Thomas Siveke, J.; et al. Targeting the H3K4 Demethylase KDM5B Reprograms the Metabolome and Phenotype of Melanoma Cells. J. Investig. Dermatol. 2019, 139, 2506–2516.e10. [Google Scholar] [CrossRef]
- Vazquez, F.; Lim, J.-H.; Chim, H.; Bhalla, K.; Girnun, G.; Pierce, K.; Clish, C.B.; Granter, S.R.; Widlund, H.R.; Spiegelman, B.M.; et al. PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress. Cancer Cell 2013, 23, 287–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, T.-I.; Osborne, T.F. SREBPs: Metabolic Integrators in Physiology and Metabolism. Trends Endocrinol. Metab. 2012, 23, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Espenshade, P.J. Expanding Roles for SREBP in Metabolism. Cell Metab. 2012, 16, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Talebi, A.; Dehairs, J.; Rambow, F.; Rogiers, A.; Nittner, D.; Derua, R.; Vanderhoydonc, F.; Duarte, J.A.G.; Bosisio, F.; Van den Eynde, K.; et al. Sustained SREBP-1-Dependent Lipogenesis as a Key Mediator of Resistance to BRAF-Targeted Therapy. Nat. Commun. 2018, 9, 2500. [Google Scholar] [CrossRef]
- Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.-O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; et al. Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature 2017, 541, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Di Martino, J.S.; Bowman, R.L.; Campbell, N.R.; Baksh, S.C.; Simon-Vermot, T.; Kim, I.S.; Haldeman, P.; Mondal, C.; Yong-Gonzales, V.; et al. Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. Cancer Discov. 2018, 8, 1006–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Gallardo, S.; Kurokawa, K.; Sabido-Bozo, S.; Cortes-Gomez, A.; Ikeda, A.; Zoni, V.; Aguilera-Romero, A.; Perez-Linero, A.M.; Lopez, S.; Waga, M.; et al. Ceramide Chain Length–Dependent Protein Sorting into Selective Endoplasmic Reticulum Exit Sites. Sci. Adv. 2020, 6, eaba8237. [Google Scholar] [CrossRef]
- Kimura, T.; Jennings, W.; Epand, R.M. Roles of Specific Lipid Species in the Cell and Their Molecular Mechanism. Prog. Lipid Res. 2016, 62, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. Global Analyses of Cellular Lipidomes Directly from Crude Extracts of Biological Samples by ESI Mass Spectrometry: A Bridge to Lipidomics. J. Lipid Res. 2003, 44, 1071–1079. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-Y.; Lee, H.; Kim, S.-H.; Jin, H.; Bae, J.; Choi, H.-K. Discovery of Potential Biomarkers in Human Melanoma Cells with Different Metastatic Potential by Metabolic and Lipidomic Profiling. Sci. Rep. 2017, 7, 8864. [Google Scholar] [CrossRef]
- Schroeder, F.; Gardiner, J.M. Membrane Lipids and Enzymes of Cultured High- and Low-Metastatic B16 Melanoma Variants. Cancer Res. 1984, 44, 9. [Google Scholar]
- Garate, J.; Lage, S.; Fernández, R.; Velasco, V.; Abad, B.; Asumendi, A.; Gardeazabal, J.; Arroyo-Berdugo, Y.; Rodríguez, M.Á.; Artola, J.L.; et al. Imaging Mass Spectrometry–Based Lipidomic Approach to Classification of Architectural Features in Nevi. J. Investig. Dermatol. 2019, 139, 2055–2058. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hoppel, C.L. Identification of Unusual Phospholipids from Bovine Heart Mitochondria by HPLC-MS/MS. J. Lipid Res. 2020, 61, 1707–1719. [Google Scholar] [CrossRef]
- Bestard-Escalas, J.; Maimó-Barceló, A.; Lopez, D.H.; Reigada, R.; Guardiola-Serrano, F.; Ramos-Vivas, J.; Hornemann, T.; Okazaki, T.; Barceló-Coblijn, G. Common and Differential Traits of the Membrane Lipidome of Colon Cancer Cell Lines and Their Secreted Vesicles: Impact on Studies Using Cell Lines. Cancers 2020, 12, 1293. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Dorninger, F.; Forss-Petter, S.; Berger, J. From Peroxisomal Disorders to Common Neurodegenerative Diseases—The Role of Ether Phospholipids in the Nervous System. FEBS Lett. 2017, 591, 2761–2788. [Google Scholar] [CrossRef]
- Braverman, N.E.; Moser, A.B. Functions of Plasmalogen Lipids in Health and Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1442–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Rojo, N.; Leonetti, M.D.; Zoni, V.; Colom, A.; Feng, S.; Iyengar, N.R.; Matile, S.; Roux, A.; Vanni, S.; Weissman, J.S.; et al. Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Curr. Biol. 2020, 30, 3775–3787. [Google Scholar] [CrossRef]
- Wallner, S.; Schmitz, G. Plasmalogens the Neglected Regulatory and Scavenging Lipid Species. Chem. Phys. Lipids 2011, 164, 573–589. [Google Scholar] [CrossRef]
- Jiménez-Rojo, N.; Riezman, H. On the Road to Unraveling the Molecular Functions of Ether Lipids. FEBS Lett. 2019, 593, 2378–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens: A Potential Therapeutic Target for Neurodegenerative and Cardiometabolic Disease. Prog. Lipid Res. 2019, 74, 186–195. [Google Scholar] [CrossRef]
- Cui, W.; Liu, D.; Gu, W.; Chu, B. Peroxisome-Driven Ether-Linked Phospholipids Biosynthesis Is Essential for Ferroptosis. Cell Death Differ. 2021, 28, 2536–2551. [Google Scholar] [CrossRef] [PubMed]
- Gallego-García, A.; Monera-Girona, A.J.; Pajares-Martínez, E.; Bastida-Martínez, E.; Pérez-Castaño, R.; Iniesta, A.A.; Fontes, M.; Padmanabhan, S.; Elías-Arnanz, M. A Bacterial Light Response Reveals an Orphan Desaturase for Human Plasmalogen Synthesis. Science 2019, 366, 128–132. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, G.; Moorthi, S.; Luberto, C. Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 140, pp. 61–96. ISBN 978-0-12-814223-3. [Google Scholar]
- Ogretmen, B. Sphingolipid Metabolism in Cancer Signalling and Therapy. Nat. Rev. Cancer 2018, 18, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Asano, S.; Kitatani, K.; Taniguchi, M.; Hashimoto, M.; Zama, K.; Mitsutake, S.; Igarashi, Y.; Takeya, H.; Kigawa, J.; Hayashi, A.; et al. Regulation of Cell Migration by Sphingomyelin Synthases: Sphingomyelin in Lipid Rafts Decreases Responsiveness to Signaling by the CXCL12/CXCR4 Pathway. Mol. Cell. Biol. 2012, 32, 3242–3252. [Google Scholar] [CrossRef] [Green Version]
- Bartke, N.; Hannun, Y.A. Bioactive Sphingolipids: Metabolism and Function. J. Lipid Res. 2009, 50, S91–S96. [Google Scholar] [CrossRef] [Green Version]
- Codini, M.; Garcia-Gil, M.; Albi, E. Cholesterol and Sphingolipid Enriched Lipid Rafts as Therapeutic Targets in Cancer. Int. J. Mol. Sci. 2021, 22, 726. [Google Scholar] [CrossRef]
- Li, Z.; Guan, M.; Lin, Y.; Cui, X.; Zhang, Y.; Zhao, Z.; Zhu, J. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics. Int. J. Mol. Sci. 2017, 18, 2550. [Google Scholar] [CrossRef] [Green Version]
- Lemonnier, L.A.; Dillehay, D.L.; Vespremi, M.J.; Abrams, J.; Brody, E.; Schmelz, E.M. Sphingomyelin in the Suppression of Colon Tumors: Prevention versus Intervention. Arch. Biochem. Biophys. 2003, 419, 129–138. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Luan, H.; Gao, D.; Lin, S.; Cai, Z.; Liu, J.; Liu, H.; Jiang, Y. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Cell Cultures for the Lipidomic Analysis of Potential Lipid Markers in Human Breast Cancer Invasion: Mass Spectrometry Imaging of Lipids in Human Breast Cancer Invasion. Rapid Commun. Mass Spectrom. 2016, 30, 533–542. [Google Scholar] [CrossRef]
- Narayan, P.; Dahiya, R. Alterations in Sphingomyelin and Fatty Acids in Human Benign Prostatic Hyperplasia and Prostatic Cancer. Biomed. Biochim. Acta 1991, 50, 1099–1108. [Google Scholar]
- Lin, L.; Yu, Q.; Yan, X.; Hang, W.; Zheng, J.; Xing, J.; Huang, B. Direct Infusion Mass Spectrometry or Liquid Chromatography Mass Spectrometry for Human Metabonomics? A Serum Metabonomic Study of Kidney Cancer. Analyst 2010, 135, 2970. [Google Scholar] [CrossRef] [PubMed]
- Else, P.L. The Highly Unnatural Fatty Acid Profile of Cells in Culture. Prog. Lipid Res. 2020, 77, 101017. [Google Scholar] [CrossRef] [PubMed]
- Herlyn, M.; Rodeck, U.; Jambrosic, J.; Koprowski, H. Expression of Melanoma-Associated Antigens in Rapidly Dividing Human Melanocytes in Culture. Cancer Res. 1987, 15, 3057–3061. [Google Scholar]
- García-Vázquez, M.D.; Boyano, M.D.; Cañavate, M.L.; Gardeazabal, J.; de Galdeano, A.G.; López-Michelena, T.; Ratón, J.A.; Izu, R.; Díaz-Ramón, J.L.; Díaz-Pérez, J.L. Interleukin-2 Enhances the Growth of Human Melanoma Cells Derived Form Primary but Not from Metastatic Tumours. Eur. Cytokine Netw. 2000, 11, 654–661. [Google Scholar] [PubMed]
- Fernández, R.; Garate, J.; Abad, B.; Ochoa, B.; Fernández, J.A. Mapping lipid distribution in rat sciatic nerve using imaging mass spectrometry. In Myelin; Woodhoo, A., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1791, pp. 51–65. ISBN 978-1-4939-7861-8. [Google Scholar]
- Iriondo, A.; Tainta, M.; Saldias, J.; Arriba, M.; Ochoa, B.; Goñi, F.M.; Martinez-Lage, P.; Abad-García, B. Isopropanol Extraction for Cerebrospinal Fluid Lipidomic Profiling Analysis. Talanta 2019, 195, 619–627. [Google Scholar] [CrossRef]
- MSE Data Viewer; Waters MS Technologies: Manchester, UK, 2012.
- SimLipid; Version 6.04; Premier Biosoft: Palo Alto, CA, USA, 2018.
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- MassLynx Mass Spectrometry Software, version 4.1; Waters: Milford, MA, USA, 2012.
- DataBridge Converter, version 3.5; Waters: Milford, MA, USA, 2012.
- XCMS, version 1.42.0; METLIN: La Jolla, CA, USA, 2015.
- R-Package CAMERA, version 1.22.0; Bioconductor: Seattle, WA, USA, 2015.
- SIMCA, version 15.0.2; Umetrics: Umea, Sweden, 2018.
- SPSS, version 26; IBM: Armonk, NY, USA, 2019.
- Mass Profiler Professional, version B14.8; Agilent Technologies: Barcelona, Spain, 2016.
Category | Lipid Class | Abbreviation | Lipid Species (n) | Most Intense Adduct | Most Abundant Metabolite |
---|---|---|---|---|---|
Sphingolipids | Sphingomyelin | SM | 17 | [SM+H]+ | SM d18:1/16:0 |
Hexosylceramide | HexCer | 3 | [HexCer+Na]+ | HexCer d18:1/24:1 | |
Ceramide | Cer | 2 | [Cer+Na]+ | Cer d18:1/24:1 | |
Ceramide | Cer | 6 | [Cer-H]− | Cer d18:1/16:0 | |
Sterol lipids | Cholesteryl ester | CE | 6 | [CE+NH4]+ | CE 15:0 |
Glycerolipids | Triglyceride | TG | 51 | [TG+NH4]+ | TG 52:3 |
Diglyceride | DG | 7 | [DG+Na]+ | DG 36:0 | |
Glycerophospholipids | Phosphatidylcholine | PC | 22 | [PC+H]+ | PC 16:0/18:1 |
Lysophosphatidylcholine | LPC | 1 | [LPC+H]+ | LPC 18:1 | |
Ether-PC | PC(O/P) 1 | 5 | [PC(O)+H]+ | PC O-16:0/18:1 | |
Phosphatidylethanolamine | PE | 12 | [PE-H]− | PE 18:0/18:1 | |
Lysophosphatidylethanolamine | LPE | 4 | [LPE-H]− | LPE 20:4 | |
Ether-PE | PE(O/P) 1 | 18 | [PE(P)-H]− | PE P-16:0/18:1 | |
Phosphatidylserine | PS | 8 | [PS-H]− | PS 18:0/18:1 | |
Phosphatidylglycerol | PG | 8 | [PG-H]− | PG 16:0/18:0 | |
Phosphatidylinositol | PI | 15 | [PI-H]− | PI 18:0/20:4 | |
Fatty acyls | Fatty acid | FA | 24 | [FA-H]− | FA 18:0 |
Model | Ionization Mode | Principal Components, Minimum 1 | R2 | Q2 | Q2 Intercept | p-Value 2 |
---|---|---|---|---|---|---|
NM vs. HeM | + | 2 | 0.831 | 0.595 | −0.218 | 1.07 × 10−2 |
− | 1 | 0.741 | 0.509 | −0.147 | 4.10 × 10−2 | |
PM vs. HeM | + | 3 | 0.966 | 0.908 | −0.399 | 6.14 × 10−4 |
− | 2 | 0.967 | 0.929 | −0.346 | 4.54 × 10−5 | |
MM vs. HeM | + | 2 | 0.949 | 0.907 | −0.246 | 1.28 × 10−4 |
− | 2 | 0.971 | 0.930 | −0.280 | 3.15 × 10−5 | |
PM vs. NM | + | 3 | 0.976 | 0.919 | −0.444 | 1.21 × 10−4 |
− | 3 | 0.968 | 0.870 | −0.442 | 1.52 × 10−4 | |
MM vs. NM | + | 2 | 0.972 | 0.945 | −0.345 | 7.42 × 10−8 |
− | 1 | 0.953 | 0.938 | −0.262 | 8.45 × 10−10 | |
MM vs. PM | + | 1 | 0.516 | 0.201 | −0.076 | 1.48 × 10−1 |
− | 4 | 0.965 | 0.825 | −0.495 | 2.94 × 10−3 | |
PM and MM vs. HeM and NM | + | 3 | 0.944 | 0.879 | −0.382 | 2.09 × 10−10 |
− | 4 | 0.967 | 0.891 | −0.544 | 9.86 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Valle, A.; Abad-García, B.; Fresnedo, O.; Barreda-Gómez, G.; Aspichueta, P.; Asumendi, A.; Astigarraga, E.; Fernández, J.A.; Boyano, M.D.; Ochoa, B. A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma. Int. J. Mol. Sci. 2021, 22, 12061. https://doi.org/10.3390/ijms222112061
Perez-Valle A, Abad-García B, Fresnedo O, Barreda-Gómez G, Aspichueta P, Asumendi A, Astigarraga E, Fernández JA, Boyano MD, Ochoa B. A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma. International Journal of Molecular Sciences. 2021; 22(21):12061. https://doi.org/10.3390/ijms222112061
Chicago/Turabian StylePerez-Valle, Arantza, Beatriz Abad-García, Olatz Fresnedo, Gabriel Barreda-Gómez, Patricia Aspichueta, Aintzane Asumendi, Egoitz Astigarraga, José A. Fernández, María Dolores Boyano, and Begoña Ochoa. 2021. "A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma" International Journal of Molecular Sciences 22, no. 21: 12061. https://doi.org/10.3390/ijms222112061
APA StylePerez-Valle, A., Abad-García, B., Fresnedo, O., Barreda-Gómez, G., Aspichueta, P., Asumendi, A., Astigarraga, E., Fernández, J. A., Boyano, M. D., & Ochoa, B. (2021). A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma. International Journal of Molecular Sciences, 22(21), 12061. https://doi.org/10.3390/ijms222112061