Exerting the Appropriate Application of Methylprednisolone in Acute Spinal Cord Injury Based on Time Course Transcriptomics Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spinal Contusions and Grouping
2.2. RNA Extraction and Microarray Procedures
2.3. Data Preprocessing
2.3.1. Data Normalization
2.3.2. Outlier Sample Removal
2.3.3. Noisy Gene Detection
2.4. Experimental Design and Statistical Analyses
- At: responsive genes in SCI with no treatment, SCI-EtOHt versus (vs.) S-EtOHt.
- Bt: responsive genes in SCI with MP treatment, SCI-MPt vs. SCI-EtOHt.
- Ct: non-recovered genes in SCI with MP treatment, SCI-MPt vs. S-EtOHt.
- Dt: responsive genes in the sham group with MP treatment, S-MPt vs. S-EtOHt.
3. Results
3.1. Functional Enrichment Analysis
3.2. Interactive Time Phase Visualization
4. Discussion
4.1. The Beneficial Molecular Mechanism of MP Usage: MP Protects Nerves by Reducing Inflammation
4.2. Mechanisms of the Side Effects Induced by MP Administration: Metabolic Problems Leading from Glycolysis and Oxidative Stress to the Warburg Effect
4.3. Solution to the Side Effects of MP in SCIs
4.4. Trauma Caused by an SCI and Inabilities to Treat it with MP
4.5. Solution to the Inability Effect of MP for SCIs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tator, C.H. Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 1991, 37, 291–302. [Google Scholar]
- Bracken, M.B.; Shepard, M.J.; Collins, W.F.; Holford, T.R.; Young, W.; Baskin, D.S.; Eisenberg, H.M.; Flamm, E.; Leo-Summers, L.; Maroon, J.; et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 1990, 322, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Bracken, M.B.; Shepard, M.J.; Holford, T.R.; Leo-Summers, L.; Aldrich, E.F.; Fazl, M.; Fehlings, M.; Herr, D.L.; Hitchon, P.W.; Marshall, L.F.; et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997, 277, 1597–1604. [Google Scholar]
- Hurlbert, R.J.; Hadley, M.N.; Walters, B.C.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Rozzelle, C.J.; Ryken, T.C.; Theodore, N. Pharmacological therapy for acute spinal cord injury. Neurosurgery 2013, 72 (Suppl. 2), 93–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmel, J.B.; Galante, A.; Soteropoulos, P.; Tolias, P.; Recce, M.; Young, W.; Hart, R.P. Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol. Genomics. 2001, 7, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Cechvala, C.; Resnick, D.K.; Dempsey, R.J.; Rao, V.L. GeneChip analysis after acute spinal cord injury in rat. J. Neurochem. 2001, 79, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Noguchi, K.; Ruda, M.A. Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci. Lett. 2002, 327, 133–137. [Google Scholar] [CrossRef]
- Di Giovanni, S.; Knoblach, S.M.; Brandoli, C.; Aden, S.A.; Hoffman, E.P.; Faden, A.I. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann. Neurol. 2003, 53, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Aimone, J.B.; Leasure, J.L.; Perreau, V.M.; Thallmair, M.; Christopher Reeve Paralysis Foundation Research, C. Spatial and temporal gene expression profiling of the contused rat spinal cord. Exp. Neurol. 2004, 189, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.Z.; Jornsten, R.; Hart, R.P. Screening anti-inflammatory compounds in injured spinal cord with microarrays: A comparison of bioinformatics analysis approaches. Physiol. Genom. 2004, 17, 201–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velardo, M.J.; Burger, C.; Williams, P.R.; Baker, H.V.; Lopez, M.C.; Mareci, T.H.; White, T.E.; Muzyczka, N.; Reier, P.J. Patterns of gene expression reveal a temporally orchestrated wound healing response in the injured spinal cord. J. Neurosci. 2004, 24, 8562–8576. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.A.; Hsu, C.Y.; Liu, T.H.; Hogan, E.L.; Perot, P.L., Jr.; Tai, H.H. Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury. J. Neurochem. 1990, 55, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hsu, C.Y.; Junker, H.; Chao, S.; Hogan, E.L.; Chao, J. Kininogen and kinin in experimental spinal cord injury. J. Neurochem. 1991, 57, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Qu, Z.X.; Moore, S.A.; Hsu, C.Y.; Hogan, E.L. Receptor-linked hydrolysis of phosphoinositides and production of prostacyclin in cerebral endothelial cells. J. Neurochem. 1992, 58, 1930–1935. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fan, G.; Chen, S.; Wu, Y.; Xu, X.M.; Hsu, C.Y. Methylprednisolone inhibition of TNF-alpha expression and NF-kB activation after spinal cord injury in rats. Brain Res. Mol. Brain Res. 1998, 59, 135–142. [Google Scholar] [CrossRef]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C.; Anderson, D.K.; Faden, A.I.; Gruner, J.A.; Holford, T.R.; Hsu, C.Y.; Noble, L.J.; Nockels, R.; et al. MASCIS evaluation of open field locomotor scores: Effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J. Neurotrauma 1996, 13, 343–359. [Google Scholar] [CrossRef]
- Rio, D.C.; Ares, M., Jr.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5439. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Al-Shahrour, F.; Minguez, P.; Tarraga, J.; Montaner, D.; Alloza, E.; Vaquerizas, J.M.; Conde, L.; Blaschke, C.; Vera, J.; Dopazo, J. BABELOMICS: A systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res. 2006, 34, W472–W476. [Google Scholar] [CrossRef] [Green Version]
- Al-Shahrour, F.; Minguez, P.; Tarraga, J.; Medina, I.; Alloza, E.; Montaner, D.; Dopazo, J. FatiGO+: A functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 2007, 35, W91–W96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracken, M.B.; Collins, W.F.; Freeman, D.F.; Shepard, M.J.; Wagner, F.W.; Silten, R.M.; Hellenbrand, K.G.; Ransohoff, J.; Hunt, W.E.; Perot, P.L., Jr.; et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 1984, 251, 45–52. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Munch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.A.; Al Shehabi, T.S.; Eid, A.H. Inflammogenesis of Secondary Spinal Cord Injury. Front. Cell Neurosci. 2016, 10, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamez Perez, H.E.; Gomez de Ossio, M.D.; Quintanilla Flores, D.L.; Hernandez Coria, M.I.; Tamez Pena, A.L.; Cuz Perez, G.J.; Proskauer Pena, S.L. Glucose disturbances in non-diabetic patients receiving acute treatment with methylprednisolone pulses. Rev. Assoc. Med. Bras. 2012, 58, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Zhu, X.M.; Miao, Q.; Ye, H.Y.; Zhang, Z.Y.; Li, Y.M. Hyperglycemia induced by glucocorticoids in nondiabetic patients: A meta-analysis. Ann. Nutr. Metab. 2014, 65, 324–332. [Google Scholar] [CrossRef]
- Scholpa, N.E.; Schnellmann, R.G. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J. Pharmacol. Exp. Ther. 2017, 363, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Zuccoli, G.S.; Guest, P.C.; Martins-de-Souza, D. Effects on Glial Cell Glycolysis in Schizophrenia: An Advanced Aging Phenotype? Adv. Exp. Med. Biol. 2019, 1178, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.; Nugent, S.; Roy, M.; Courchesne-Loyer, A.; Croteau, E.; Tremblay, S.; Castellano, A.; Pifferi, F.; Bocti, C.; Paquet, N.; et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011, 27, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodish, H.; Berk, A.; Kaiser, C.A.; Kaiser, C.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H.; Matsudaira, P. Molecular Cell Biology; Macmillan: Basingstoke, UK, 2008. [Google Scholar]
- Gaudet, A.D.; Fonken, L.K. Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics 2018, 15, 554–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimas, P.; Montani, L.; Pereira, J.A.; Moreno, D.; Trotzmuller, M.; Gerber, J.; Semenkovich, C.F.; Kofeler, H.C.; Suter, U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Elife 2019, 8, 44702. [Google Scholar] [CrossRef]
- Schmitt, S.; Castelvetri, L.C.; Simons, M. Metabolism and functions of lipids in myelin. Biochim. Biophys Acta 2015, 1851, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.; Durand, G. Influence of dietary lipids on fatty acid composition of nervous membranes (myelin and synaptosomes) in rats. Nutr. Res. 1994, 14, 1365–1373. [Google Scholar] [CrossRef]
- Di Biase, A.; Salvati, S. Exogenous lipids in myelination and myelination. Kaohsiung J. Med. Sci. 1997, 13, 19–29. [Google Scholar] [PubMed]
- Siegert, E.; Paul, F.; Rothe, M.; Weylandt, K.H. The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice. BMC Neurosci. 2017, 18, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, H.; Pu, H.; Wang, G.; Li, W.; Leak, R.K.; Chen, J.; Liou, A.K.; Hu, X. n-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci. Rep. 2014, 4, 7458. [Google Scholar] [CrossRef] [PubMed]
Variable | MP Experiment Group | |||
---|---|---|---|---|
S-EtOH | S-MP | SCI-EtOH | SCI-MP | |
Injury | Sham | Sham | SCI | SCI |
Medication | EtOH | MP | EtOH | MP |
Time (h) | 0, 2, 4, 6, 8, 12, 24, 48 | 0, 2, 4, 6, 8, 12, 24, 48 | 0, 2, 4, 6, 8, 12, 24, 48 | 0, 2, 4, 6, 8, 12, 24, 48 |
Gene Class | At | Bt | Ct | Dt |
---|---|---|---|---|
SCI-EtOHt vs. S-EtOHt | SCI-MPt vs. SCI-EtOHt | SCI-MPt vs. S-EtOHt | S-MPt vs. S-EtOHt | |
SEMP | × | o | o | × |
CPMP | o | o | × | × |
ICMP | o | × | o | × |
Gene Class (vs. ROG) | Time Phase | |||
---|---|---|---|---|
2~6 h | 8 h | 12 h | 24~48 h | |
SEMP | 210 | 10 | 179 | 94 |
CPMP | 190 | 232 | 224 | 182 |
ICMP | 494 | 207 | 960 | 2730 |
Gene Class (vs. ROG) | Time Phase | |||
---|---|---|---|---|
2~6 h | 8 h | 12 h | 24~48 h | |
SEMP | 16 | × | × | 25 |
CPMP | × | 56 | 3 | × |
ICMP | 63 | 9 | 250 | 303 |
SEMP vs. ROG | ||
Time Phase | Biological Processes | Cellular Components |
2~6 h |
|
|
8 h | None | None |
12 h | None | None |
24~48 h |
|
|
CPMP vs. ROG | ||
Time Phase | Biological Processes | Cellular Components |
2~6 h | None | None |
8 h |
|
|
12 h |
|
|
24~48 h | None | None |
ICMP vs. ROG | ||
Time Phase | Biological Processes | Cellular Components |
2~6 h |
|
|
8 h |
|
|
12 h |
|
|
24~48 h |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.-Y.; Tsai, M.-Y.; Juan, S.-H.; Chang, S.-F.; Yu, C.-T.R.; Lin, J.-C.; Johnson, K.R.; Lim, H.G.-M.; Fann, Y.C.; Lee, Y.-C.G. Exerting the Appropriate Application of Methylprednisolone in Acute Spinal Cord Injury Based on Time Course Transcriptomics Analysis. Int. J. Mol. Sci. 2021, 22, 13024. https://doi.org/10.3390/ijms222313024
Yang L-Y, Tsai M-Y, Juan S-H, Chang S-F, Yu C-TR, Lin J-C, Johnson KR, Lim HG-M, Fann YC, Lee Y-CG. Exerting the Appropriate Application of Methylprednisolone in Acute Spinal Cord Injury Based on Time Course Transcriptomics Analysis. International Journal of Molecular Sciences. 2021; 22(23):13024. https://doi.org/10.3390/ijms222313024
Chicago/Turabian StyleYang, Liang-Yo, Meng-Yu Tsai, Shu-Hui Juan, Shwu-Fen Chang, Chang-Tze Ricky Yu, Jung-Chun Lin, Kory R. Johnson, Hendrick Gao-Min Lim, Yang C. Fann, and Yuan-Chii Gladys Lee. 2021. "Exerting the Appropriate Application of Methylprednisolone in Acute Spinal Cord Injury Based on Time Course Transcriptomics Analysis" International Journal of Molecular Sciences 22, no. 23: 13024. https://doi.org/10.3390/ijms222313024
APA StyleYang, L.-Y., Tsai, M.-Y., Juan, S.-H., Chang, S.-F., Yu, C.-T. R., Lin, J.-C., Johnson, K. R., Lim, H. G.-M., Fann, Y. C., & Lee, Y.-C. G. (2021). Exerting the Appropriate Application of Methylprednisolone in Acute Spinal Cord Injury Based on Time Course Transcriptomics Analysis. International Journal of Molecular Sciences, 22(23), 13024. https://doi.org/10.3390/ijms222313024