Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling
Abstract
:1. Introduction
2. Diverse Alkaloids Isolated and Identified from Different Species of Genus Aspergillus and Their Biology in Alphabetical Arrangement of Species
2.1. A. carneus
2.2. A. flavus
2.3. A. fumigatus
2.4. A. nidulans
2.5. A. ochraceus
2.6. A. oryzae
2.7. A. puniceus
2.8. A. sulphureus
2.9. A. sydowii
2.10. A. tamari and A. terreus
2.11. A. versicolor
2.12. A. westerdijkiae
2.13. Miscellaneous Aspergillus Species
Compound | Genus | Biological Activity | References |
---|---|---|---|
Fumitremorgin C (9) | A. fumigatus |
| [58] |
Fumiquinazoline C (10) | A. fumigatus |
| [15] |
| [15] | ||
| [17] | ||
12,13-Dihydroxy fumitremorgin C (14) | A. fumigatus |
| [53] |
| [58] | ||
Fumiquinazoline G (20) | A. fumigatus |
| [17] |
6- Bisdethiobis(methylthio) gliotoxin (16) 6-Methoxyspirotryprostatin B (17) | A. fumigatus |
| [14] |
| [28] | ||
Fumiquinazoline F (19) | A. fumigatus |
| [35] |
Pseurotin A (21) | A. fumigatus |
| [15] |
Costaclavine (23) | A. fumigatus |
| [16] |
Fumgaclavine A (24) | A. fumigatus | ||
Fumgaclavine C (25) | A. fumigatus | ||
2-(3,3-Dimethylprop-1-ene)-costaclavine (26) | A. fumigatus |
| [16] |
2-(3,3-Dimethylprop-1-ene)-epicostaclavine (27) | A. fumigatus | ||
Fumigatoside E (28) | A. fumigatus |
| [17] |
Fumigatoside F (29) | A. fumigatus |
| [17] |
epi-Aszonalenin A (30) | A. fumigatus |
| [17] |
Aniquinazolines A-D (37–40) | A. nidulans |
| [19] |
2-Hydroxycircumdatin C (41) | A. ochraceus |
| [20] |
Circumdatin C (43) | A. ochraceus |
| [20] |
| [16] | ||
Circumdatin D (44) | A. ochraceus |
| [20] |
Speradines C-H (50–55) | A. oryzae |
| [22,23] |
Puniceloids C and D (62–63) | A. puniceus |
| [24] |
17-O-Ethylnotoamide M (65) | Aspergillus |
| [25] |
Fumiquinazoline D and E (69–70) | A. sydowii |
| [8] |
Cyclotryprostatin B (71) | A. sydowii |
| [8] |
Asperversiamide G (86) | A. versicolor |
| [7] |
Protuboxepin G (95) and E (100) | A. versicolor |
| [9] |
Versiquinazolines P (105) and Q (106) | A. versicolor |
| [32] |
Versicoloid A and B (107–108) | A. versicolor |
| [33] |
Circumdatin G (115) | A. westerdijkiae |
| [16] |
Sclerotiamide (116) | A. westerdijkiae |
| [34] |
Fumiquinazolines S (119) and L (120) | Aspergillus |
| [35] |
Isochaetominines A-C (121–123) | Aspergillus | ||
14-epi-Isochaetominine C (124) | Aspergillus | ||
Misszrtine A (126) | Aspergillus |
| [37] |
Asperindole A (127) | Aspergillus |
| [38] |
Golmaenone (131) | Aspergillus |
| [39] |
Neoechinulin A (132) | Aspergillus | ||
| |||
| [59] | ||
| [60] | ||
Notoamide A (133) | Aspergillus |
| [40,41,42] |
Notoamide B (47) | Aspergillus |
| |
Notoamide C (117) | Aspergillus | ||
Aspergicin (150) | Aspergillus |
| [44] |
Stephacidin A (153) | Aspergillus |
| [45] |
7α,14- Dihydroxy-6β-p-nitrobenzoylconfertifolin (155) | Aspergillus |
| [46,47] |
9α,14-Dihydroxy-6β-p-nitrobenzoylcinnamolide (156) | Aspergillus | ||
3-((1-hydroxy-3-(2-methylbut-3-en-2-yl)-2-oxoindolin-3yl)methyl)-1-methyl-3,4-dihydrobenzo[e][1,4]diazepine-2,5-dione (159) | Aspergillus |
| [48] |
Cytochalasin Z17(160) | Aspergillus |
| [48] |
SF5280-415 (165) | Aspergillus |
| [52] |
Compound (166) | Aspergillus | ||
Gliotoxin (168) | Aspergillus |
| [53] |
3. Interpretation of the Antimicrobial Activity of Bioactive Alkaloids Using in Silico Studies
4. Probable SARS-CoV-2 Inhibitory Potential of Bioactive Antimicrobial Alkaloids Using in Silico Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Kashef, D.H.; Youssef, F.S.; Hartmann, R.; Knedel, T.-O.; Janiak, C.; Lin, W.; Reimche, I.; Teusch, N.; Liu, Z.; Proksch, P. Azaphilones from the Red Sea fungus Aspergillus Falconensis. Mar. Drugs 2020, 18, 204. [Google Scholar] [CrossRef]
- Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A comprehensive review of bioactive peptides from Marine fungi and their biological significance. Mar. Drugs 2019, 17, 559. [Google Scholar] [CrossRef] [Green Version]
- Schueffler, A.; Anke, T. Fungal natural products in research and development. Nat. Prod. Rep. 2014, 31, 1425–1448. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Quan, C.; Hou, X.; Fan, S. Potential pharmacological resources: Natural bioactive compounds from marine-derived fungi. Mar. Drugs 2016, 14, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.K.; Lee, H.H.; Seo, C.H.; Park, Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar. Drugs 2019, 17, 350. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Si, L.; Liu, D.; Proksch, P.; Zhang, L.; Zhou, D.; Lin, W. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur. J. Med. Chem. 2015, 93, 182–195. [Google Scholar] [CrossRef]
- Li, H.; Sun, W.; Deng, M.; Zhou, Q.; Wang, J.; Liu, J.; Chen, C.; Qi, C.; Luo, Z.; Xue, Y. Asperversiamides, Linearly fused prenylated indole alkaloids from the marine-derived fungus Aspergillus versicolor. J. Org. Chem. 2018, 83, 8483–8492. [Google Scholar] [CrossRef]
- He, F.; Han, Z.; Peng, J.; Qian, P.-Y.; Qi, S.-H. Antifouling indole alkaloids from two marine derived fungi. Nat. Prod. Comm. 2013, 8, 1934578X1300800313. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Chen, C.; Tao, H.; Lin, X.; Yang, B.; Zhou, X.; Liu, Y. Structurally diverse diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor SCSIO 41016. Org. Chemi. Front. 2019, 6, 736–740. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Gao, J. Chemistry and biology of secondary metabolites from Aspergillus genus. Nat. Prod. J. 2018, 8, 275–304. [Google Scholar] [CrossRef]
- Zhuravleva, O.I.; Afiyatullov, S.S.; Denisenko, V.A.; Ermakova, S.P.; Slinkina, N.N.; Dmitrenok, P.S.; Kim, N.Y. Secondary metabolites from a marine-derived fungus Aspergillus carneus Blochwitz. Phytochemistry 2012, 80, 123–131. [Google Scholar] [CrossRef]
- Lin, A.-Q.; Du, L.; Fang, Y.-C.; Wang, F.-Z.; Zhu, T.-J.; Gu, Q.-Q.; Zhu, W.-M. iso-α-Cyclopiazonic acid, a new natural product isolated from the marine-derived fungus Aspergillus flavus CF-3. Chem. Nat. Comp. 2009, 45, 677. [Google Scholar] [CrossRef]
- Anisimov, M.M.; Chaikina, E.L.; Afiyatullov, S.S.; Klykov, A.G. Influence alkaloids from the marine-derived strain of the fungus Aspergillus fumigatus Fresen. on the growth of seedling roots of buckwheat (Fagopyrum esculentum Moench). Int. J. Res. Rev. Appl. Sci. 2012, 13, 326–329. [Google Scholar]
- Afiyatullov, S.; Chaikina, E.; Kraskovskaya, N.; Anisimov, M. Effect of alkaloids from the marine-derived strain of the fungus Aspergillus fumigatus Fresen. On the root growth of corn (Zea mays L.) Seedlings. Agrochemistry 2012, 7, 39–42. [Google Scholar]
- Han, X.-X.; Xu, X.-Y.; Cui, C.-B.; Gu, Q.-Q. Alkaloidal compounds produced by a marine-derived fungus, Aspergillus fumigatus H1-04, and their antitumor activities. Chin. J. Med. Chem. 2007, 17, 232. [Google Scholar]
- Zhang, D.; Satake, M.; Fukuzawa, S.; Sugahara, K.; Niitsu, A.; Shirai, T.; Tachibana, K. Two new indole alkaloids, 2-(3, 3-dimethylprop-1-ene)-costaclavine and 2-(3, 3-dimethylprop-1-ene)-epicostaclavine, from the marine-derived fungus Aspergillus fumigatus. J. Nat. Med. 2012, 66, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Limbadri, S.; Luo, X.; Lin, X.; Liao, S.; Wang, J.; Zhou, X.; Yang, B.; Liu, Y. Bioactive novel indole alkaloids and steroids from Deep Sea-derived fungus Aspergillus fumigatus SCSIO 41012. Molecules 2018, 23, 2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Z.-L.; Bai, J.; Chen, Z.-X.; Hua, H.-M.; Liu, T. Alkaloids from the marine-derived fungus Aspergillus fumigatus YK-7 and their antitumor activities. Chin. Pharm. J. 2017, 52, 1308–1312. [Google Scholar]
- An, C.-Y.; Li, X.-M.; Li, C.-S.; Wang, M.-H.; Xu, G.-M.; Wang, B.-G. Aniquinazolines A–D, four new quinazolinone alkaloids from marine-derived endophytic fungus Aspergillus Nidulans. Mar. Drugs 2013, 11, 2682–2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.M.; Li, X.M.; Li, C.S.; Sun, H.F.; Gao, S.S.; Wang, B.G. Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv. Chim. Acta 2009, 92, 1366–1370. [Google Scholar] [CrossRef]
- Kito, K.; Ookura, R.; Kusumi, T. X-ray structures of two stephacidins, heptacyclic alkaloids from the marine-derived fungus Aspergillus Ostianus. Heterocycles 2009, 78, 2101–2106. [Google Scholar] [CrossRef]
- Hu, X.; Xia, Q.-W.; Zhao, Y.-Y. Speradines BE, four novel tetracyclic oxindole alkaloids from the marine-derived fungus Aspergillus Oryzae. Heterocycles 2014, 89, 1662–1669. [Google Scholar]
- Hu, X.; Xia, Q.-W.; Zhao, Y.-Y.; Zheng, Q.-H.; Liu, Q.-Y.; Chen, L.; Zhang, Q.-Q. Speradines F–H, three new oxindole alkaloids from the marine-derived fungus Aspergillus oryzae. Chem. Pharma. Bull. 2014, c14-00312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Zhang, X.; Lu, X.; Zheng, Z.; Ma, X.; Qi, S. Diketopiperazine-type alkaloids from a deep-sea-derived Aspergillus puniceus fungus and their effects on Liver X receptor α. J. Nat. Prod. 2019, 82, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Afiyatullov, S.S.; Zhuravleva, O.I.; Antonov, A.S.; Berdyshev, D.V.; Pivkin, M.V.; Denisenko, V.A.; Popov, R.S.; Gerasimenko, A.V.; von Amsberg, G.; Dyshlovoy, S.A. Prenylated indole alkaloids from co-culture of marine-derived fungi Aspergillus sulphureus and Isaria felina. J. Antibiot. 2018, 71, 846. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Sun, Y.-L.; Liu, K.-S.; Zhang, X.-Y.; Qian, P.-Y.; Wang, Y.-F.; Qi, S.-H. Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305. J. Antibiot. 2012, 65, 109–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Fang, Y.; Zhu, T.; Zhao, W.; Gu, Q.; Han, X.; Zhu, W. Study on Indole-Quinazolines Alkaloids from Marine-Derived Fungus Aspergillus sydowi PFW-13 and Their Anti-Tumor Activities. J. Chin. Pharm. Sci. 2007, 42, 1848–1853. Available online: https://europepmc.org/article/cba/649254 (accessed on 12 February 2021).
- Zhang, M.; Wang, W.-L.; Fang, Y.-C.; Zhu, T.-J.; Gu, Q.-Q.; Zhu, W.-M. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus Sydowi. J. Nat. Prod. 2008, 71, 985–989. [Google Scholar] [CrossRef]
- Tsuda, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Shiro, M.; Hirai, M.; Ohizumi, Y.; Kobayashi, J.I. Speradine A, a new pentacyclic oxindole alkaloid from a marine-derived fungus Aspergillus Tamarii. Tetrahedron 2003, 59, 3227–3230. [Google Scholar] [CrossRef]
- He, F.; Bao, J.; Zhang, X.-Y.; Tu, Z.-C.; Shi, Y.-M.; Qi, S.-H. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod. 2013, 76, 1182–1186. [Google Scholar] [CrossRef]
- Fremlin, L.J.; Piggott, A.M.; Lacey, E.; Capon, R.J. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J. Nat. Prod. 2009, 72, 666–670. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, D.; Cheng, W.; Proksch, P.; Lin, W. Versiquinazolines L–Q, new polycyclic alkaloids from the marine-derived fungus Aspergillus Versicolor. RSC Adv. 2018, 8, 31427–31439. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; He, W.; Huang, X.; Tian, X.; Liao, S.; Yang, B.; Wang, F.; Zhou, X.; Liu, Y. Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. J. Agric. Food Chem. 2016, 64, 2910–2916. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, X.-Y.; Tu, Z.-C.; Xu, X.-Y.; Qi, S.-H. Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSCS013. J. Nat. Prod. 2013, 76, 983–987. [Google Scholar] [CrossRef]
- Liao, L.; You, M.; Chung, B.K.; Oh, D.-C.; Oh, K.-B.; Shin, J. Alkaloidal metabolites from a marine-derived Aspergillus sp. fungus. J. Nat. Prod. 2015, 78, 349–354. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, S.; Liu, Y.; Ding, W.; Qiu, F.; Xu, J. Asperginine, an unprecedented alkaloid from the marine-derived fungus Aspergillus sp. Nat. Prod.Comm. 2015, 10, 1934578X1501000812. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Liao, X.; Li, H.; Li, J.; Feng, P.; Zhao, B.; Xu, S. Isolation and synthesis of misszrtine A: A novel indole alkaloid from marine sponge-associated Aspergillus sp. SCSIO XWS03F03. Front. Chem. 2018, 6, 212. [Google Scholar] [CrossRef]
- Ivanets, E.; Yurchenko, A.; Smetanina, O.; Rasin, A.; Zhuravleva, O.; Pivkin, M.; Popov, R.; von Amsberg, G.; Afiyatullov, S.; Dyshlovoy, S. Asperindoles A–D and a p-terphenyl derivative from the ascidian-derived fungus Aspergillus sp. KMM 4676. Mar. Drugs 2018, 16, 232. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, X.; Kim, S.-K.; Kang, J.S.; Choi, H.D.; Rho, J.R.; Son, B.W. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem. Pharm. Bull. 2004, 52, 375–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, H.; Yoshida, T.; Tokue, T.; Nojiri, Y.; Hirota, H.; Ohta, T.; Williams, R.M.; Tsukamoto, S. Notoamides A–D: Prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew. Chem. Int. Ed. 2007, 46, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Kato, H.; Samizo, M.; Nojiri, Y.; Onuki, H.; Hirota, H.; Ohta, T. Notoamides F−K, Prenylated Indole Alkaloids Isolated from a Marine-Derived Aspergillus sp. J. Nat. Prod. 2008, 71, 2064–2067. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Umaoka, H.; Yoshikawa, K.; Ikeda, T.; Hirota, H. Notoamide O, a Structurally unprecedented prenylated indole alkaloid, and notoamides P− R from a marine-derived fungus, Aspergillus sp. J. Nat. Prod. 2010, 73, 1438–1440. [Google Scholar] [CrossRef]
- Lee, S.U.; Asami, Y.; Lee, D.; Jang, J.-H.; Ahn, J.S.; Oh, H. Protuboxepins A and B and protubonines A and B from the marine-derived fungus Aspergillus sp. SF-5044. J. Nat. Prod. 2011, 74, 1284–1287. [Google Scholar] [CrossRef]
- Zhu, F.; Chen, G.; Chen, X.; Huang, M.; Wan, X. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem. Nat. Compd. 2011, 47, 767–769. [Google Scholar] [CrossRef]
- Chen, M.; Shao, C.-L.; Fu, X.-M.; Xu, R.-F.; Zheng, J.-J.; Zhao, D.-L.; She, Z.-G.; Wang, C.-Y. Bioactive indole alkaloids and phenyl ether derivatives from a marine-derived Aspergillus sp. fungus. J. Nat. Prod. 2013, 76, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhai, H.; Zhu, K.; Yu, J.-H.; Zhang, Y.; Wang, Y.; Jiang, C.-S.; Zhang, X.; Zhang, Y.; Zhang, H. Bioactive pyridone alkaloids from a deep-sea-derived fungus Arthrinium sp. UJNMF0008. Mar. Drugs 2018, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- Ebada, S.S.; Fischer, T.; Hamacher, A.; Du, F.-Y.; Roth, Y.O.; Kassack, M.U.; Wang, B.-G.; Roth, E.H. Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat. Prod. Res. 2014, 28, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Debbab, A.; Wray, V.; Lin, W.; Schulz, B.; Trepos, R.; Pile, C.; Hellio, C.; Proksch, P.; Aly, A.H. Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Lett. 2014, 55, 2789–2792. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, N.N.; Rodrigues, B.S.; Jimenez, P.C.; Guimarães, L.A.; Torres, M.C.; Rodrigues-Filho, E.; Pfenning, L.H.; Abreu, L.M.; Mafezoli, J.; de Mattos, M.C. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast. Nat. Prod. Res. 2015, 29, 1545–1550. [Google Scholar]
- Cardoso-Martínez, F.; de la Rosa, J.M.; Díaz-Marrero, A.R.; Darias, J.; D’Croz, L.; Cerella, C.; Diederich, M.; Cueto, M. Oximoaspergillimide, a fungal derivative from a marine isolate of Aspergillus sp. Eur. J. Org. Chem. 2015, 2015, 2256–2261. [Google Scholar] [CrossRef]
- Tian, Y.; Qin, X.; Lin, X.; Kaliyaperumal, K.; Zhou, X.; Liu, J.; Ju, Z.; Tu, Z.; Liu, Y. Sydoxanthone C and acremolin B produced by deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. J. Antibiot. 2015, 68, 703–706. [Google Scholar] [CrossRef]
- Cho, K.-H.; Sohn, J.H.; Oh, H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus Aspergillus sp. SF-5280. Nat. Prod. Res. 2018, 32, 214–221. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, X.; Lin, X.; Qin, X.; Zhang, T.; Wang, J.; Tu, Z.; Yang, B.; Liao, S.; Tian, Y. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat. Prod. Res. 2017, 31, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liang, X.; Huang, Z.-H.; Qi, S.-H. New alkaloids and isocoumarins from the marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Nat. Prod. Res. 2019, 82, 1155–1164. [Google Scholar] [CrossRef]
- Buttachon, S.; Ramos, A.A.; Inácio, Â.; Dethoup, T.; Gales, L.; Lee, M.; Costa, P.M.; Silva, A.; Sekeroglu, N.; Rocha, E. Bis-indolyl benzenoids, hydroxypyrrolidine derivatives and other constituents from cultures of the marine sponge-associated fungus Aspergillus candidus KUFA0062. Mar. Drugs 2018, 16, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Fang, Y.; Zhu, T.; Zhang, M.; Lin, A.; Gu, Q.; Zhu, W. Seven new prenylated indole diketopiperazine alkaloids from holothurian-derived fungus Aspergillus Fumigatus. Tetrahedron 2008, 64, 7986–7991. [Google Scholar] [CrossRef]
- Lorenz, P.; Jensen, P.R.; Fenical, W. Mactanamide, a new fungistatic diketopiperazine produced by a marine Aspergillus sp. Nat. Prod. Lett. 1998, 12, 55–60. [Google Scholar] [CrossRef]
- Zhang, D.; Son, B. 12, 13-Dihydroxyfumitremorgin C, fumitremorgin C, and brevianamide F, antibacterial diketopiperazine alkaloids from the marine-derived fungus Pseudallescheria sp. Nat. Prod. Sci. 2007, 13, 251. [Google Scholar]
- Youssef, F.S.; Menze, E.T.; Ashour, M.L. A potent lignan from Prunes alleviates inflammation and oxidative stress in lithium/pilocarpine-induced epileptic seizures in rats. Antioxidants 2020, 9, 575. [Google Scholar] [CrossRef]
- Wijesekara, I.; Li, Y.-X.; Vo, T.-S.; Van Ta, Q.; Ngo, D.-H.; Kim, S.-K. Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem. 2013, 48, 68–72. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of action of antimicrobials: Focus on fluoroquinolones. Clin. Inf. Dis. 2001, 32, S9–S15. [Google Scholar] [CrossRef]
- Ayoub, I.M.; Youssef, F.S.; El-Shazly, M.; Ashour, M.L.; Singab, A.N.B.; Wink, M. Volatile constituents of Dietes bicolor (Iridaceae) and their antimicrobial activity. Z. Nat. C 2015, 70, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.S.; Hamoud, R.; Ashour, M.L.; Singab, A.N.; Wink, M. Volatile oils from the aerial parts of Eremophila maculata and their antimicrobial activity. Chem. Biodivers. 2014, 11, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Thabet, A.A.; Youssef, F.S.; El-Shazly, M.; El-Beshbishy, H.A.; Singab, A.N.B. Validation of the antihyperglycaemic and hepatoprotective activity of the flavonoid rich fraction of Brachychiton rupestris using in vivo experimental models and molecular modelling. Food Chem. Toxicol. 2018, 114, 302–310. [Google Scholar] [CrossRef]
- Ashour, M.L.; Youssef, F.S.; Gad, H.A.; El-Readi, M.Z.; Bouzabata, A.; Abuzeid, R.M.; Sobeh, M.; Wink, M. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J. Pharm. Pharmacol. 2018, 70, 952–963. [Google Scholar] [CrossRef]
- Janibekov, A.A.; Youssef, F.S.; Ashour, M.L.; Mamadalieva, N.Z. New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies. Ind. Crops Prod. 2018, 118, 142–148. [Google Scholar] [CrossRef]
- Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4529–4536. [Google Scholar] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
Compound | DNA-Gyrase | Topoisomerase IV | Dihydrofolate Reductase | β-Lactamase | TcaR Protein | Aminoglycoside Nucleotidyl Transferase |
---|---|---|---|---|---|---|
Fumitremorgin C (9) | 14.85 | 6.52 | 19.15 | 5.482 | 18.29 | 4.92 |
Fumiquinazoline C (10) | 17.22 | 16.16 | 29.87 | 14.72 | 20.29 | 12.85 |
12,13-Dihydroxy fumitremorgin C (14) | 14.50 | 5.80 | 27.40 | 5.52 | 15.85 | 7.34 |
Fumiquinazoline G (20) | 25.62 | 15.66 | 37.59 | 21.60 | 24.82 | 17.97 |
Fumigatoside E (28) | −14.18 | −18.16 | −5.02 | −20.31 | −10.84 | −17.59 |
Fumigatoside F (29) | 0.39 | −2.26 | 13.63 | −11.27 | 6.69 | −10.95 |
epi-Aszonalenin A (30) | 27.73 | 29.20 | 43.62 | 29.47 | 32.30 | 21.33 |
Versicoloid A (107) | FD | FD | FD | FD | FD | FD |
Versicoloid B (108) | FD | FD | FD | FD | FD | FD |
Aspergicin (150) | −5.17 | −6.94 | 3.11 | −13.86 | −2.93 | −11.36 |
Stephacidin A (153) | FD | FD | FD | FD | FD | FD |
Compound (155) | 26.78 | 21.69 | 39.44 | 20.29 | 26.05 | 12.16 |
Compound (156) | 29.18 | 25.50 | 44.72 | 14.35 | 30.68 | 26.91 |
Compound (159) | 7.06 | 6.062 | 18.01 | −4.81 | 6.38 | −6.04 |
Cytochalasin Z17 (160) | 46.79 | 45.14 | 63.26 | 43.15 | 50.64 | 39.36 |
Gliotoxin (168) | 31.20 | 25.31 | 36.13 | 26.00 | 33.46 | 25.67 |
Levofloxacin | −9.89 | ND | ND | ND | ND | ND |
Moxifloxacin | ND | −10.19 | ND | ND | ND | ND |
Trimethoprim | ND | ND | −28.89 | ND | ND | ND |
Cefuroxime | ND | ND | ND | −61.80 | ND | ND |
Chloramphenicol | ND | ND | ND | ND | −29.02 | ND |
Kanamycin | ND | ND | ND | ND | ND | −73.94 |
Compound | ΔG (Kcal/mole) |
---|---|
Fumitremorgin C (9) | −2.86 |
Fumiquinazoline C (10) | 9.25 |
12,13-Dihydroxy fumitremorgin C (14) | −2.88 |
Fumiquinazoline G (20) | 25.10 |
Fumigatoside E (28) | −21.17 |
Fumigatoside F (29) | −13.81 |
epi-Aszonalenin A (30) | 24.62 |
Versicoloid A (107) | −1.86 |
Versicoloid B (108) | −2.66 |
Aspergicin (150) | −17.66 |
Stephacidin A (153) | −0.584 |
Compound (155) | 18.13 |
Compound (156) | 13.83 |
Compound (159) | −1.58 |
Cytochalasin Z17 (160) | 43.80 |
Gliotoxin (168) | 20.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, F.S.; Alshammari, E.; Ashour, M.L. Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. Int. J. Mol. Sci. 2021, 22, 1866. https://doi.org/10.3390/ijms22041866
Youssef FS, Alshammari E, Ashour ML. Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. International Journal of Molecular Sciences. 2021; 22(4):1866. https://doi.org/10.3390/ijms22041866
Chicago/Turabian StyleYoussef, Fadia S., Elham Alshammari, and Mohamed L. Ashour. 2021. "Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling" International Journal of Molecular Sciences 22, no. 4: 1866. https://doi.org/10.3390/ijms22041866
APA StyleYoussef, F. S., Alshammari, E., & Ashour, M. L. (2021). Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. International Journal of Molecular Sciences, 22(4), 1866. https://doi.org/10.3390/ijms22041866