Strategies for Liver Transplantation Tolerance
Abstract
:1. Introduction
2. Spontaneous Operational Liver Tolerance Is a Rare Outcome Post-Transplant on Standard-of-Care Immunosuppression
3. Memory T-Cells Are the Main Mediators of Allograft Rejection
4. T-Cell Depletion as a Strategy for Tolerance Induction
5. Biomarkers of Immune Tolerance in Liver Transplantation
6. Novel Immunoregulatory Strategies for Active Liver Tolerance Induction
7. Conclusions
Funding
Conflicts of Interest
References
- Adam, R.; Karam, V.; Cailliez, V.; O Grady, J.G.; Mirza, D.; Cherqui, D.; Klempnauer, J.; Salizzoni, M.; Pratschke, J.; Jamieson, N.; et al. 2018 Annual Report of the European Liver Transplant Registry (ELTR)—50-Year Evolution of Liver Transplantation. Transpl. Int. 2018, 31, 1293–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, A.; Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Noreen, S.M.; Foutz, J.; Miller, E.; Snyder, J.J.; et al. OPTN/SRTR 2018 Annual Data Report: Liver. Am. J. Transpl. 2020, 20, 193–299. [Google Scholar] [CrossRef] [PubMed]
- Åberg, F.; Gissler, M.; Karlsen, T.H.; Ericzon, B.-G.; Foss, A.; Rasmussen, A.; Bennet, W.; Olausson, M.; Line, P.-D.; Nordin, A.; et al. Differences in Long-Term Survival among Liver Transplant Recipients and the General Population: A Population-Based Nordic Study. Hepatology 2015, 61, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Cosimi, A.B.; Spitzer, T.R.; Tolkoff-Rubin, N.; Suthanthiran, M.; Saidman, S.L.; Shaffer, J.; Preffer, F.I.; Ding, R.; Sharma, V.; et al. HLA-Mismatched Renal Transplantation without Maintenance Immunosuppression. N. Engl. J. Med. 2008, 358, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todo, S.; Yamashita, K.; Goto, R.; Zaitsu, M.; Nagatsu, A.; Oura, T.; Watanabe, M.; Aoyagi, T.; Suzuki, T.; Shimamura, T.; et al. A Pilot Study of Operational Tolerance with a Regulatory T-Cell-Based Cell Therapy in Living Donor Liver Transplantation. Hepatology 2016, 64, 632–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todo, S.; Yamashita, K. Anti-Donor Regulatory T Cell Therapy in Liver Transplantation. Hum. Immunol. 2018, 79, 288–293. [Google Scholar] [CrossRef]
- Chaudhry, S.; Kato, Y.; Weiner, J.; Alonso-Guallart, P.; Baker, S.; Woodland, D.C.; Lefkowitch, J.H.; Duran-Struuck, R.; Sondermeijer, H.P.; Zitsman, J.; et al. Transient-Mixed Chimerism With Nonmyeloablative Conditioning Does Not Induce Liver Allograft Tolerance in Nonhuman Primates. Transplantation 2020, 104, 1580–1590. [Google Scholar] [CrossRef]
- Feng, S.; Bucuvalas, J.C.; Mazariegos, G.V.; Magee, J.C.; Sanchez-Fueyo, A.; Spain, K.M.; Lesniak, A.; Kanaparthi, S.; Perito, E.; Venkat, V.L.; et al. Efficacy and Safety of Immunosuppression Withdrawal in Pediatric Liver Transplant Recipients: Moving Towards Personalized Management. Hepatology 2020, hep.31520. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, J.; Burrell, B.E.; Kanaparthi, S.; Turka, L.A.; Kurian, S.; Sanchez-Fueyo, A.; Lozano, J.J.; Demetris, A.; Lesniak, A.; Kirk, A.D.; et al. Immunosuppression Withdrawal in Liver Transplant Recipients on Sirolimus. Hepatology 2020, 72, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Ackah, R.L.; Webb, G.J.; Halazun, K.J.; Vierling, J.M.; Liu, H.; Wu, M.-F.; Yoeli, D.; Kueht, M.; Mindikoglu, A.L.; et al. No Gains in Long-Term Survival After Liver Transplantation Over the Past Three Decades. Ann. Surg. 2019, 269, 20–27. [Google Scholar] [CrossRef]
- Ojo, A.O.; Held, P.J.; Port, F.K.; Wolfe, R.A.; Leichtman, A.B.; Young, E.W.; Arndorfer, J.; Christensen, L.; Merion, R.M. Chronic Renal Failure after Transplantation of a Nonrenal Organ. N. Engl. J. Med. 2003, 349, 931–940. [Google Scholar] [CrossRef]
- Lodhi, S.A.; Lamb, K.E.; Meier-Kriesche, H.U. Solid Organ Allograft Survival Improvement in the United States: The Long-Term Does Not Mirror the Dramatic Short-Term Success: The Current State of Solid Organ Allograft Survival. Am. J. Transplant. 2011, 11, 1226–1235. [Google Scholar] [CrossRef]
- Pons, J.A.; Ramírez, P.; Revilla-Nuin, B.; Pascual, D.; Baroja-Mazo, A.; Robles, R.; Sanchez-Bueno, F.; Martinez, L.; Parrilla, P. Immunosuppression Withdrawal Improves Long-Term Metabolic Parameters, Cardiovascular Risk Factors and Renal Function in Liver Transplant Patients. Clin. Transplant. 2009, 23, 329–336. [Google Scholar] [CrossRef]
- Kamada, N.; Wight, D.G. Antigen-Specific Immunosuppression Induced by Liver Transplantation in the Rat. Transplantation 1984, 38, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Calne, R.Y.; Sells, R.A.; Pena, J.R.; Davis, D.R.; Millard, P.R.; Herbertson, B.M.; Binns, R.M.; Davies, D.A. Induction of Immunological Tolerance by Porcine Liver Allografts. Nature 1969, 223, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Demetris, A.J.; Murase, N.; Rao, A.S.; Fung, J.J.; Starzl, T.E. Murine Liver Allograft Transplantation: Tolerance and Donor Cell Chimerism. Hepatology 1994, 19, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Yoo-Ott, K.A.; Schiller, H.; Fändrich, F.; Oswald, H.; Richter, K.; Xhu, X.F.; Kampen, W.U.; Krönke, M.; Zavazava, N. Co-Transplantation of Donor-Derived Hepatocytes Induces Long-Term Tolerance to Cardiac Allografts in a Rat Model. Transplantation 2000, 69, 2538–2546. [Google Scholar] [CrossRef]
- Wong, T.W.; Gandhi, M.J.; Daly, R.C.; Kushwaha, S.S.; Pereira, N.L.; Rosen, C.B.; Stegall, M.D.; Heimbach, J.K.; Taner, T. Liver Allograft Provides Immunoprotection for the Cardiac Allograft in Combined Heart-Liver Transplantation. Am. J. Transpl. 2016, 16, 3522–3531. [Google Scholar] [CrossRef]
- Fong, T.-L.; Bunnapradist, S.; Jordan, S.C.; Selby, R.R.; Cho, Y.W. Analysis of the United Network for Organ Sharing Database Comparing Renal Allografts and Patient Survival in Combined Liver-Kidney Transplantation with the Contralateral Allografts in Kidney Alone or Kidney-Pancreas Transplantation. Transplantation 2003, 76, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Taner, T.; Gustafson, M.P.; Hansen, M.J.; Park, W.D.; Bornschlegl, S.; Dietz, A.B.; Stegall, M.D. Donor-Specific Hypo-Responsiveness Occurs in Simultaneous Liver-Kidney Transplant Recipients after the First Year. Kidney Int. 2018, 93, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Ogawa, Y.; Miki, K.; Kai, K.; Sannomiya, A.; Iwadoh, K.; Murakami, T.; Koyama, I.; Nakajima, I.; Fuchinoue, S. Longterm Renal Allograft Survival after Sequential Liver-Kidney Transplantation from a Single Living Donor. Liver Transpl. 2017, 23, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banff Working Group on Liver Allograft Pathology. Importance of Liver Biopsy Findings in Immunosuppression Management: Biopsy Monitoring and Working Criteria for Patients with Operational Tolerance. Liver Transpl 2012, 18, 1154–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez, C.; Londoño, M.-C.; Miquel, R.; Manzia, T.-M.; Abraldes, J.G.; Lozano, J.-J.; Martínez-Llordella, M.; López, M.; Angelico, R.; Bohne, F.; et al. Prospective Multicenter Clinical Trial of Immunosuppressive Drug Withdrawal in Stable Adult Liver Transplant Recipients. Hepatology 2013, 58, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Yoshitomi, M.; Koshiba, T.; Haga, H.; Li, Y.; Zhao, X.; Cheng, D.; Miyagawa, A.; Sakashita, H.; Tsuruyama, T.; Ohe, H.; et al. Requirement of Protocol Biopsy Before and After Complete Cessation of Immunosuppression After Liver Transplantation. Transplantation 2009, 87, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Ohe, H.; Li, Y.; Nafady-Hego, H.; Kayo, W.; Sakaguchi, S.; Wood, K.; Calne, R.; Uemoto, S.; Koshiba, T. Minimal But Essential Doses of Immunosuppression: A More Realistic Approach to Improve Long-Term Outcomes for Pediatric Living-Donor Liver Transplantation. Transplantation 2011, 91, 808–810. [Google Scholar] [CrossRef]
- Egawa, H.; Miyagawa-Hayashino, A.; Haga, H.; Teramukai, S.; Yoshizawa, A.; Ogawa, K.; Ogura, Y.; Okamoto, S.; Kaido, T.; Uemoto, S. Non-Inflammatory Centrilobular Sinusoidal Fibrosis in Pediatric Liver Transplant Recipients under Tacrolimus Withdrawal: Centrilobular Fibrosis after Liver Transplantation. Hepatol. Res. 2012, 42, 895–903. [Google Scholar] [CrossRef]
- Tokodai, K.; Miyagi, S.; Nakanishi, W.; Fujio, A.; Kashiwadate, T.; Goto, M.; Unno, M.; Kamei, T. Effects of Re-Augmenting Maintenance Immunosuppression on Post-Transplant Donor-Specific HLA Antibodies in Liver Transplantation. Transpl. Immunol. 2020, 63, 101334. [Google Scholar] [CrossRef]
- Shaked, A.; DesMarais, M.R.; Kopetskie, H.; Feng, S.; Punch, J.D.; Levitsky, J.; Reyes, J.; Klintmalm, G.B.; Demetris, A.J.; Burrell, B.E.; et al. Outcomes of Immunosuppression Minimization and Withdrawal Early after Liver Transplantation. Am. J. Transpl. 2019, 19, 1397–1409. [Google Scholar] [CrossRef]
- Feng, S.; Bucuvalas, J.C.; Demetris, A.J.; Burrell, B.E.; Spain, K.M.; Kanaparthi, S.; Magee, J.C.; Ikle, D.; Lesniak, A.; Lozano, J.J.; et al. Evidence of Chronic Allograft Injury in Liver Biopsies From Long-Term Pediatric Recipients of Liver Transplants. Gastroenterology 2018, 155, 1838–1851.e7. [Google Scholar] [CrossRef]
- Yamada, H.; Kondou, H.; Kimura, T.; Ikeda, K.; Tachibana, M.; Hasegawa, Y.; Kiyohara, Y.; Ueno, T.; Miyoshi, Y.; Mushiake, S.; et al. Humoral Immunity Is Involved in the Development of Pericentral Fibrosis after Pediatric Live Donor Liver Transplantation. Pediatr. Transplant. 2012, 16, 858–865. [Google Scholar] [CrossRef]
- Miyagawa-Hayashino, A.; Yoshizawa, A.; Uchida, Y.; Egawa, H.; Yurugi, K.; Masuda, S.; Minamiguchi, S.; Maekawa, T.; Uemoto, S.; Haga, H. Progressive Graft Fibrosis and Donor-Specific Human Leukocyte Antigen Antibodies in Pediatric Late Liver Allografts. Liver Transpl 2012, 18, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Ohe, H.; Uchida, Y.; Yoshizawa, A.; Hirao, H.; Taniguchi, M.; Maruya, E.; Yurugi, K.; Hishida, R.; Maekawa, T.; Uemoto, S.; et al. Association of Anti-Human Leukocyte Antigen and Anti-Angiotensin II Type 1 Receptor Antibodies With Liver Allograft Fibrosis After Immunosuppression Withdrawal. Transplantation 2014, 98, 1105–1111. [Google Scholar] [CrossRef]
- O’Leary, J.G.; Demetris, A.J.; Friedman, L.S.; Gebel, H.M.; Halloran, P.F.; Kirk, A.D.; Knechtle, S.J.; McDiarmid, S.V.; Shaked, A.; Terasaki, P.I.; et al. The Role of Donor-Specific HLA Alloantibodies in Liver Transplantation: DSA in Liver Transplantation. Am. J. Transplant. 2014, 14, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, J.G.; Kaneku, H.; Banuelos, N.; Jennings, L.W.; Klintmalm, G.B.; Terasaki, P.I. Impact of IgG3 Subclass and C1q-Fixing Donor-Specific HLA Alloantibodies on Rejection and Survival in Liver Transplantation: IgG3 and C1q-Fixing DSA in Liver Transplantation. Am. J. Transplant. 2015, 15, 1003–1013. [Google Scholar] [CrossRef]
- Jucaud, V.; Shaked, A.; DesMarais, M.; Sayre, P.; Feng, S.; Levitsky, J.; Everly, M.J. Prevalence and Impact of De Novo Donor-Specific Antibodies During a Multicenter Immunosuppression Withdrawal Trial in Adult Liver Transplant Recipients. Hepatology 2019, 69, 1273–1286. [Google Scholar] [CrossRef]
- Mazariegos, G.V.; Reyes, J.; Marino, I.R.; Demetris, A.J.; Flynn, B.; Irish, W.; McMichael, J.; Fung, J.J.; Starzl, T.E. Weaning Of Immunosuppression In Liver Transplant Recipients. Transplantation 1997, 63, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, J.; Doherty, D.; Thomson, L.; Wong, T.; Donaldson, P.; Portmann, B.; Williams, R. Defining the Outcome of Immunosuppression Withdrawal after Liver Transplantation. Hepatology 1998, 27, 926–933. [Google Scholar] [CrossRef]
- Girlanda, R.; Rela, M.; Williams, R.; O’Grady, J.G.; Heaton, N.D. Long-Term Outcome of Immunosuppression Withdrawal After Liver Transplantation. Transplant. Proc. 2005, 37, 1708–1709. [Google Scholar] [CrossRef] [PubMed]
- Pons, J.A.; Yélamos, J.; Ramírez, P.; Oliver-Bonet, M.; Sánchez, A.; Rodríguez-Gago, M.; Navarro, J.; Bermejo, J.; Robles, R.; Parrilla, P. Endothelial Cell Chimerism Does Not Influence Allograft Tolerance in Liver Transplant Patients after Withdrawal of Immunosuppression. Transplantation 2003, 1045–1047. [Google Scholar] [CrossRef] [PubMed]
- Pons, J.A.; Revilla-Nuin, B.; Baroja-Mazo, A.; Ramírez, P.; Martínez-Alarcón, L.; Sánchez-Bueno, F.; Robles, R.; Rios, A.; Aparicio, P.; Parrilla, P. FoxP3 in Peripheral Blood Is Associated With Operational Tolerance in Liver Transplant Patients During Immunosuppression Withdrawal. Transplantation 2008, 86, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Eason, J.D.; Cohen, A.J.; Nair, S.; Alcantera, T.; Loss, G.E. Tolerance: Is It Worth the Risk? Transplantation 2005, 79, 1157–1159. [Google Scholar] [CrossRef]
- Tryphonopoulos, P.; Tzakis, A.G.; Weppler, D.; Garcia-Morales, R.; Kato, T.; Madariaga, J.R.; Levi, D.M.; Nishida, S.; Moon, J.; Selvaggi, G.; et al. The Role of Donor Bone Marrow Infusions in Withdrawal of Immunosuppression in Adult Liver Allotransplantation. Am. J. Transplant. 2005, 5, 608–613. [Google Scholar] [CrossRef]
- Tisone, G.; Orlando, G.; Cardillo, A.; Palmieri, G.; Manzia, T.M.; Baiocchi, L.; Lionetti, R.; Anselmo, A.; Toti, L.; Angelico, M. Complete Weaning off Immunosuppression in HCV Liver Transplant Recipients Is Feasible and Favourably Impacts on the Progression of Disease Recurrence. J. Hepatol. 2006, 44, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Assy, N.; Adams, P.C.; Myers, P.; Simon, V.; Minuk, G.Y.; Wall, W.; Ghent, C.N. Randomized Controlled Trial of Total Immunosuppression Withdrawal in Liver Transplant Recipients: Role of Ursodeoxycholic Acid. Transplantation 2007, 83, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- de la Garza, R.G.; Sarobe, P.; Merino, J.; Lasarte, J.J.; D’Avola, D.; Belsue, V.; Delgado, J.A.; Silva, L.; Iñarrairaegui, M.; Sangro, B.; et al. Trial of Complete Weaning from Immunosuppression for Liver Transplant Recipients: Factors Predictive of Tolerance. Liver Transpl. 2013, 19, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Bohne, F.; Londono, M.-C.; Benitez, C.; Miquel, R.; Martinez-Llordella, M.; Russo, C.; Ortiz, C.; Bonaccorsi-Riani, E.; Brander, C.; Bauer, T.; et al. HCV-Induced Immune Responses Influence the Development of Operational Tolerance After Liver Transplantation in Humans. Sci. Transl. Med. 2014, 6, 242ra81. [Google Scholar] [CrossRef]
- Feng, S.; Ekong, U.D.; Lobritto, S.J.; Demetris, A.J.; Roberts, J.P.; Rosenthal, P.; Alonso, E.M.; Philogene, M.C.; Ikle, D.; Poole, K.M.; et al. Complete Immunosuppression Withdrawal and Subsequent Allograft Function among Pediatric Recipients of Parental Living Donor Liver Transplants. JAMA 2012, 307, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Demetris, A.J.; Spain, K.M.; Kanaparthi, S.; Burrell, B.E.; Ekong, U.D.; Alonso, E.M.; Rosenthal, P.; Turka, L.A.; Ikle, D.; et al. Five-year Histological and Serological Follow-up of Operationally Tolerant Pediatric Liver Transplant Recipients Enrolled in WISP-R. Hepatology 2017, 65, 647–660. [Google Scholar] [CrossRef]
- Sasaki, H.; Oura, T.; Spitzer, T.R.; Chen, Y.-B.; Madsen, J.C.; Allan, J.; Sachs, D.H.; Cosimi, A.B.; Kawai, T. Preclinical and Clinical Studies for Transplant Tolerance via the Mixed Chimerism Approach. Hum. Immunol. 2018, 79, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Macedo, C.; Orkis, E.A.; Popescu, I.; Elinoff, B.D.; Zeevi, A.; Shapiro, R.; Lakkis, F.G.; Metes, D. Contribution of Naïve and Memory T-Cell Populations to the Human Alloimmune Response. Am. J. Transplant. 2009, 9, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, J.R.; Samy, K.P.; Kirk, A.D. Memory T Cells in Organ Transplantation: Progress and Challenges. Nat. Rev. Nephrol 2016, 12, 339–347. [Google Scholar] [CrossRef]
- Pitcher, C.J.; Hagen, S.I.; Walker, J.M.; Lum, R.; Mitchell, B.L.; Maino, V.C.; Axthelm, M.K.; Picker, L.J. Development and Homeostasis of T Cell Memory in Rhesus Macaque. J. Immunol 2002, 168, 29–43. [Google Scholar] [CrossRef]
- Kawai, T.; Wee, S.L.; Bazin, H.; Latinne, D.; Phelan, J.; Boskovic, S.; Ko, D.S.C.; Hong, H.Z.; Mauiyyedi, S.; Nadazdin, O.; et al. Association Of Natural Killer Cell Depletion With Induction Of Mixed Chimerism And Allograft Tolerance In Non-Human Primates. Transplantation 2000, 70, 368–374. [Google Scholar] [CrossRef]
- Setoguchi, K.; Kishimoto, H.; Kobayashi, S.; Shimmura, H.; Ishida, H.; Toki, D.; Suzuki, T.; Ohnuki, K.; Tate, Y.; Fujioka, S.; et al. Potential Role of Host Effector Memory CD8+ T Cells in Marrow Rejection after Mixed Chimerism Induction in Cynomolgus Monkeys. Transpl. Immunol. 2010, 23, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Lo, D.J.; Weaver, T.A.; Stempora, L.; Mehta, A.K.; Ford, M.L.; Larsen, C.P.; Kirk, A.D. Selective Targeting of Human Alloresponsive CD8+ Effector Memory T Cells Based on CD2 Expression: CD2 Expression in Allospecific Memory T Cells. Am. J. Transplant. 2011, 11, 22–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Boskovic, S.; Aoyama, A.; Murakami, T.; Putheti, P.; Smith, R.N.; Ochiai, T.; Nadazdin, O.; Koyama, I.; Boenisch, O.; et al. Overcoming Memory T-Cell Responses for Induction of Delayed Tolerance in Nonhuman Primates: Overcoming Memory T Cells for Delayed Tolerance. Am. J. Transplant. 2012, 12, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yamada, Y.; Tonsho, M.; Boskovic, S.; Nadazdin, O.; Schoenfeld, D.; Cappetta, K.; Atif, M.; Smith, R.-N.; Cosimi, A.B.; et al. Alefacept Promotes Immunosuppression-Free Renal Allograft Survival in Nonhuman Primates via Depletion of Recipient Memory T Cells. Am. J. Transplant. 2013, 13, 3223–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, E.; Alonso-Guallart, P.; Danton, M.; Sellberg, F.; Binder, C.; Fröbom, R.; Berglund, D.; Llore, N.; Sakai, H.; Iuga, A.; et al. Safety and Pharmacodynamics of Anti-CD2 Monoclonal Antibody Treatment in Cynomolgus Macaques—An Experimental Study. Transpl. Int. 2020, 33, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, C.; Cvetkovski, F.; Sellberg, F.; Berg, S.; Paternina Visbal, H.; Sachs, D.H.; Berglund, E.; Berglund, D. CD2 Immunobiology. Front. Immunol. 2020, 11, 1090. [Google Scholar] [CrossRef]
- Heeger, P.S.; Greenspan, N.S.; Kuhlenschmidt, S.; Dejelo, C.; Hricik, D.E.; Schulak, J.A.; Tary-Lehmann, M. Pretransplant Frequency of Donor-Specific, IFN-Gamma-Producing Lymphocytes Is a Manifestation of Immunologic Memory and Correlates with the Risk of Posttransplant Rejection Episodes. J. Immunol 1999, 163, 2267–2275. [Google Scholar]
- San Segundo, D.; Ballesteros, M.Á.; Naranjo, S.; Zurbano, F.; Miñambres, E.; López-Hoyos, M. Increased Numbers of Circulating CD8 Effector Memory T Cells before Transplantation Enhance the Risk of Acute Rejection in Lung Transplant Recipients. PLoS ONE 2013, 8, e80601. [Google Scholar] [CrossRef]
- Morris, H.; DeWolf, S.; Robins, H.; Sprangers, B.; LoCascio, S.A.; Shonts, B.A.; Kawai, T.; Wong, W.; Yang, S.; Zuber, J.; et al. Tracking Donor-Reactive T Cells: Evidence for Clonal Deletion in Tolerant Kidney Transplant Patients. Sci. Transl. Med. 2015, 7, 272ra10. [Google Scholar] [CrossRef] [Green Version]
- DeWolf, S.; Grinshpun, B.; Savage, T.; Lau, S.P.; Obradovic, A.; Shonts, B.; Yang, S.; Morris, H.; Zuber, J.; Winchester, R.; et al. Quantifying Size and Diversity of the Human T Cell Alloresponse. JCI Insight 2018, 3, e121256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, T.M.; Shonts, B.A.; Lau, S.; Obradovic, A.; Robins, H.; Shaked, A.; Shen, Y.; Sykes, M. Deletion of Donor-Reactive T Cell Clones after Human Liver Transplant. Am. J. Transpl. 2020, 20, 538–545. [Google Scholar] [CrossRef]
- Sellberg, F.; Berglund, D.; Binder, C.; Hope, J.; Fontenot, J.; Griesemer, A.; Sykes, M.; Sachs, D.H.; Berglund, E. Pharmacokinetic and Pharmacodynamic Study of a Clinically Effective Anti-CD2 Monoclonal Antibody. Scand J. Immunol 2020, 91. [Google Scholar] [CrossRef]
- Binder, C.; Sellberg, F.; Cvetkovski, F.; Berglund, E.; Berglund, D. Siplizumab, an Anti-CD2 Monoclonal Antibody, Induces a Unique Set of Immune Modulatory Effects Compared to Alemtuzumab and Rabbit Anti-Thymocyte Globulin In Vitro. Front. Immunol. 2020, 11, 592553. [Google Scholar] [CrossRef] [PubMed]
- Kung, P.; Goldstein, G.; Reinherz, E.; Schlossman, S. Monoclonal Antibodies Defining Distinctive Human T Cell Surface Antigens. Science 1979, 206, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Ortho Multicenter Transplant Study Group. A Randomized Clinical Trial of OKT3 Monoclonal Antibody for Acute Rejection of Cadaveric Renal Transplants. N. Engl. J. Med. 1985, 313, 337–342. [Google Scholar] [CrossRef]
- Wilde, M.I.; Goa, K.L. Muromonab CD3: A Reappraisal of Its Pharmacology and Use as Prophylaxis of Solid Organ Transplant Rejection. Drugs 1996, 51, 865–894. [Google Scholar] [CrossRef] [PubMed]
- Norman, D.J. Mechanisms of Action and Overview of OKT3. Ther. Drug Monit. 1995, 17, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Chatenoud, L.; Ferran, C.; Legendre, C.; Thouard, I.; Merite, S.; Reuter, A.; Gevaert, Y.; Kreis, H.; Franchimont, P.; Bach, J.-F. In Vivo Cell Activation Following OKT3 Administration: Systemic Cytokine Release and Modulation by Corticosteroids. Transplantation 1990, 49, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Ferran, C.; Sheehan, K.; Dy, M.; Schreiber, R.; Merite, S.; Landais, P.; Noel, L.-H.; Grau, G.; Bluestone, J.; Bach, J.-F.; et al. Cytokine-Related Syndrome Following Injection of Anti-CD3 Monoclonal Antibody: Further Evidence for Transientin Vivo T Cell Activation. Eur. J. Immunol. 1990, 20, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Sgro, C. Side-Effects of a Monoclonal Antibody, Muromonab CD3/Orthoclone OKT3: Bibliographic Review. Toxicology 1995, 105, 23–29. [Google Scholar] [CrossRef]
- Portela, D.; Patel, R.; Larson-Keller, J.J.; Ilstrup, D.M.; Wiesner, R.H.; Steers, J.L.; Krom, R.A.F.; Paya, C.V. OKT3 Treatment for Allograft Rejection Is a Risk Factor for Cytomegalovirus Disease in Liver Transplantation. J. Infect. Dis. 1995, 171, 1014–1018. [Google Scholar] [CrossRef]
- Opelz, G.; Döhler, B. Lymphomas after Solid Organ Transplantation: A Collaborative Transplant Study Report: Lymphomas After Solid Organ Transplantation. Am. J. Transplant. 2004, 4, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Fung, J.; Starzl, T. Prophylactic Use of OKT3 in Liver Transplantation: A Review. Dig. Dis Sci 1991, 36, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Deeks, E.D.; Keating, G.M. Rabbit Antithymocyte Globulin (Thymoglobulin®): A Review of Its Use in the Prevention and Treatment of Acute Renal Allograft Rejection. Drugs 2009, 69, 1483–1512. [Google Scholar] [CrossRef]
- Popow, I.; Leitner, J.; Grabmeier-Pfistershammer, K.; Majdic, O.; Zlabinger, G.-J.; Kundi, M.; Steinberger, P. A Comprehensive and Quantitative Analysis of the Major Specificities in Rabbit Antithymocyte Globulin Preparations: Specificities in Antithymocyte Globulins. Am. J. Transplant. 2013, 13, 3103–3113. [Google Scholar] [CrossRef] [Green Version]
- Michallet, M.-C.; Preville, X.; Flacher, M.; Fournel, S.; Genestier, L.; Revillard, J.-P. Functional Antibodies to Leukocyte Adhesion Molecules in Antithymocyte Globulins. Transplantation 2003, 75, 657–662. [Google Scholar] [CrossRef]
- Rebellato, L.M.; Gross, U.; Verbanac, K.M.; Thomas, J.M. A Comprehensive Definition of the Major Antibody Specificities in Polyclonal Rabbit Antithymocyte Globulin. Transplantation 1994, 57, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E.; Murase, N.; Abu-Elmagd, K.; Gray, E.A.; Shapiro, R.; Eghtesad, B.; Corry, R.J.; Jordan, M.L.; Fontes, P.; Gayowski, T.; et al. Tolerogenic Immunosuppression for Organ Transplantation. Lancet 2003, 361, 1502–1510. [Google Scholar] [CrossRef] [Green Version]
- Donckier, V.; Troisi, R.; Toungouz, M.; Colle, I.; Vlierberghe, H.V.; Jacquy, C.; Martiat, P.; Stordeur, P.; Zhou, L.; Boon, N.; et al. Donor Stem Cell Infusion after Non-Myeloablative Conditioning for Tolerance Induction to HLA Mismatched Adult Living-Donor Liver Graft. Transpl. Immunol. 2004, 13, 139–146. [Google Scholar] [CrossRef]
- Donckier, V.; Troisi, R.; Le Moine, A.; Toungouz, M.; Ricciardi, S.; Colle, I.; Van Vlierberghe, H.; Craciun, L.; Libin, M.; Praet, M.; et al. Early Immunosuppression Withdrawal after Living Donor Liver Transplantation and Donor Stem Cell Infusion. Liver Transpl. 2006, 12, 1523–1528. [Google Scholar] [CrossRef]
- Donckier, V.; Craciun, L.; Lucidi, V.; Buggenhout, A.; Troisi, R.; Rogiers, X.; Boon, N.; Gustot, T.; Moreno, C.; Bourgeois, N.; et al. Acute Liver Transplant Rejection Upon Immunosuppression Withdrawal in a Tolerance Induction Trial: Potential Role of IFN-γ-Secreting CD8+ T Cells. Transplantation 2009, 87, S91–S95. [Google Scholar] [CrossRef]
- Oertel, M.; Sack, U.; Kohlhaw, K.; Lehmann, I.; Emmrich, F.; Berr, F.; Hauss, J.; Schwarz, R. Induction Therapy Including Antithymocyte Globulin Induces Marked Alterations in T Lymphocyte Subpopulations after Liver Transplantation: Results of a Long-Term Study. Transpl. Int. 2002, 15, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Louis, S.; Audrain, M.; Cantarovich, D.; Schaffrath, B.; Hofmann, K.; Janssen, U.; Ballet, C.; Brouard, S.; Soulillou, J.-P. Long-Term Cell Monitoring of Kidney Recipients After an Antilymphocyte Globulin Induction With and Without Steroids. Transplantation 2007, 83, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Benítez, C.E.; Puig-Pey, I.; López, M.; Martínez-Llordella, M.; Lozano, J.J.; Bohne, F.; Londoño, M.C.; García-Valdecasas, J.C.; Bruguera, M.; Navasa, M.; et al. ATG-Fresenius Treatment and Low-Dose Tacrolimus: Results of a Randomized Controlled Trial in Liver Transplantation. Am. J. Transplant. 2010, 10, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.J.; Russell, N.K. Alemtuzumab (Campath-1H): A Systematic Review in Organ Transplantation. Transplantation 2006, 81, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Magliocca, J.F.; Knechtle, S.J. The Evolving Role of Alemtuzumab (Campath-1H) for Immunosuppressive Therapy in Organ Transplantation. Transpl. Int. 2006, 19, 705–714. [Google Scholar] [CrossRef]
- Tzakis, A.G.; Kato, T.; Nishida, S.; Levi, D.M.; Madariaga, J.R.; Nery, J.R.; Mittal, N.; Regev, A.; Cantwell, P.; Gyamfi, A.; et al. Preliminary Experience with Campath 1H (C1H) in Intestinal and Liver Transplantation. Transplantation 2003, 75, 1227–1231. [Google Scholar] [CrossRef]
- Tzakis, A.G.; Tryphonopoulos, P.; Kato, T.; Nishida, S.; Levi, D.M.; Madariaga, J.R.; Gaynor, J.J.; De Faria, W.; Regev, A.; Esquenazi, V.; et al. Preliminary Experience With Alemtuzumab (CAMPATH-1H) And Low-Dose Tacrolimus Immunosuppression In Adult Liver Transplantation. Transplantation 2004, 77, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Tryphonopoulos, P.; Madariaga, J.R.; Kato, T.; Nishida, S.; Levi, D.M.; Moon, J.; Selvaggi, G.; De Faria, W.; Regev, A.; Bejarano, P.; et al. The Impact of Campath 1H Induction in Adult Liver Allotransplantation. Transplant. Proc. 2005, 37, 1203–1204. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, J.; Thudi, K.; Ison, M.G.; Wang, E.; Abecassis, M. Alemtuzumab Induction in Non-Hepatitis C Positive Liver Transplant Recipients. Liver Transpl. 2011, 17, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Kirk, A.D.; Hale, D.A.; Mannon, R.B.; Kleiner, D.E.; Hoffmann, S.C.; Kampen, R.L.; Cendales, L.K.; Tadaki, D.K.; Harlan, D.M.; Swanson, S.J. Results From A Human Renal Allograft Tolerance Trial Evaluating The Humanized CD52-Specific Monoclonal Antibody Alemtuzumab (CAMPATH-1H). Transplantation 2003, 76, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Podestà, M.A.; Binder, C.; Sellberg, F.; DeWolf, S.; Shonts, B.; Ho, S.; Obradovic, A.; Waffarn, E.; Danzl, N.; Berglund, D.; et al. Siplizumab Selectively Depletes Effector Memory T Cells and Promotes a Relative Expansion of Alloreactive Regulatory T Cells in Vitro. Am. J. Transpl. 2020, 20, 88–100. [Google Scholar] [CrossRef]
- Takahashi, T.; Tagami, T.; Yamazaki, S.; Uede, T.; Shimizu, J.; Sakaguchi, N.; Mak, T.W.; Sakaguchi, S. Immunologic Self-Tolerance Maintained by Cd25+Cd4+Regulatory T Cells Constitutively Expressing Cytotoxic T Lymphocyte–Associated Antigen 4. J. Exp. Med. 2000, 192, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Immunologic Self-Tolerance Maintained by Activated T Cells Expressing IL-2 Receptor Alpha-Chains (CD25). Breakdown of a Single Mechanism of Self-Tolerance Causes Various Autoimmune Diseases. J. Immunol 1995, 155, 1151–1164. [Google Scholar] [PubMed]
- Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.-F.; Enjyoji, K.; Linden, J.; Oukka, M.; et al. Adenosine Generation Catalyzed by CD39 and CD73 Expressed on Regulatory T Cells Mediates Immune Suppression. J. Exp Med. 2007, 204, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How Regulatory T Cells Work. Nat. Rev. Immunol 2008, 8, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Cai, S.F.; Fehniger, T.A.; Song, J.; Collins, L.I.; Piwnica-Worms, D.R.; Ley, T.J. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppression of Tumor Clearance. Immunity 2007, 27, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Takatsuki, M.; Uemoto, S.; Inomata, Y.; Sakamoto, S.; Hayashi, M.; Ueda, M.; Kanematsu, T.; Tanaka, K. Analysis of Alloreactivity and Intragraft Cytokine Profiles in Living Donor Liver Transplant Recipients with Graft Acceptance. Transpl. Immunol. 2001, 8, 279–286. [Google Scholar] [CrossRef]
- Yoshizawa, A.; Ito, A.; Li, Y.; Koshiba, T.; Sakaguchi, S.; Wood, K.J.; Tanaka, K. The Roles of CD25+CD4+ Regulatory T Cells in Operational Tolerance after Living Donor Liver Transplantation. Transpl. Proc 2005, 37, 37–39. [Google Scholar] [CrossRef]
- Li, Y.; Koshiba, T.; Yoshizawa, A.; Yonekawa, Y.; Masuda, K.; Ito, A.; Ueda, M.; Mori, T.; Kawamoto, H.; Tanaka, Y.; et al. Analyses of Peripheral Blood Mononuclear Cells in Operational Tolerance After Pediatric Living Donor Liver Transplantation. Am. J. Transpl. 2004, 4, 2118–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirkiran, A.; Kok, A.; Kwekkeboom, J.; Kusters, J.G.; Metselaar, H.J.; Tilanus, H.W.; van der Laan, L.J.W. Low Circulating Regulatory T-Cell Levels after Acute Rejection in Liver Transplantation. Liver Transpl. 2006, 12, 277–284. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Cheng, D.; Haga, H.; Tsuruyama, T.; Wood, K.; Sakaguchi, S.; Tanaka, K.; Uemoto, S.; Koshiba, T. The Presence of Foxp3 Expressing T Cells Within Grafts of Tolerant Human Liver Transplant Recipients. Transplantation 2008, 86, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Juergensen, S.; Marischen, L.; Wesch, D.; Oberg, H.H.; Fändrich, F.; Kabelitz, D.; Burdelski, M. Markers of Operational Immune Tolerance after Pediatric Liver Transplantation in Patients under Immunosuppression. Pediatr. Transplant. 2013, 17, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Llordella, M.; Puig-Pey, I.; Orlando, G.; Ramoni, M.; Tisone, G.; Rimola, A.; Lerut, J.; Latinne, D.; Margarit, C.; Bilbao, I.; et al. Multiparameter Immune Profiling of Operational Tolerance in Liver Transplantation. Am. J. Transpl. 2007, 7, 309–319. [Google Scholar] [CrossRef]
- Taubert, R.; Danger, R.; Londoño, M.-C.; Christakoudi, S.; Martinez-Picola, M.; Rimola, A.; Manns, M.P.; Sánchez-Fueyo, A.; Jaeckel, E. Hepatic Infiltrates in Operational Tolerant Patients After Liver Transplantation Show Enrichment of Regulatory T Cells Before Proinflammatory Genes Are Downregulated. Am. J. Transpl. 2016, 16, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Han, J.W.; Joo, D.J.; Kim, J.H.; Rha, M.; Koh, J.Y.; Park, H.J.; Lee, J.G.; Kim, M.S.; Kim, S.I.; Shin, E.; et al. Early Reduction of Regulatory T Cells Is Associated with Acute Rejection in Liver Transplantation under Tacrolimus-based Immunosuppression with Basiliximab Induction. Am. J. Transpl. 2020, 20, 2058–2069. [Google Scholar] [CrossRef]
- Mazariegos, G.V.; Zahorchak, A.F.; Reyes, J.; Ostrowski, L.; Flynn, B.; Zeevi, A.; Thomson, A.W. Dendritic Cell Subset Ratio in Peripheral Blood Correlates with Successful Withdrawal of Immunosuppression in Liver Transplant Patients. Am. J. Transplant. 2003, 3, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, Y.; Ohe, H.; Nafady-Hego, H.; Uemoto, S.; Bishop, G.A.; Koshiba, T. Intragraft Vδ1 Γδ T Cells With a Unique T-Cell Receptor Are Closely Associated With Pediatric Semiallogeneic Liver Transplant Tolerance. Transplant. J. 2013, 95, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Puig-Pey, I.; Bohne, F.; Benítez, C.; López, M.; Martínez-Llordella, M.; Oppenheimer, F.; Lozano, J.J.; González-Abraldes, J.; Tisone, G.; Rimola, A.; et al. Characterization of γδ T Cell Subsets in Organ Transplantation. Transpl. Int. 2010, 23, 1045–1055. [Google Scholar] [CrossRef]
- Shi, X.-L.; de Mare-Bredemeijer, E.L.D.; Tapirdamaz, Ö.; Hansen, B.E.; van Gent, R.; van Campenhout, M.J.H.; Mancham, S.; Litjens, N.H.R.; Betjes, M.G.H.; van der Eijk, A.A.; et al. CMV Primary Infection Is Associated With Donor-Specific T Cell Hyporesponsiveness and Fewer Late Acute Rejections After Liver Transplantation: CMV May Promote Liver Transplant Tolerance. Am. J. Transplant. 2015, 15, 2431–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merritt, E.; Londoño, M.; Childs, K.; Whitehouse, G.; Kodela, E.; Sánchez-Fueyo, A.; Martínez-Llordella, M. On the Impact of Hepatitis C Virus and Heterologous Immunity on Alloimmune Responses Following Liver Transplantation. Am. J. Transpl. 2020, ajt.16134. [Google Scholar] [CrossRef] [PubMed]
- Bohne, F.; Martínez-Llordella, M.; Lozano, J.-J.; Miquel, R.; Benítez, C.; Londoño, M.-C.; Manzia, T.-M.; Angelico, R.; Swinkels, D.W.; Tjalsma, H.; et al. Intra-Graft Expression of Genes Involved in Iron Homeostasis Predicts the Development of Operational Tolerance in Human Liver Transplantation. J. Clin. Investig. 2012, 122, 368–382. [Google Scholar] [CrossRef]
- Höfer, A.; Jonigk, D.; Hartleben, B.; Verboom, M.; Hallensleben, M.; Hübscher, S.G.; Manns, M.P.; Jaeckel, E.; Taubert, R. DSA Are Associated With More Graft Injury, More Fibrosis, and Upregulation of Rejection-Associated Transcripts in Subclinical Rejection. Transplantation 2020, 104, 551–561. [Google Scholar] [CrossRef] [Green Version]
- Höfer, A.; Jonigk, D.; Hartleben, B.; Verboom, M.; Hallensleben, M.; Manns, M.P.; Jaeckel, E.; Taubert, R. Non-Invasive Screening for Subclinical Liver Graft Injury in Adults via Donor-Specific Anti-HLA Antibodies. Sci. Rep. 2020, 10, 14242. [Google Scholar] [CrossRef]
- Demetris, A.J.; Bellamy, C.; Hübscher, S.G.; O’Leary, J.; Randhawa, P.S.; Feng, S.; Neil, D.; Colvin, R.B.; McCaughan, G.; Fung, J.J.; et al. 2016 Comprehensive Update of the Banff Working Group on Liver Allograft Pathology: Introduction of Antibody-Mediated Rejection. Am. J. Transpl. 2016, 16, 2816–2835. [Google Scholar] [CrossRef]
- Celaj, S.; Levitsky, J. Profiling the Liver Graft. Curr. Opin. Organ. Transplant. 2021, 26, 17–22. [Google Scholar] [CrossRef]
- Lau, A.H.; Vitalone, M.J.; Haas, K.; Shawler, T.; Esquivel, C.O.; Berquist, W.E.; Martinez, O.M.; Castillo, R.O.; Krams, S.M. Mass Cytometry Reveals a Distinct Immunoprofile of Operational Tolerance in Pediatric Liver Transplantation. Pediatr. Transplant. 2016, 20, 1072–1080. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.C.; Sarwal, R.D.; Sigdel, T.K.; Damm, I.; Rosenbaum, B.; Liberto, J.M.; Chan-On, C.; Arreola-Guerra, J.M.; Alberu, J.; Vincenti, F.; et al. A Urine Score for Noninvasive Accurate Diagnosis and Prediction of Kidney Transplant Rejection. Sci. Transl. Med. 2020, 12, eaba2501. [Google Scholar] [CrossRef]
- Bashuda, H.; Kimikawa, M.; Seino, K.; Kato, Y.; Ono, F.; Shimizu, A.; Yagita, H.; Teraoka, S.; Okumura, K. Renal Allograft Rejection Is Prevented by Adoptive Transfer of Anergic T Cells in Nonhuman Primates. J. Clin. Investig. 2005, 115, 1896–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, T.; Poncelet, A.; Sachs, D.H.; Mauiyyedi, S.; Boskovic, S.; Wee, S.L.; Ko, D.S.C.; Bartholomew, A.; Kimikawa, M.; Hong, H.Z.; et al. Long-Term Outcome And Alloantibody Production In A Non-Myeloablative Regimen For Induction Of Renal Allograft Tolerance. Transplantation 1999, 68, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Sogawa, H.; Boskovic, S.; Abrahamian, G.; Smith, R.-N.; Wee, S.-L.; Andrews, D.; Nadazdin, O.; Koyama, I.; Sykes, M.; et al. CD154 Blockade for Induction of Mixed Chimerism and Prolonged Renal Allograft Survival in Nonhuman Primates. Am. J. Transpl. 2004, 4, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Issa, F.; Strober, S.; Leventhal, J.R.; Kawai, T.; Kaufman, D.B.; Levitsky, J.; Sykes, M.; Mas, V.; Wood, K.J.; Bridges, N.; et al. The Fourth International Workshop on Clinical Transplant Tolerance. Am. J. Transpl. 2021, 21, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Koyama, I.; Bashuda, H.; Uchida, K.; Seino, K.; Habu, S.; Nakajima, I.; Fuchinoue, S.; Okumura, K.; Teraoka, S. A Clinical Trial With Adoptive Transfer of Ex Vivo-Induced, Donor-Specific Immune-Regulatory Cells in Kidney Transplantation—A Second Report. Transplantation 2020, 104, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Kumagai-Braesch, M.; Yao, M.; Thunberg, S.; Berglund, D.; Sellberg, F.; Jorns, C.; Enoksson, S.L.; Henriksson, J.; Lundgren, T.; et al. Ex Vivo Generation of Donor Antigen-Specific Immunomodulatory Cells: A Comparison Study of Anti-CD80/86 MAbs and CTLA4-Lg Costimulatory Blockade. Cell Transpl. 2018, 27, 1692–1704. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, K.N.; Piret, J.M.; Levings, M.K. Methods to Manufacture Regulatory T Cells for Cell Therapy. Clin. Exp. Immunol. 2019, cei.13297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, Y.; Khan, A.; Sykes, M. Role of Intrathymic Clonal Deletion and Peripheral Anergy in Transplantation Tolerance Induced by Bone Marrow Transplantation in Mice Conditioned with a Nonmyeloablative Regimen. J. Immunol. 1994, 153, 1087–1098. [Google Scholar]
- Yamada, Y.; Nadazdin, O.; Boskovic, S.; Lee, S.; Zorn, E.; Smith, R.N.; Colvin, R.B.; Madsen, J.C.; Cosimi, A.B.; Kawai, T.; et al. Repeated Injections of IL-2 Break Renal Allograft Tolerance Induced via Mixed Hematopoietic Chimerism in Monkeys: IL-2 Breaks Transplant Tolerance in Monkeys. Am. J. Transplant. 2015, 15, 3055–3066. [Google Scholar] [CrossRef] [Green Version]
- Hotta, K.; Aoyama, A.; Oura, T.; Yamada, Y.; Tonsho, M.; Huh, K.H.; Kawai, K.; Schoenfeld, D.; Allan, J.S.; Madsen, J.C.; et al. Induced Regulatory T Cells in Allograft Tolerance via Transient Mixed Chimerism. JCI Insight 2016, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donckier, V.; Craciun, L.; Miqueu, P.; Troisi, R.I.; Lucidi, V.; Rogiers, X.; Boon, N.; Degré, D.; Buggenhout, A.; Moreno, C.; et al. Expansion of Memory-Type CD8+ T Cells Correlates With the Failure of Early Immunosuppression Withdrawal After Cadaver Liver Transplantation Using High-Dose ATG Induction and Rapamycin. Transplant. J. 2013, 96, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Lee, S.-K.; Jin, X.-L.; Kim, T.J.; Park, C.; Lee, J.-I.; Kim, H.-S.; Hong, S.K.; Yoon, K.C.; et al. Memory T Cells Are Significantly Increased in Rejected Liver Allografts of Rhesus Monkeys. Liver Transpl. 2018, 24, 256–268. [Google Scholar] [CrossRef] [Green Version]
- Sachs, D.H.; Kawai, T.; Sykes, M. Induction of Tolerance through Mixed Chimerism. Cold Spring Harb. Perspect. Med. 2014, 4, a015529. [Google Scholar] [CrossRef]
- Schlitt, H.J.; Kanehiro, H.; Raddatz, G.; Steinhoff, G.; Richter, N.; Nashan, B.; Ringe, B.; Wonigeit, K.; Pichlmayr, R. Persistence Of Donor Lymphocytes In Liver Allograft Recipients. Transplantation 1993, 56, 1001–1021. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Salguero, R.; Allers, C.; Blaheta, R.A.; Markus, B.H. Amount of co-transplanted donor-derived leukocytes determines in-vivo microchimerism and mixed lymphocyte culture changes post-liver transplantation. Zent. Chir. 2003, 128, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.; Li, X.C.; Adams, A.B. What’s Hot, What’s New: Report from the American Transplant Congress 2017. Am. J. Transpl. 2018, 18, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Program. Am. J. Transpl. 2017, 17, 5–204. [CrossRef] [Green Version]
- Kawai, T.; Sachs, D.H.; Sprangers, B.; Spitzer, T.R.; Saidman, S.L.; Zorn, E.; Tolkoff-Rubin, N.; Preffer, F.; Crisalli, K.; Gao, B.; et al. Long-Term Results in Recipients of Combined HLA-Mismatched Kidney and Bone Marrow Transplantation without Maintenance Immunosuppression: Kidney Transplant Without Immunosuppression. Am. J. Transplant. 2014, 14, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Sprangers, B.; DeWolf, S.; Savage, T.M.; Morokata, T.; Obradovic, A.; LoCascio, S.A.; Shonts, B.; Zuber, J.; Lau, S.P.; Shah, R.; et al. Origin of Enriched Regulatory T Cells in Patients Receiving Combined Kidney-Bone Marrow Transplantation to Induce Transplantation Tolerance. Am. J. Transpl. 2017, 17, 2020–2032. [Google Scholar] [CrossRef]
- Savage, T.M.; Shonts, B.A.; Obradovic, A.; Dewolf, S.; Lau, S.; Zuber, J.; Simpson, M.T.; Berglund, E.; Fu, J.; Yang, S.; et al. Early Expansion of Donor-Specific Tregs in Tolerant Kidney Transplant Recipients. JCI Insight 2018, 3, e124086. [Google Scholar] [CrossRef]
- Andreola, G.; Chittenden, M.; Shaffer, J.; Cosimi, A.B.; Kawai, T.; Cotter, P.; LoCascio, S.A.; Morokata, T.; Dey, B.R.; Tolkoff-Rubin, N.T.; et al. Mechanisms of Donor-Specific Tolerance in Recipients of Haploidentical Combined Bone Marrow/Kidney Transplantation: Tolerance After Bone Marrow/Kidney Transplantation. Am. J. Transplant. 2011, 11, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.R.; Muller, Y.D.; Bluestone, J.A.; Tang, Q. Next-Generation Regulatory T Cell Therapy. Nat. Rev. Drug Discov 2019, 18, 749–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawitzki, B.; Harden, P.N.; Reinke, P.; Moreau, A.; Hutchinson, J.A.; Game, D.S.; Tang, Q.; Guinan, E.C.; Battaglia, M.; Burlingham, W.J.; et al. Regulatory Cell Therapy in Kidney Transplantation (The ONE Study): A Harmonised Design and Analysis of Seven Non-Randomised, Single-Arm, Phase 1/2A Trials. Lancet 2020, 395, 1627–1639. [Google Scholar] [CrossRef]
Investigator/Trial | Screened Patients | Attempted ISW | Successful ISW | Presented Success Rate | Overall Success Rate * | Ref. |
---|---|---|---|---|---|---|
Mazariegos | NA | 95 | 18 | 19% | NA | [36] |
Devlin/Girlanda | NA | 18 | 2 | 11% | NA | [37,38] |
Pons, 2003 | NA | 9 | 3 | 33% | NA | [39] |
Pons, 2008 | 490 | 12 | 5 | 42% | 1% | [40] |
Eason | 340 | 18 | 1 | 6% | <1% | [41] |
Tryphonopoulos | NA | 104 | 20 | 19% | NA | [42] |
Tisone | NA | 34 | 8 | 24% | NA | [43] |
Assy | NA | 26 | 2 | 8% | NA | [44] |
de la Garza | 138 | 24 | 15 | 63% | 11% | [45] |
Feng/iWITH (NCT01638559) | 2909 | 88 | 33 | 38% | 1% | [8] |
Levitsky/NCT02062944 | 1255 | 15 | 8 | 53% | 1% | [9] |
Shaked/A-WISH (NCT00135694) | 286 | 77 | 10 | 13% | 3% | [28] |
Bohne/NCT00668369 | 130 | 34 | 17 | 50% | 13% | [46] |
Feng/WISP-R (NCT00320606) | 129 | 20 | 12 | 60% | 9% | [47,48] |
Benitez/ NCT00647283 | 500 | 102 | 41 | 40% | 8% | [23] |
Centre/Trial | Study Phase | Enrolled | Cell Source | Immunosuppression/ Weaning | Outcomes | Ref. |
---|---|---|---|---|---|---|
Hokkaido University Hospital, Japan Tolerance induction by a Treg cell therapy in LDLT. (UMIN-000015789) | Phase I/II | 10 | Autologous donor-specific Tregs. Generated by co-culturing donor (irradiated, thawed) and recipient (fresh) PBMCs, collected via leukapheresis, for 2 weeks under an umbrella of anti-CD80/CD86 mAbs | CP (40 mg/kg) dosed POD 5, cells infused POD 13. SoC MMF and steroids d.c. at 1 month post-tx. CNI tapered from 6 months, d.c. at 18 months, following serial protocol biopsies and stable LFTs | 7/10 (7/7 with non-autoimmune indications) recipients successfully weaned and IS-free for over 6 years | [5,6,125] |
Guy’s Hospital, King’s College, UK Safety and efficacy study of Treg therapy in LT patients (ThRIL) (NCT02166177) | Phase I/II | 9 | Autologous Tregs (TR002). Recipient PBMCs, CD8+-depleted, CD25+-enriched, anti-CD2/CD3/CD28-stimulated cultured with IL-2, SRL. Two dose groups: low, high | TR002 infused as adjunct IS together with ATG, CNI, SRL. Unknown weaning schedule | Completed. No results yet reported | |
UCSF, Northwestern, Mayo Clinic, United States Donor alloantigen reactive Tregs for CNI reduction (CTOTC-12) (NCT02474199) | Phase I/II | 14 | Donor-specific alloantigen reactive Tregs. Publically unknown manufacturing details | Publically unknown IS regimen and weaning procedure | Completed. No results yet reported | |
UCSF, United States Donor alloantigen reactive Tregs in LT. (NCT02188719) | Phase I | 15 | Not publically available. Four-armed study, one control arm, three experimental (of which only one recruited patients) | Cohort 1 (control): ATG+EVR (no Tregs) Cohort 2: cell infusion added (25–60 million cells) Cohorts 3–4: not enrolled. Unknown weaning procedure | Mild AR seen in Cohort 2 only. Enrollment terminated due to several factors: high number of ineligible subjects, slow enrollment, and manufacturing difficulties within the constraints of the funding period | |
UCSF, United States Liver transplantation with Tregs (LITTMUS-UCSF) (NCT03654040) | Phase I/II | Target 9 | Donor alloantigen-specific Tregs. Recipient leukapheresis to collect PBMC for culture. Manufacturing details not publically available | Single-arm open label study. Tregs given on top of CP (40 mg/kg), CNI to EVR conversion, followed by gradual IS weaning until 52 weeks | Not yet recruiting | |
MGH, United States Liver transplantation with Tregs at MGH (LITTMUS-MGH) (NCT03577431) | Phase I/II | Target 9 | Single dose of autologous donor alloantigen-reactive Tregs co-stimulatory blockade per protocol (arTreg-CSB) | Single-arm open label study. Tregs given on top of CP (40 mg/kg), CNI to EVR conversion, followed by gradual IS weaning until 52 weeks | Recruiting. No results yet reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvetkovski, F.; Hexham, J.M.; Berglund, E. Strategies for Liver Transplantation Tolerance. Int. J. Mol. Sci. 2021, 22, 2253. https://doi.org/10.3390/ijms22052253
Cvetkovski F, Hexham JM, Berglund E. Strategies for Liver Transplantation Tolerance. International Journal of Molecular Sciences. 2021; 22(5):2253. https://doi.org/10.3390/ijms22052253
Chicago/Turabian StyleCvetkovski, Filip, J. Mark Hexham, and Erik Berglund. 2021. "Strategies for Liver Transplantation Tolerance" International Journal of Molecular Sciences 22, no. 5: 2253. https://doi.org/10.3390/ijms22052253
APA StyleCvetkovski, F., Hexham, J. M., & Berglund, E. (2021). Strategies for Liver Transplantation Tolerance. International Journal of Molecular Sciences, 22(5), 2253. https://doi.org/10.3390/ijms22052253