Implication of the NLRP3 Inflammasome in Bovine Age-Related Sarcopenia
Abstract
:1. Introduction
2. Results
2.1. Ante- and Post-Mortem Evaluation
2.2. Morphology and Immunohistochemistry
2.3. Western Blot Analysis
2.4. Real-Time RT-PCR Analysis
3. Discussion
4. Materials and Methods
4.1. Animals
- Group A (aged): 15–24 years (n = 20);
- Group B (adult): 5–14 years (n = 20);
- Group C (young): 1–4 years (n = 20).
4.2. Histology and Histochemistry
4.3. Immunohistochemistry (IHC)
- 0 = absent/none,
- 1 (mild) = 1%–25%
- 2 (moderate) = 26%–50%, and
- 3 (severe) = >50%
4.4. Western Blot Analysis
4.5. Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR) Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IL-1b | Interleukin-1b |
IL-18 | Interleukin-18 |
TNF-α | Tumor necrosis factor alpha |
ROS | Reactive oxygen species |
NLRP3 | NLR family, pyrin domain containing 3 |
NOD | Nucleotide-binding Oligomerization Domain |
CARD | Caspase Activation and Recruitment Domains |
PAMP | Pathogen associated molecular patterns |
DAMP | Danger associated molecular patterns |
ET | Engel trichrome |
NADH-TR | Nicotinamide adenine dinucleotide tetrazolium reductase |
SDH | Succinate dehydrogenase |
COX | Cytochrome C oxidase |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
IGF-1 | Insulin growth factor-1 |
PBS | Phosphate-buffered saline |
DAB | 3,3′-diaminobenzidine |
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costagliola, A.; Wojcik, S.; Pagano, T.B.; De Biase, D.; Russo, V.; Iovane, V.; Grieco, E.; Papparella, S.; Paciello, O. Age-Related Changes in Skeletal Muscle of Cattle. Vet. Pathol. 2016, 53, 436–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, T.B.; Wojcik, S.; Costagliola, A.; De Biase, D.; Iovino, S.; Iovane, V.; Russo, V.; Papparella, S.; Paciello, O. Age Related Skeletal Muscle Atrophy and Upregulation of Autophagy in Dogs. Vet. J. 2015, 206, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Yakabe, M.; Akishita, M. Age-Related Sarcopenia and Its Pathophysiological Bases. Inflamm. Regen. 2016, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.; Streeper, T.; Cawthon, P.; Baldwin, K.; Taaffe, D.R.; Harris, T.B. Sarcopenia: Etiology, Clinical Consequences, Intervention, and Assessment. Osteoporos. Int. 2010, 21, 543–559. [Google Scholar] [CrossRef] [Green Version]
- Dick, M.S.; Sborgi, L.; Rühl, S.; Hiller, S.; Broz, P. ASC Filament Formation Serves as a Signal Amplification Mechanism for Inflammasomes. Nat. Commun. 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Serdaroglu, P. Muscle Diseases and Aging. Handbook Clin. Neurol. 2007, 86, 357–388. [Google Scholar] [CrossRef]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [Green Version]
- Jo, E.; Lee, S.R.; Park, B.S.; Kim, J.S. Potential Mechanisms Underlying the Role of Chronic Inflammation in Age-Related Muscle Wasting. Aging Clin. Exp. Res. 2012, 24, 412–422. [Google Scholar] [CrossRef]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and Sarcopenia: A Systematic Review and Meta-Analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Beyer, I.; Mets, T.; Bautmans, I. Chronic Low-Grade Inflammation and Age-Related Sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in Aging: Between Immune Cells Depletion and Cytokines up-Regulation. Clin. Mol. Allergy 2017, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biase, D.; Piegari, G.; Prisco, F.; Cimmino, I.; Pirozzi, C.; Mattace Raso, G.; Oriente, F.; Grieco, E.; Papparella, S.; Paciello, O. Autophagy and NLRP3 Inflammasome Crosstalk in Neuroinflammation in Aged Bovine Brains. J. Cell. Physiol. 2020, 235, 5394–5403. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [Green Version]
- Yuk, J.M.; Silwal, P.; Jo, E.K. Inflammasome and Mitophagy Connection in Health and Disease. Int. J. Mol. Sci. 2020, 21, 4714. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Y.; Dou, Z.; Zhao, S. Research Progress on the Role of NLRP3 Inflammasome in Ocular Diseases. Chin. J. Ophthalmol. 2018, 54, 396–400. [Google Scholar] [CrossRef]
- Sayed, R.K.A.; Fernández-Ortiz, M.; Diaz-Casado, M.E.; Aranda-Martínez, P.; Fernández-Martínez, J.; Guerra-Librero, A.; Escames, G.; López, L.C.; Alsaadawy, R.M.; Acuña-Castroviejo, D. Lack of NLRP3 Inflammasome Activation Reduces Age-Dependent Sarcopenia and Mitochondrial Dysfunction, Favoring the Prophylactic Effect of Melatonin. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Chen, S.; Sun, R.; Zhang, X.; Wang, D. The NLRP3 Inflammasome: Role in Metabolic Disorders and Regulation by Metabolic Pathways. Cancer Lett. 2018, 419, 8–19. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.J.; Foley, K.P.; D’Souza, D.M.; Li, Y.E.; Lau, T.C.; Hawke, T.J.; Schertzer, J.D. The NLRP3 Inflammasome Contributes to Sarcopenia and Lower Muscle Glycolytic Potential in Old Mice. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E222–E232. [Google Scholar] [CrossRef] [Green Version]
- Benetti, E.; Chiazza, F.; Patel, N.S.A.; Collino, M. The NLRP3 Inflammasome as a Novel Player of the Intercellular Crosstalk in Metabolic Disorders. Mediators Inflamm. 2013, 2013, 678627. [Google Scholar] [CrossRef]
- Rawat, R.; Cohen, T.V.; Ampong, B.; Francia, D.; Henriques-Pons, A.; Hoffman, E.P.; Nagaraju, K. Inflammasome Up-Regulation and Activation in Dysferlin-Deficient Skeletal Muscle. Am. J. Pathol. 2010, 176, 2891–2900. [Google Scholar] [CrossRef]
- Boursereau, R.; Abou-samra, M.; Lecompte, S.; Noel, L.; Brichard, S.M. Downregulation of the NLRP3 Inflammasome by Adiponectin Rescues Duchenne Muscular Dystrophy. BMC Biol. 2018, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cachexia and Sarcopenia: Mechanisms and Potential Targets for Intervention. Curr. Opin. Pharmacol. 2015, 22, 100–106. [Google Scholar] [CrossRef]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in Sarcopenia: A Multifactorial Approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Bokshan, S.; Marcaccio, S.; DePasse, J.; Daniels, A. Diagnostic Criteria and Clinical Outcomes in Sarcopenia Research: A Literature Review. J. Clin. Med. 2018, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Kou, X.; Yang, Y.; Chen, N. MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediators Inflamm. 2016, 2016, 1438686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.W.; Auyeung, T.W.; Kwok, T.; Lau, E.M.C.; Leung, P.C.; Woo, J. Associated Factors and Health Impact of Sarcopenia in Older Chinese Men and Women: A Cross-Sectional Study. Gerontology 2008, 53, 404–410. [Google Scholar] [CrossRef]
- Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria Are Required for Pro-ageing Features of the Senescent Phenotype. EMBO J. 2016, 35, 724–742. [Google Scholar] [CrossRef]
- Ko, F.; Abadir, P.; Marx, R.; Westbrook, R.; Cooke, C.; Yang, H.; Walston, J. Impaired Mitochondrial Degradation by Autophagy in the Skeletal Muscle of the Aged Female Interleukin 10 Null Mouse. Exp. Gerontol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Kepp, O.; Galluzzi, L.; Kroemer, G. Mitochondrial Control of the NLRP3 Inflammasome. Nat. Immunol. 2011. [Google Scholar] [CrossRef]
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, W.; Yeretssian, G.; Doiron, K.; Hussain, S.N.; Saleh, M. The Caspase-1 Digestome Identifies the Glycolysis Pathway as a Target during Infection and Septic Shock. J. Biol. Chem. 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollberger, G.; Strittmatter, G.E.; Garstkiewicz, M.; Sand, J.; Beer, H.D. Caspase-1: The Inflammasome and Beyond. Innate Immun. 2014. [Google Scholar] [CrossRef] [Green Version]
- Tucci, M.; Quatraro, C.; Dammacco, F.; Silvestris, F. Interleukin-18 Overexpression as a Hallmark of the Activity of Autoimmune Inflammatory Myopathies. Clin. Exp. Immunol. 2006. [Google Scholar] [CrossRef]
- Schmidt, J.; Barthel, K.; Wrede, A.; Salajegheh, M.; Bähr, M.; Dalakas, M.C. Interrelation of Inflammation and APP in SIBM: IL-1β Induces Accumulation of β-Amyloid in Skeletal Muscle. Brain 2008. [Google Scholar] [CrossRef] [Green Version]
- Dalakas, M.C. Inflammatory Disorders of Muscle: Progress in Polymyositis, Dermatomyositis and Inclusion Body Myositis. Curr. Opin. Neurol. 2004. [Google Scholar] [CrossRef]
- Paciello, O.; Shelton, G.D.; Papparella, S. Expression of Major Histocompatibility Complex Class I and Class II Antigens in Canine Masticatory Muscle Myositis. Neuromuscul. Disord. 2007. [Google Scholar] [CrossRef] [PubMed]
- Englund, P.; Lindroos, E.; Nennesmo, I.; Klareskog, L.; Lundberg, I.E. Skeletal Muscle Fibers Express Major Histocompatibility Complex Class II Antigens Independently of Inflammatory Infiltrates in Inflammatory Myopathies. Am. J. Pathol. 2001. [Google Scholar] [CrossRef] [Green Version]
- Pagano, T.B.; Prisco, F.; De Biase, D.; Piegari, G.; Maurelli, M.P.; Rinaldi, L.; Cringoli, G.; Papparella, S.; Paciello, O. Muscular Sarcocystosis in Sheep Associated with Lymphoplasmacytic Myositis and Expression of Major Histocompatibility Complex Class I and II. Vet. Pathol. 2020, 57. [Google Scholar] [CrossRef]
- Prisco, F.; Papparella, S.; Paciello, O. The Correlation between Cardiac and Skeletal Muscle Pathology in Animal Models of Idiopathic Inflammatory Myopathies. Acta Myol. 2020, 39, 315–321. [Google Scholar] [CrossRef]
- Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Colbert, L.H.; Pahor, M.; Rubin, S.M.; Tylavsky, F.A.; et al. Higher Inflammatory Marker Levels in Older Persons: Associations with 5-Year Change in Muscle Mass and Muscle Strength. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009. [Google Scholar] [CrossRef] [Green Version]
- Girven, M.; Dugdale, H.F.; Owens, D.J.; Hughes, D.C.; Stewart, C.E.; Sharples, A.P. L-Glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced P38 MAPK Signal Transduction. J. Cell. Physiol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.T.; Yin, Y.; Yang, Y.J.; Lv, P.J.; Shi, Y.; Lu, L.; Wei, L.B. Resveratrol Prevents TNF-α-Induced Muscle Atrophy via Regulation of Akt/MTOR/FoxO1 Signaling in C2C12 Myotubes. Int. Immunopharmacol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Coletti, D.; Moresi, V.; Adamo, S.; Molinaro, M.; Sassoon, D. Tumor Necrosis Factor-α Gene Transfer Induces Cachexia and Inhibits Muscle Regeneration. Genesis 2005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, S.T.; Wang, J.J.; Zhou, J.; Xing, S.S.; Shen, C.C.; Wang, X.X.; Yue, Y.X.; Song, J.; Chen, M.; et al. TNF Alpha Inhibits Myogenic Differentiation of C2C12 Cells through NF-ΚB Activation and Impairment of IGF-1 Signaling Pathway. Biochem. Biophys. Res. Commun. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H.; Frost, R.A.; Vary, T.C. Regulation of Muscle Protein Synthesis during Sepsis and Inflammation. Am. J. Physiol. Endocrinol. Metab. 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasolini, M.P.; Pagano, T.B.; Costagliola, A.; De Biase, D.; Lamagna, B.; Auletta, L.; Fatone, G.; Greco, M.; Coluccia, P.; Veneziano, V.; et al. Inflammatory Myopathy in Horses with Chronic Piroplasmosis. Vet. Pathol. 2018, 55. [Google Scholar] [CrossRef]
- Costagliola, A.; Piegari, G.; Otrocka-Domagala, I.; Ciccarelli, D.; Iovane, V.; Oliva, G.; Russo, V.; Rinaldi, L.; Papparella, S.; Paciello, O. Immunopathological Features of Canine Myocarditis Associated with Leishmania Infantum Infection. Biomed. Res. Int. 2016. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, I.; Margheri, F.; Prisco, F.; Perruolo, G.; D’esposito, V.; Laurenzana, A.; Fibbi, G.; Paciello, O.; Doti, N.; Ruvo, M.; et al. Prep1 Regulates Angiogenesis through a PGC-1A–Mediated Mechanism. FASEB J. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, I.; Oriente, F.; D’esposito, V.; Liguoro, D.; Liguoro, P.; Ambrosio, M.R.; Cabaro, S.; D’andrea, F.; Beguinot, F.; Formisano, P.; et al. Low-Dose Bisphenol-a Regulates Inflammatory Cytokines through GPR30 in Mammary Adipose Cells. J. Mol. Endocrinol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.; Tupac-Yupanqui, I.; Dunner, S. Evaluation of Suitable Reference Genes for Gene Expression Studies in Bovine Muscular Tissue. BMC Mol. Biol. 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leutenegger, C.M.; Alluwaimi, A.M.; Smith, W.L.; Perani, L.; Cullor, J.S. Quantitation of Bovine Cytokine MRNA in Milk Cells of Healthy Cattle by Real-Time TaqMan® Polymerase Chain Reaction. Vet. Immunol. Immunopathol. 2000, 77, 275–287. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Biase, D.; Piegari, G.; Prisco, F.; Cimmino, I.; d’Aquino, I.; Baldassarre, V.; Oriente, F.; Papparella, S.; Paciello, O. Implication of the NLRP3 Inflammasome in Bovine Age-Related Sarcopenia. Int. J. Mol. Sci. 2021, 22, 3609. https://doi.org/10.3390/ijms22073609
De Biase D, Piegari G, Prisco F, Cimmino I, d’Aquino I, Baldassarre V, Oriente F, Papparella S, Paciello O. Implication of the NLRP3 Inflammasome in Bovine Age-Related Sarcopenia. International Journal of Molecular Sciences. 2021; 22(7):3609. https://doi.org/10.3390/ijms22073609
Chicago/Turabian StyleDe Biase, Davide, Giuseppe Piegari, Francesco Prisco, Ilaria Cimmino, Ilaria d’Aquino, Valeria Baldassarre, Francesco Oriente, Serenella Papparella, and Orlando Paciello. 2021. "Implication of the NLRP3 Inflammasome in Bovine Age-Related Sarcopenia" International Journal of Molecular Sciences 22, no. 7: 3609. https://doi.org/10.3390/ijms22073609
APA StyleDe Biase, D., Piegari, G., Prisco, F., Cimmino, I., d’Aquino, I., Baldassarre, V., Oriente, F., Papparella, S., & Paciello, O. (2021). Implication of the NLRP3 Inflammasome in Bovine Age-Related Sarcopenia. International Journal of Molecular Sciences, 22(7), 3609. https://doi.org/10.3390/ijms22073609