Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean
Abstract
:1. Introduction
2. Results
2.1. Establishment of Densified Physical Map of SojaCSSLP5 with Genomic Marker SNPLDB
2.2. Identification of the SCC and DTF Wild Segments Using SNPLDB-Map
2.2.1. The Wild Segments Related to Seed Coat Color (SCC)
2.2.2. The Wild Segments Associated with Days to Flowering (DTF)
2.3. Prediction and Primary Verification of SCC and DTF Candidate Genes from the Identified Segments
2.3.1. The Candidate Genes Related to Seed Coat Color (SCC)
2.3.2. The Candidate Genes Related to Days to Flowering (DTF)
2.4. Demonstration of SCC and DTF Candidate Genes from Allele-Phenotype Coincidence in SojaCSSLP5
2.5. Further Demonstration of the Candidate Gene-Allele Effects in Germplasm Accessions
3. Discussion
3.1. Comparisons of the Present SCC and DTF Mapping Results with Those in the Literature
3.2. The Superiorities of SojaCSSLP5 with SNPLDB-Map and Its Potentials in Studying G. Soja Genome
3.3. The CSSL Population Integrated with Parental RNA-Seq and DNA Resequencing and Germplasm Scanning as a Platform in Studying Evolutionary Mechanism
4. Materials and Methods
4.1. Plant Materials and Phenotype Evaluation
4.2. DNA Extraction and SSR-Map Construction
4.3. SNP Identification and SNPLDB-Map Construction
4.4. Identification of Segment for SCC and DTF
4.5. Candidate Gene Annotation and Verification through RNA-Seq for SCC and DTF
4.6. Demonstration of SCC and DTF Candidate Genes through Allele-Phenotype Coincidence in SojaCSSLP5
4.7. Further Demonstration through Allele-Phenotype Coincidence in Chinese Soybean Germplasm Population
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP&G | the consistency value between the phenotype and genotype; |
CSSL | Chromosome segment substitution line; |
DTF | days to flowering; |
FPKM | Fragments Per Kilobase Million; |
GBS | Genotyping-by-sequencing; |
LOD | logarithm of odds; |
PVE | percentage of phenotypic variation explained by individual QTL; |
QTL | quantitative trait locus; |
SCC | seed coat color; |
SNP | single nucleotide polymorphism; |
SNPLDB | SNP linkage disequilibrium block; |
SSR | simple sequence repeat. |
References
- Broich, S.L.; Palmer, R.G. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 1980, 29, 23–32. [Google Scholar] [CrossRef]
- Prince, S.J.; Song, L.; Qiu, D.; Maldonado Dos Santos, J.V.; Chai, C.; Joshi, T.; Patil, G.; Valliyodan, B.; Vuong, T.D.; Murphy, M.; et al. Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean. BMC Genom. 2015, 16, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La, T.; Large, E.; Taliercio, E.; Song, Q.; Gillman, J.D.; Xu, D.; Nguyen, H.T.; Shannon, G.; Scaboo, A. Characterization of Select Wild Soybean Accessions in the USDA Germplasm Collection for Seed Composition and Agronomic Traits. Crop. Sci. 2019, 58, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; He, Q.; Yang, H.; Xiang, S.; Zhao, T.; Gai, J. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 2013, 189, 293–307. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wang, W.B.; He, Q.Y.; Xiang, S.H.; Tian, D.; Zhao, T.J.; Gai, J.Y. Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiol. Mol. Biol. Plants 2017, 23, 877–889. [Google Scholar] [CrossRef]
- Yang, H.; Wang, W.; He, Q.; Xiang, S.; Tian, D.; Zhao, T.; Gai, J. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theor. Appl. Genet. 2019. [Google Scholar] [CrossRef]
- He, Q.; Yang, H.; Xiang, S.; Tian, D.; Wang, W.; Zhao, T.; Gai, J.; Singh, R. Fine mapping of the genetic locusL1conferring black pods using a chromosome segment substitution line population of soybean. Plant. Breed. 2015, 134, 437–445. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, Q.; Jiang, L.; Liu, L.L.; Wang, B.X.; Shen, Y.Y.; Cheng, X.N.; Wan, J.M. Fine mapping of qSTV11(KAS), a major QTL for rice stripe disease resistance. Theor. Appl. Genet. 2011, 122, 1591–1604. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.H.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.H.; Guan, J.P.; Fan, D.L.; Weng, Q.J.; Huang, T.; et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Meng, S.; Zhao, T.; Xing, G.; Yang, S.; Li, Y.; Guan, R.; Lu, J.; Wang, Y.; Xia, Q.; et al. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor. Appl. Genet. 2017, 130, 2327–2343. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; He, J.; Zhao, T.; Gai, J. Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theor. Appl. Genet. 2017, 130, 2297–2314. [Google Scholar] [CrossRef]
- Pan, L.; He, J.; Zhao, T.; Xing, G.; Wang, Y.; Yu, D.; Chen, S.; Gai, J. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor. Appl. Genet. 2018, 131, 2581–2599. [Google Scholar] [CrossRef]
- Yu, H.H.; Xie, W.B.; Wang, J.; Xing, Y.Z.; Xu, C.G.; Li, X.H.; Xiao, J.H.; Zhang, Q.F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE 2011, 6, e17595. [Google Scholar]
- Chen, Z.L.; Wang, B.B.; Dong, X.M.; Liu, H.; Ren, L.H.; Chen, J.; Hauck, A.; Song, W.B.; Lai, J.S. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F-2 maize population. BMC Genom. 2014, 15, 433. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, M.; Wang, Y.; Li, X.; Cheng, S.; Shu, L.; Yu, Z.; Kong, J.; Zhao, T.; Gai, J. Characterizing Two Inter-specific Bin Maps for the Exploration of the QTLs/Genes that Confer Three Soybean Evolutionary Traits. Front. Plant Sci 2016, 7, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, M.; Chung, C.Y.-L.; Li, M.-W.; Wong, F.-L.; Wang, X.; Liu, A.; Wang, Z.; Leung, A.K.-Y.; Wong, T.-H.; Tong, S.-W.; et al. A reference-grade wild soybean genome. Nat. Commun. 2019, 10, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Li, W.; Fang, C.; Xu, F.; Liu, Y.; Wang, Z.; Yang, R.; Zhang, M.; Liu, S.; Lu, S.; et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 2018, 50, 1435–1441. [Google Scholar] [CrossRef]
- Buzzell, R.I. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Genome 1971, 13, 703–707. [Google Scholar] [CrossRef]
- Buzzell, R.; Voldeng, H. Inheritance of insensitivity to long daylength. Soybean Genet. Newsl. 1980, 7, 26–29. [Google Scholar]
- Mcblain, B.A.; Bernard, R.L. A new gene affecting the time of flowering and maturity in soybeans. J. Hered. 1987, 78, 160–162. [Google Scholar] [CrossRef]
- Bonato, E.R.; Vello, N.A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 1999, 22, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Cober, E.R.; Voldeng, H.D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop. Sci. 2001, 41, 698–701. [Google Scholar] [CrossRef]
- Cober, E.R.; Molnar, S.J.; Charette, M.; Voldeng, H.D. A new locus for early maturity in soybean. Crop. Sci. 2010, 50, 524–527. [Google Scholar] [CrossRef]
- Bernard, R.L. Two Major Genes for Time of Flowering and Maturity in Soybeans. Crop. Sci. 1971, 11, 242–244. [Google Scholar] [CrossRef]
- Kong, F.J.; Nan, H.Y.; Cao, D.; Li, Y.; Wu, F.F.; Wang, J.L.; Lu, S.J.; Yuan, X.H.; Cober, E.R.; Abe, J.; et al. A New Dominant Gene E9 Conditions Early Flowering and Maturity in Soybean. Crop. Sci. 2014, 54, 2529–2535. [Google Scholar] [CrossRef]
- Samanfar, B.; Molnar, S.J.; Charette, M.; Schoenrock, A.; Dehne, F.; Golshani, A.; Belzile, F.; Cober, E.R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor. Appl. Genet. 2017, 130, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.D.; Hinson, K.; Bidja Mankono, J.E.; Malo, M.F. Genetic control of a long-juvenile trait in soybean. Crop. Sci. 1995, 35, 1001–1006. [Google Scholar] [CrossRef]
- Lu, S.J.; Dong, L.D.; Fang, C.; Liu, S.L.; Kong, L.P.; Cheng, Q.; Chen, L.Y.; Su, T.; Nan, H.Y.; Zhang, D.; et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 2020, 52, 428. [Google Scholar] [CrossRef]
- Xia, Z.; Watanabe, S.; Yamada, T.; Tsubokura, Y.; Nakashima, H.; Zhai, H.; Anai, T.; Sato, S.; Yamazaki, T.; Lu, S.; et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA 2012, 109, E2155–E2164. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Xia, Z.; Hideshima, R.; Tsubokura, Y.; Sato, S.; Yamanaka, N.; Takahashi, R.; Anai, T.; Tabata, S.; Kitamura, K.; et al. A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that theGIGANTEAGene is Involved in Soybean Maturity and Flowering. Genetics 2011, 188, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Hideshima, R.; Xia, Z.; Tsubokura, Y.; Sato, S.; Nakamoto, Y.; Yamanaka, N.; Takahashi, R.; Ishimoto, M.; Anai, T.; et al. Map-Based Cloning of the Gene Associated with the Soybean Maturity Locus E3. Genetics 2009, 182, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Kanazawa, A.; Matsumura, H.; Takahashi, R.; Harada, K.; Abe, J. Genetic Redundancy in Soybean Photoresponses Associated With Duplication of the Phytochrome A Gene. Genetics 2008, 180, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Zhao, X.; Hu, Y.; Liu, S.; Nan, H.; Li, X.; Fang, C.; Cao, D.; Shi, X.; Kong, L.; et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat. Genet. 2017, 49, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, S.; Funatsuki, H.; Kasai, A.; Kurauchi, T.; Yamaguchi, N.; Takeuchi, T.; Yamazaki, H.; Kurosaki, H.; Shirai, S.; Miyoshi, T.; et al. Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theor. Appl. Genet. 2011, 122, 633–642. [Google Scholar] [CrossRef]
- Li, M.-W.; Liu, W.; Lam, H.-M.; Gendron, J.M. Characterization of Two Growth Period QTLs Reveals Modification of PRR3 Genes During Soybean Domestication. Plant. Cell Physiol. 2019, 60, 407–420. [Google Scholar] [CrossRef]
- Wang, B.; Jin, S.H.; Hu, H.Q.; Sun, Y.G.; Wang, Y.W.; Han, P.; Hou, B.K. UGT87A2, an Arabidopsis glycosyltransferase, regulates flowering time via FLOWERING LOCUS C. New Phytol 2012, 194, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R.G.; Pfeiffer, T.W.; Buss, G.R.; Kilen, T.C. Qualitative Genetics. In Soybeans: Improvement, Production and Uses; Boerma, H.R., Specht, J.E., Eds.; American Society of Agronomy: Madison, WI, USA, 2004; pp. 168–171. [Google Scholar]
- Oyoo, M.E.; Benitez, E.R.; Kurosaki, H.; Ohnishi, S.; Miyoshi, T.; Kiribuchi-Otobe, C.; Horigane, A.; Takahashi, R. QTL Analysis of Soybean Seed Coat Discoloration Associated with II TT Genotype. Crop. Sci. 2011, 51, 464–469. [Google Scholar] [CrossRef]
- Qi, X.P.; Li, M.W.; Xie, M.; Liu, X.; Ni, M.; Shao, G.H.; Song, C.; Yim, A.K.Y.; Tao, Y.; Wong, F.L.; et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat. Commun. 2014, 5, 4340. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, Y.; Kaga, A.; Tomooka, N.; Yano, H.; Takada, Y.; Kato, S.; Vaughan, D. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol. Evolut. 2013, 3, 2150–2168. [Google Scholar] [CrossRef]
- Fehr, W.; Caviness, C.; Burmood, D.; Pennington, J. Stage of development descriptions for soybeans, Lysine Max (L.) Merrill. Crop. Sci 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Murray, M.; Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panaud, O.; Chen, X.; McCouch, S.R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet. MGG 1996, 252, 597–607. [Google Scholar] [CrossRef]
- Song, Q.J.; Marek, L.F.; Shoemaker, R.C.; Lark, K.G.; Concibido, V.C.; Delannay, X.; Specht, J.E.; Cregan, P.B. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 2004, 109, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Human Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- van Berloo, R. GGT 2.0: Versatile software for visualization and analysis of genetic data. J. Hered. 2008, 99, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.H.; Zhang, L.Y.; Wang, J.K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop. J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
Chr. | No. Markers | No. Segments | New Segments | No. Broken Sites | Average Length (Mb) | Coverage (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
SSR | SNPLDB | SSR-Map | SNPLDB-Map | SSR-Map | SNPLDB-Map | SSR-Map | SNPLDB-Map | |||
1 | 6 | 82 | 36 | 72 | 35 | 1 | 19.94 | 10.08 | 100 | 100 |
2 | 13 | 71 | 41 | 65 | 21 | 3 | 14.21 | 8.09 | 100 | 100 |
3 | 7 | 50 | 24 | 55 | 29 | 2 | 10.05 | 4.37 | 100 | 99.79 |
4 | 10 | 88 | 55 | 98 | 37 | 6 | 10.36 | 4.36 | 100 | 100 |
5 | 8 | 49 | 40 | 83 | 39 | 4 | 9.59 | 5.25 | 100 | 98.32 |
6 | 11 | 125 | 68 (1) | 199 (1) | 120 | 11 | 6.77 | 2.72 | 100 | 100 |
7 | 6 | 51 | 29 | 54 | 25 | 0 | 12.13 | 6.22 | 100 | 96.30 |
8 | 12 | 93 | 62 | 84 | 22 | 0 | 6.38 | 5.29 | 100 | 100 |
9 | 9 | 89 | 44 (1) | 155 (1) | 88 | 23 | 9.05 | 3.04 | 100 | 100 |
10 | 9 | 60 | 28 | 51 | 22 | 1 | 12.72 | 8.09 | 100 | 100 |
11 | 10 | 73 | 44(1) | 104 (3) | 45 | 15 | 5.38 | 2.69 | 100 | 100 |
12 | 8 | 49 | 23 | 43 | 18 | 2 | 11.20 | 6.67 | 100 | 100 |
13 | 10 | 63 | 35 | 63(1) | 21 | 7 | 7.06 | 4.45 | 100 | 100 |
14 | 11 | 48 | 33 | 60 | 27 | 0 | 12.49 | 7.81 | 100 | 100 |
15 | 6 | 54 | 18 | 47 | 29 | 0 | 12.99 | 6.30 | 100 | 100 |
16 | 8 | 72 | 46 | 72 | 20 | 6 | 7.32 | 4.63 | 100 | 100 |
17 | 11 | 68 | 37 | 62 | 25 | 0 | 7.48 | 4.26 | 100 | 100 |
18 | 8 | 42 | 21 (1) | 41 (1) | 21 | 0 | 14.24 | 8.37 | 100 | 100 |
19 | 10 | 78 | 43 | 100 | 54 | 3 | 10.11 | 5.45 | 100 | 100 |
20 | 9 | 61 | 36 | 59 (2) | 23 | 0 | 13.37 | 7.47 | 100 | 100 |
Total | 182 | 1366 | 763 | 1568 | 721 | 84 | 10.06 | 5.16 | 100 | 99.74 |
Segment | Position (bp) | Interval (Mb) | LOD | PVE (%) | ADD | CP&G | Predicated Gene/QTL | |
---|---|---|---|---|---|---|---|---|
SCC | ||||||||
SSR | Sat_160 | Chr. 1: 51,845,985–54,121,682 | 2.28 | 33% | G | |||
AW132402 | Chr. 8: 8,795,838–13,551,423 | 4.76 | 77% | I | ||||
SNPLDB | Gm01_LDB_74 | Chr. 1: 52,865,890–53,515,092 | 0.65 | 100% | G | |||
Gm08_LDB_32 | Chr. 8: 8,015,591–8,819,462 | 0.80 | 100% | I | ||||
DTF | ||||||||
SSR | Satt243 | Chr. 10: 45,344,616–47,643,217 | 2.30 | 22.14 | 39.76 | 3.58 | 100% | E2 |
Satt488 | Chr. 17: 20,123,420–32,039,054 | 11.92 | 2.81 | 3.89 | 1.56 | 60% | New | |
Sat_163 | Chr. 18: 2,420,063–3,620,588 | 1.20 | 3.99 | 5.61 | 1.71 | 67% | First flower 21-4 | |
Total | 3 | 49.25 | ||||||
SNPLDB | Gm04_LDB_41 | Chr. 4: 41,449,035–42,363,602 | 0.91 | 2.88 | 0.77 | −0.58 | 43% | New |
Gm10_LDB_46 | Chr. 10: 45,288,662–45,566,206 | 0.28 | 79.28 | 67.05 | 3.68 | 100% | E2 | |
Gm12_LDB_16 | Chr. 12: 5,497,551–5,546,301 | 0.05 | 29.46 | 11.42 | 2.63 | 100% | GmPRR3B | |
Gm15_LDB_44 | Chr. 15: 20,056,071–39,957,410 | 19.9 | 7.87 | 2.26 | −1.00 | 100% | qR1-a-15-2 | |
Gm16_LDB_1 | Chr. 16: 1–480,323 | 0.47 | 7.78 | 2.23 | −0.72 | 50% | New | |
Gm17_LDB_62 | Chr. 17: 40,650,273–40,782,337 | 0.13 | 13.75 | 4.28 | 2.07 | 100% | New | |
Total | 6 | 88.02 |
Locus | Gene | Parents | Tissue (FPKM, Fragments per Kilobase per Million) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaf | Flower | 14 seed | 21 seed | 28 seed | 35 seed | 7 pod | 21 pod | |||
Gm01_LDB_74 | Glyma.01G198500 | N24852 | 113.96 | 8.69 | 14.96 | 8.76 | 7.05 | 2.57 | 16.18 | 11.98 |
NN1138-2 | 109.98 | 20.01 | 3.55 | 9.02 | 4.25 | 9.49 | 24.26 | 32.42 | ||
Gm08_LDB_32 | Glyma.08G109400 | N24852 | 1.52 | 1.68 | 1.80 | 19.09 | 1.60 | 0.11 | 0.26 | 0.03 |
NN1138-2 | 6.78 | 5.09 | 9.45 | 39.32 | 6.51 | 4.81 | 0.35 | 0.73 | ||
Gm04_LDB_41 | Glyma.04G167900 | N24852 | 330.30 | 37.96 | 67.54 | 16.98 | 1.87 | 0.28 | 166.90 | 90.83 |
NN1138-2 | 677.28 | 68.83 | 22.22 | 33.65 | 19.00 | 4.47 | 109.97 | 118.47 | ||
Gm10_LDB_46 | Glyma.10G221500 | N24852 | 76.29 | 26.39 | 27.96 | 16.87 | 27.73 | 6.97 | 22.28 | 143.75 |
NN1138-2 | 19.85 | 11.59 | 19.59 | 11.02 | 4.60 | 10.25 | 16.57 | 41.63 | ||
Gm12_LDB_16 | Glyma.12G073900 | N24852 | 180.77 | 16.36 | 23.23 | 33.09 | 48.69 | 19.68 | 39.38 | 129.56 |
NN1138-2 | 84.81 | 28.13 | 47.24 | 15.03 | 33.83 | 26.62 | 13.69 | 29.43 | ||
Gm15_LDB_44 | Glyma.15G221300 | N24852 | 21.13 | 148.53 | 40.66 | 9.88 | 20.63 | 0.13 | 165.97 | 6.03 |
NN1138-2 | 133.21 | 121.38 | 15.14 | 28.25 | 9.58 | 7.87 | 160.57 | 33.45 | ||
Gm16_LDB_1 | Glyma.16G005100 | N24852 | 10.93 | 1.12 | 1.27 | 0.00 | 0.00 | 0.03 | 2.17 | 0.49 |
NN1138-2 | 0.59 | 0.07 | 0.02 | 0.01 | 0.00 | 0.00 | 0.05 | 0.01 | ||
Gm17_LDB_62 | Glyma.17G253700 | N24852 | 1.56 | 3.79 | 9.96 | 3.73 | 2.38 | 0.00 | 13.10 | 2.65 |
NN1138-2 | 19.21 | 4.87 | 13.11 | 13.04 | 3.74 | 3.98 | 16.70 | 5.24 |
Segment | Candidate Gene | Description | Position (bp) | Allelic Variation | Variant Type | |
---|---|---|---|---|---|---|
N24852 | NN1138-2 | |||||
Gm01_LDB_74 | Glyma.01G198500 (G) | CAAX amino terminal protease protein | 53,229,579 | G | A | Stop gain and splice acceptor variant and intron variant |
Gm08_LDB_32 | Glyma.08G109400 | Chalcone and stilbene synthase family protein | 8,392,915 | G | A | Missense variant |
Gm04_LDB_41 | Glyma.04G167900 | Light-harvesting chlorophyll-protein complex I subunit A4 | 11 SNPs in promoter region | |||
Gm10_LDB_46 | Glyma.10G221500 (E2) | Gigantea protein (GI) | 45,310,798 | A | T | Stop gain |
Gm12_LDB_16 | Glyma.12G073900 | Gseudo-response regulator 3 | 5,519,728 | C | A | Missense variant |
(GmPRR3B) | 5,520,945 | C | T | Stop gain | ||
Gm15_LDB_44 | Glyma.15G221300 | UDP-glucosyl transferase 73B3 | 39,953,287 | T | G | Missense variant |
Gm16_LDB_1 | Glyma.16G005100 | Unknown protein | 349,809 | T | G | Missense variant |
349,961 | G | T | Stop loss | |||
Gm17_LDB_62 | Glyma.17G253700 | UDP-Glycosyltransferase superfamily protein | 40,762,395 | A | T | Missense variant |
40,766,099 | T | C | Missense variant |
Gene | Haplotype | No. Lines | Range | Mean (Day) | CP&G/ Significance | ||
---|---|---|---|---|---|---|---|
SojaCSSLP5 (177 CSSLs) | |||||||
Glyma.01G198500 | D1E2 | 7 | Green seed coat | 100% | |||
D2E2 | 147 | Yellow seed coat | |||||
Glyma.08G109400 | D2E1 | 23 | Black seed coat | 100% | |||
D2E2 | 147 | Yellow seed coat | |||||
Glyma.04G167900 | F1H2I2J2K2L2 | 3 | 51.0~51.0 (day) | 51.0 | *** | ||
F2H2I2J2K2L2 | 143 | 51.2~55.4 (day) | 52.8 | ||||
Glyma.10G221500 | F2H1I2J2K2L2 | 13 | 58.9~61.8 (day) | 60.6 | *** | ||
F2H2I2J2K2L2 | 143 | 51.2~55.4 (day) | 52.8 | ||||
Glyma.12G073900 | F2H2I1J2K2L2 | 5 | 58.4~59.7 (day) | 59.1 | *** | ||
F2H2I2J2K2L2 | 143 | 51.2~55.4 (day) | 52.8 | ||||
Glyma.15G221300 | F2H2I2J1K2L2 | 4 | 50.3~50.8 (day) | 50.6 | *** | ||
F2H2I2J2K2L2 | 143 | 51.2~55.4 (day) | 52.8 | ||||
Glyma.16G005100 | F2H2I2J2K1L2 | 2 | 51.0~51.0 (day) | 51.0 | ** | ||
F2H2I2J2K2L2 | 143 | 51.2~55.4 (day) | 52.8 | ||||
Glyma.17G253700 | F2H2I2J2K2L1 | 2 | 56.7~59.0 (day) | 57.8 | *** | ||
F2H2I2J2K2L2 | 143 | 51.2~55.4 (day) | 52.8 | ||||
Germplasm population (303 cultivars) | |||||||
Glyma.01G198500 | D1 | 44 | Green seed coat | 100% | |||
D2 | 259 | Yellow seed coat | |||||
Glyma.10G221500 | H1I2J2K2L2 | 11 | 37.0~68.0 (day) | 52.3 | *** | ||
H2I2J2K2L2 | 38 | 30.3~49.0 (day) | 41.5 | ||||
Glyma.12G073900 | H2I1J2K2L2 | 7 | 45.3~59.7 (day) | 49.7 | *** | ||
H2I2J2K2L2 | 38 | 30.3~49.0 (day) | 41.5 | ||||
Glyma.15G221300 | H2I2J1K2L2 | 6 | 33.0~41.3 (day) | 36.9 | * | ||
H2I2J2K2L2 | 38 | 30.3~49.0 (day) | 41.5 | ||||
Glyma.16G005100 | H2I2J2K1L2 | 47 | 30.3~63.3 (day) | 37.9 | ** | ||
H2I2J2K2L2 | 38 | 30.3~49.0 (day) | 41.5 | ||||
Glyma.17G253700 | H2I2J2K2L1 | 14 | 38.7~65.5 (day) | 52.1 | * | ||
H2I2J2K2L2 | 38 | 30.3~49.0 (day) | 41.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Chen, X.; Wang, W.; Hu, X.; Han, W.; He, Q.; Yang, H.; Xiang, S.; Gai, J. Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean. Int. J. Mol. Sci. 2021, 22, 1559. https://doi.org/10.3390/ijms22041559
Liu C, Chen X, Wang W, Hu X, Han W, He Q, Yang H, Xiang S, Gai J. Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean. International Journal of Molecular Sciences. 2021; 22(4):1559. https://doi.org/10.3390/ijms22041559
Chicago/Turabian StyleLiu, Cheng, Xianlian Chen, Wubin Wang, Xinyang Hu, Wei Han, Qingyuan He, Hongyan Yang, Shihua Xiang, and Junyi Gai. 2021. "Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean" International Journal of Molecular Sciences 22, no. 4: 1559. https://doi.org/10.3390/ijms22041559
APA StyleLiu, C., Chen, X., Wang, W., Hu, X., Han, W., He, Q., Yang, H., Xiang, S., & Gai, J. (2021). Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean. International Journal of Molecular Sciences, 22(4), 1559. https://doi.org/10.3390/ijms22041559