Importance of Bioactive Substances in Sheep’s Milk in Human Health
Abstract
:1. Introduction
2. Methodology
3. The Role of Milk Proteins in the Functioning of the Body
4. The Importance of Fatty Acids
5. The Importance of Vitamins and Hormones
6. Importance of Milk MicroRNA
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Naik, S.; Gandhi, K.; Pandey, V. Functional Lipid Components for Obesity Management: A Review. Int. Food Res. J. 2019, 26, 1111–1122. [Google Scholar]
- Zhang, R.H.; Mustafa, A.F.; Zhao, X. Effects of Feeding Oilseeds Rich in Linoleic and Linolenic Fatty Acids to Lactating Ewes on Cheese Yield and on Fatty Acid Composition of Milk and Cheese. Anim. Feed Sci. Technol. 2006, 127, 220–233. [Google Scholar] [CrossRef]
- Molik, E.; Murawski, M.; Bonczar, G.; Wierzchoś, E. Effect of Genotype on Yield and Chemical Composition of Sheep Milk. Anim. Sci. Pap. Rep. 2008, 26, 211–218. [Google Scholar]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and Cardiovascular Disease: Do We Really Need to Be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megalemou, K.; Sioriki, E.; Lordan, R.; Dermiki, M.; Nasopoulou, C.; Zabetakis, I. Evaluation of Sensory and in Vitro Anti-Thrombotic Properties of Traditional Greek Yogurts Derived from Different Types of Milk. Heliyon 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Sayon-Orea, C.; Martínez-González, M.A.; Ruiz-Canela, M.; Bes-Rastrollo, M. Associations between Yogurt Consumption and Weight Gain and Risk of Obesity and Metabolic Syndrome: A Systematic Review. Adv. Nutr. 2017, 8, 146S–154S. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of Dairy Foods and Diabetes Incidence: A Dose-Response Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, M.A.; Jomaa, S.A.; Abd El-Wahed, A.; R El-Seedi, H. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020, 12, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatahi, A.; Soleimani, N.; Afrough, P. Anticancer Activity of Kefir on Glioblastoma Cancer Cell as a New Treatment. Int. J. Food Sci. 2021, 2021, 8180742. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, S.A.; da Conceição, L.L.; e Dias, M.M.; Siqueira, N.P.; Rosa, D.D.; de Oliveira, L.L.; da Matta, S.L.P.; Peluzio, M.D.C.G. Kefir Reduces the Incidence of Pre-Neoplastic Lesions in an Animal Model for Colorectal Cancer. J. Funct. Foods 2019, 53, 1–6. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Eskandari, M.H. Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-SS1, and BFGF Genes In Vivo. Probiotics Antimicrob. Proteins 2019, 11, 874–886. [Google Scholar] [CrossRef]
- Miao, J.; Guo, H.; Chen, F.; Zhao, L.; He, L.; Ou, Y.; Huang, M.; Zhang, Y.; Guo, B.; Cao, Y.; et al. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir. J. Agric. Food Chem. 2016, 64, 3234–3242. [Google Scholar] [CrossRef]
- Hsu, Y.-J.; Huang, W.-C.; Lin, J.-S.; Chen, Y.-M.; Ho, S.-T.; Huang, C.-C.; Tung, Y.-T. Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients 2018, 10, 862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-C.; Jhang, W.-L.; Lee, C.-C.; Kan, N.-W.; Hsu, Y.-J.; Ho, C.-S.; Chang, C.-H.; Cheng, Y.-C.; Lin, J.-S.; Huang, C.-C. The Effect of Kefir Supplementation on Improving Human Endurance Exercise Performance and Antifatigue. Metabolites 2021, 11, 136. [Google Scholar] [CrossRef]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The Link between the Consumer and the Innovations in Food Product Development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Barroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes 2021, 9, 223. [Google Scholar] [CrossRef]
- Jilo, K. Medicinal Values of Camel Milk. Int. J. Vet. Sci. Res. 2016, 2, 018–025. [Google Scholar] [CrossRef] [Green Version]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Contu, M.; Scano, P. A Metabolomics Comparison between Sheep’s and Goat’s Milk. Food Res. Int. 2019, 119, 869–875. [Google Scholar] [CrossRef]
- Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep Milk: A Pertinent Functional Food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Somu, P.; Paul, S. Supramolecular Nanoassembly of Lysozyme and α-Lactalbumin (Apo α-LA) Exhibits Selective Cytotoxicity and Enhanced Bioavailability of Curcumin to Cancer Cells. Colloids Surf. B Biointerfaces 2019, 178, 297–306. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Y.; Shaikh, A.S.; Wang, Z.; Wang, D.; Tan, H. Dezhou Donkey (Equus Asinus) Milk a Potential Treatment Strategy for Type 2 Diabetes. J. Ethnopharmacol. 2020, 246, 112221. [Google Scholar] [CrossRef]
- Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine. Mol. Basel Switz. 2016, 21, 752. [Google Scholar] [CrossRef]
- Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: Major Physiological Functions and Applications. Curr. Protein Pept. Sci. 2019, 20, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Xie, Y.; Li, F.; Zhou, Y.; Qi, L.; Liu, L.; Chen, Z. Lactoferrin Improves Cognitive Function and Attenuates Brain Senescence in Aged Mice. J. Funct. Foods 2020, 65, 103736. [Google Scholar] [CrossRef]
- Drago-Serrano, M.E.; Campos-Rodríguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int. J. Mol. Sci. 2017, 18, 501. [Google Scholar] [CrossRef] [Green Version]
- Niaz, B.; Saeed, F.; Ahmad, A.; Imran, M.; Maan, A.; Khan, M.; Tufail, T.; Anjum, F.; Hussain, S.; Suleria, H. Lactoferrin (LF): A Natural Antimicrobial Protein. Int. J. Food Prop. 2019, 22, 1626–1641. [Google Scholar] [CrossRef] [Green Version]
- Tanhaeian, A.; Shahriari Ahmadi, F.; Sekhavati, M.H.; Mamarabadi, M. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens. Probiotics Antimicrob. Proteins 2018, 10, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.; Calvo, M.; Brock, J.H. Biological Role of Lactoferrin. Arch. Dis. Child. 1992, 67, 657–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agwa, M.M.; Sabra, S. Lactoferrin Coated or Conjugated Nanomaterials as an Active Targeting Approach in Nanomedicine. Int. J. Biol. Macromol. 2021, 167, 1527–1543. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Ruan, C.; Jiang, L.; Ma, Y.; Pan, H. Preparation of Lactoferrin Modified Poly (Vinyl Alcohol) Nanospheres for Brain Drug Delivery. Nanomedicine Nanotechnol. Biol. Med. 2016, 2, 542–543. [Google Scholar] [CrossRef]
- Khan, A.I.; Liu, J.; Dutta, P. Bayesian Inference for Parameter Estimation in Lactoferrin-Mediated Iron Transport across Blood-Brain Barrier. Biochim. Biophys. Acta BBA Gen. Subj. 2020, 1864, 129459. [Google Scholar] [CrossRef]
- Li, H.; Tong, Y.; Bai, L.; Ye, L.; Zhong, L.; Duan, X.; Zhu, Y. Lactoferrin Functionalized PEG-PLGA Nanoparticles of Shikonin for Brain Targeting Therapy of Glioma. Int. J. Biol. Macromol. 2018, 107, 204–211. [Google Scholar] [CrossRef]
- Zhang, M.; Asghar, S.; Tian, C.; Hu, Z.; Ping, Q.; Chen, Z.; Shao, F.; Xiao, Y. Lactoferrin/Phenylboronic Acid-Functionalized Hyaluronic Acid Nanogels Loading Doxorubicin Hydrochloride for Targeting Glioma. Carbohydr. Polym. 2021, 253, 117194. [Google Scholar] [CrossRef] [PubMed]
- Cutone, A.; Colella, B.; Pagliaro, A.; Rosa, L.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Di Bartolomeo, S.; Musci, G. Native and Iron-Saturated Bovine Lactoferrin Differently Hinder Migration in a Model of Human Glioblastoma by Reverting Epithelial-to-Mesenchymal Transition-like Process and Inhibiting Interleukin-6/STAT3 Axis. Cell. Signal. 2020, 65, 109461. [Google Scholar] [CrossRef]
- Eliassen, L.T.; Berge, G.; Sveinbjørnsson, B.; Svendsen, J.S.; Vorland, L.H.; Rekdal, Ø. Evidence for a Direct Antitumor Mechanism of Action of Bovine Lactoferricin. Anticancer Res. 2002, 22, 2703–2710. [Google Scholar] [PubMed]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and Hydroxyproline Metabolism: Implications for Animal and Human Nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Wang, L.; Hallett, M.; Li, Q.; Chan, P. Neural Correlates of Bimanual Anti-Phase and in-Phase Movements in Parkinson’s Disease. Brain J. Neurol. 2010, 133, 2394–2409. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Singh, R.; Gupta, P.; Rai, S.; Ganesher, A.; Badrinarayan, P.; Sastry, G.N.; Konwar, R.; Panda, G. Targeting Progesterone Metabolism in Breast Cancer with l -Proline Derived New 14-Azasteroids. Bioorg. Med. Chem. 2017, 25, 4452–4463. [Google Scholar] [CrossRef] [PubMed]
- Janusz, M.; Woszczyna, M.; Lisowski, M.; Kubis, A.; Macała, J.; Gotszalk, T.; Lisowski, J. Ovine Colostrum Nanopeptide Affects Amyloid Beta Aggregation. FEBS Lett. 2009, 583, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharadwaj, P.; Head, R.; Martins, R.; Raussens, V.; Sarroukh, R.; Jegasothy, H.; Waddington, L.; Bennett, L. Modulation of Amyloid-β 1-42 Structure and Toxicity by Proline-Rich Whey Peptides. Food Funct. 2013, 4, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Näslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between Elevated Levels of Amyloid Beta-Peptide in the Brain and Cognitive Decline. JAMA 2000, 283, 1571–1577. [Google Scholar] [CrossRef]
- Walsh, D.M.; Selkoe, D.J. Amyloid β-Protein and beyond: The Path Forward in Alzheimer’s Disease. Curr. Opin. Neurobiol. 2020, 61, 116–124. [Google Scholar] [CrossRef]
- Yenkoyan, K.; Fereshetyan, K.; Matinyan, S.; Chavushyan, V.; Aghajanov, M. The Role of Monoamines in the Development of Alzheimer’s Disease and Neuroprotective Effect of a Proline Rich Polypeptide. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Molik, E.; Bonczar, G.; Misztal, T.; Żebrowska, A.; Zięba, D. The Effect of the Photoperiod and Exogenous Melatonin on the Protein Content in Sheep Milk. Milk Protein 2012, 12, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Martysiak-Żurowska, D.; Kiełbratowska, B.; Szlagatys-Sidorkiewicz, A. The Content of Conjugated Linoleic Acid and Vaccenic Acid in the Breast Milk of Women from Gdansk and the Surrounding District, as Well as in, Infant Formulas and Follow-up Formulas. Nutritional Recommendation for Nursing Women. Dev. Period Med. 2018, 22, 128–134. [Google Scholar] [PubMed]
- Lordan, R.; Walsh, A.M.; Crispie, F.; Finnegan, L.; Cotter, P.D.; Zabetakis, I. The Effect of Ovine Milk Fermentation on the Antithrombotic Properties of Polar Lipids. J. Funct. Foods 2019, 54, 289–300. [Google Scholar] [CrossRef]
- Poutzalis, S.; Anastasiadou, A.; Nasopoulou, C.; Megalemou, K.; Sioriki, E.; Zabetakis, I. Evaluation of the in Vitro Anti-Atherogenic Activities of Goat Milk and Goat Dairy Products. Dairy Sci. Technol. 2016, 96, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Lordan, R.; Vidal, N.P.; Huong Pham, T.; Tsoupras, A.; Thomas, R.H.; Zabetakis, I. Yoghurt Fermentation Alters the Composition and Antiplatelet Properties of Milk Polar Lipids. Food Chem. 2020, 332, 127384. [Google Scholar] [CrossRef] [PubMed]
- Tsorotioti, S.E.; Nasopoulou, C.; Detopoulou, M.; Sioriki, E.; Demopoulos, C.A.; Zabetakis, I. In Vitro Anti-Atherogenic Properties of Traditional Greek Cheese Lipid Fractions. Dairy Sci. Technol. 2014, 94, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Millar, C.L.; Jiang, C.; Norris, G.H.; Garcia, C.; Seibel, S.; Anto, L.; Lee, J.-Y.; Blesso, C.N. Cow’s Milk Polar Lipids Reduce Atherogenic Lipoprotein Cholesterol, Modulate Gut Microbiota and Attenuate Atherosclerosis Development in LDL-Receptor Knockout Mice Fed a Western-Type Diet. J. Nutr. Biochem. 2020, 79, 108351. [Google Scholar] [CrossRef]
- Gumus, C.E.; Gharibzahedi, S.M.T. Yogurts Supplemented with Lipid Emulsions Rich in Omega-3 Fatty Acids: New Insights into the Fortification, Microencapsulation, Quality Properties, and Health-Promoting Effects. Trends Food Sci. Technol. 2021, 110, 267–279. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Koutsouli, P.; Fotakis, C.; Sotiropoulou, G.; Cavouras, D.; Bizelis, I. Assessment of Lactation Stage and Breed Effect on Sheep Milk Fatty Acid Profile and Lipid Quality Indices. Dairy Sci. Technol. 2015, 95, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Revilla, I.; Escuredo, O.; González-Martín, M.I.; Palacios, C. Fatty Acids and Fat-Soluble Vitamins in Ewe’s Milk Predicted by near Infrared Reflectance Spectroscopy. Determination of Seasonality. Food Chem. 2017, 214, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Savoini, G.; Farina, G.; Dell’Orto, V.; Cattaneo, D. Through Ruminant Nutrition to Human Health: Role of Fatty Acids. Adv. Anim. Biosci. 2016, 7, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of Raw or Heated Milk from Different Species: An Evaluation of the Nutritional and Potential Health Benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Molik, E.; Błasiak, M.; Pustkowiak, H. Impact of Photoperiod Length and Treatment with Exogenous Melatonin during Pregnancy on Chemical Composition of Sheep’s Milk. Animals 2020, 10, 1721. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. Effect of Feeding Systems on the Characteristics of Products from Small Ruminants. Small Rumin. Res. 2011, 101, 104–149. [Google Scholar] [CrossRef]
- Benjamin, S.; Spener, F. Conjugated Linoleic Acids as Functional Food: An Insight into Their Health Benefits. Nutr. Metab. 2009, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belury, M.; Moya Camarena, S.; Lu, M.; Shi, L.; Leesnitzer, L.; Blanchard, S. Conjugated Linoleic Acid Is an Activator and Ligand for Peroxisome Proliferator-Activated Receptor-Gamma (PPAR). Nutr. Res. 2002, 22, 817–824. [Google Scholar] [CrossRef]
- Ochoa, J.J.; Farquharson, A.J.; Grant, I.; Moffat, L.E.; Heys, S.D.; Wahle, K.W.J. Conjugated Linoleic Acids (CLAs) Decrease Prostate Cancer Cell Proliferation: Different Molecular Mechanisms for Cis -9, Trans -11 and Trans -10, Cis -12 Isomers. Carcinogenesis 2004, 25, 1185–1191. [Google Scholar] [CrossRef]
- Lampen, A.; Leifheit, M.; Voss, J.; Nau, H. Molecular and Cellular Effects of Cis-9, Trans-11-Conjugated Linoleic Acid in Enterocytes: Effects on Proliferation, Differentiation, and Gene Expression. Biochim. Biophys. Acta 2005, 1735, 30–40. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Márquez-Sandoval, F.; Bulló, M. Conjugated Linoleic Acid Intake in Humans: A Systematic Review Focusing on Its Effect on Body Composition, Glucose, and Lipid Metabolism. Crit. Rev. Food Sci. Nutr. 2006, 46, 479–488. [Google Scholar] [CrossRef]
- Gorocica-Buenfil, M.A.; Fluharty, F.L.; Reynolds, C.K.; Loerch, S.C. Effect of Dietary Vitamin A Restriction on Marbling and Conjugated Linoleic Acid Content in Holstein Steers. J. Anim. Sci. 2007, 85, 2243–2255. [Google Scholar] [CrossRef] [PubMed]
- Bruen, R.; Fitzsimons, S.; Belton, O. Atheroprotective Effects of Conjugated Linoleic Acid. Br. J. Clin. Pharmacol. 2017, 83, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Saba, F.; Sirigu, A.; Pillai, R.; Caria, P.; Cordeddu, L.; Carta, G.; Murru, E.; Sogos, V.; Banni, S. Downregulation of Inflammatory Markers by Conjugated Linoleic Acid Isomers in Human Cultured Astrocytes. Nutr. Neurosci. 2017, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.P.; Lima, M.d.S.; de Melo, M.F.F.T.; Bertozzo, C.C.d.M.S.; de Araújo, D.F.; Guerra, G.C.B.; Queiroga, R.d.C.R.d.E.; Soares, J.K.B. Maternal Suppplementation with Conjugated Linoleic Acid Reduce Anxiety and Lipid Peroxidation in the Offspring Brain. J. Affect. Disord. 2019, 243, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Oaks, B.M.; Young, R.R.; Adu-Afarwuah, S.; Ashorn, U.; Jackson, K.H.; Lartey, A.; Maleta, K.; Okronipa, H.; Sadalaki, J.; Baldiviez, L.M.; et al. Effects of a Lipid-Based Nutrient Supplement during Pregnancy and Lactation on Maternal Plasma Fatty Acid Status and Lipid Profile: Results of Two Randomized Controlled Trials. Prostaglandins Leukot. Essent. Fatty Acids 2017, 117, 28–35. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, M.A.; Mercedes, R.; Isidra, R.; Manuela, J. Sheep Milk. In Milk and Dairy Products in Human Nutrition; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons: Oxford, UK, 2013; pp. 554–577. ISBN 978-1-118-53416-8. [Google Scholar]
- Roos, W.P.; Thomas, A.D.; Kaina, B. DNA Damage and the Balance between Survival and Death in Cancer Biology. Nat. Rev. Cancer 2016, 16, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Kiwerska, K.; Szyfter, K. DNA Repair in Cancer Initiation, Progression, and Therapy-a Double-Edged Sword. J. Appl. Genet. 2019, 60, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCord, J.M. The Evolution of Free Radicals and Oxidative Stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Ali, R.; Rakha, E.A.; Madhusudan, S.; Bryant, H.E. DNA Damage Repair in Breast Cancer and Its Therapeutic Implications. Pathology 2017, 49, 156–165. [Google Scholar] [CrossRef]
- Izzotti, A.; Balansky, R.M.; Camoirano, A.; Cartiglia, C.; Longobardi, M.; Tampa, E.; De Flora, S. Birth-Related Genomic and Transcriptional Changes in Mouse Lung. Modulation by Transplacental N-Acetylcysteine. Mutat. Res. 2003, 544, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Shiwaku, H.; Okazawa, H. Impaired DNA Damage Repair as a Common Feature of Neurodegenerative Diseases and Psychiatric Disorders. Curr. Mol. Med. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.; Fang, E.F.; Scheibye-Knudsen, M.; Croteau, D.L.; Bohr, V.A. DNA Damage, DNA Repair, Aging, and Neurodegeneration. Cold Spring Harb. Perspect. Med. 2015, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Kapoor, A.; Gu, Y.; Chow, M.J.; Peng, J.; Zhao, K.; Tang, D. Contributions of DNA Damage to Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaalberg, R.M.; Buitenhuis, A.J.; Sundekilde, U.K.; Poulsen, N.A.; Bovenhuis, H. Genetic Analysis of Orotic Acid Predicted with Fourier Transform Infrared Milk Spectra. J. Dairy Sci. 2020, 103, 3334–3348. [Google Scholar] [CrossRef] [Green Version]
- Löffler, M.; Carrey, E.A.; Zameitat, E. Orotate (Orotic Acid): An Essential and Versatile Molecule. Nucleosides Nucleotides Nucleic Acids 2016, 35, 566–577. [Google Scholar] [CrossRef]
- Wehrmüller, K.; Jakob, E.; Ryffel, S.; Alp, F.A.L.-P. Lebensmi Orotsäuregehalt in Kuh-, Schaf- und Ziegenmilch. Agrarforsch. 2008, 15, 356–360. [Google Scholar]
- Guler, Z.; Keskin, M.; Dursun, A.; Gül, S.; Gündüz, Z.; Önel, E. Effects of Waiting Period before Milking on Orotic, Uric and Hippuric Acid Contents of Milks from Shami and Kilis Goats. Tarim Bilim. Derg. 2018, 24, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Rüthrich, H.L.; Wetzel, W.; Matthies, H. Postnatal Orotate Treatment: Effects on Learning and Memory in Adult Rats. Psychopharmacology 1979, 63, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Akiho, H.; Iwai, A.; Katoh-Sudoh, M.; Tsukamoto, S.; Koshiya, K.; Yamaguchi, T. Neuroprotective Effect of YM-39558, Orotic Acid Ethylester, in Gerbil Forebrain Ischemia. Jpn. J. Pharmacol. 1998, 76, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-Chemical Characteristics of Goat and Sheep Milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Chen, S.; Yang, M.-L.; Li, S.-Y.; Jiang, W.; Xiao, N. Vitamin A Regulates Neural Stem Cell Proliferation in Rats after Hypoxic-Ischemic Brain Damage via RARɑ-Mediated Modulation of the β-Catenin Pathway. Neurosci. Lett. 2020, 727, 134922. [Google Scholar] [CrossRef]
- Ryan, K.M.; Allers, K.A.; Harkin, A.; McLoughlin, D.M. Blood Plasma B Vitamins in Depression and the Therapeutic Response to Electroconvulsive Therapy. Brain Behav. Immun. Health 2020, 4, 100063. [Google Scholar] [CrossRef]
- Ismail, N.; Kureishy, N.; Church, S.J.; Scholefield, M.; Unwin, R.D.; Xu, J.; Patassini, S.; Cooper, G.J.S. Vitamin B5 (d-Pantothenic Acid) Localizes in Myelinated Structures of the Rat Brain: Potential Role for Cerebral Vitamin B5 Stores in Local Myelin Homeostasis. Biochem. Biophys. Res. Commun. 2020, 522, 220–225. [Google Scholar] [CrossRef]
- Omotoso, G.O.; Abdulsalam, F.A.; Mutholib, N.Y.; Bature, A.I.; Gbadamosi, I.T. Cortico-Hippocampal Morphology and Behavioural Indices Improved in Maternal Deprivation Model of Schizophrenia Following Vitamin B Complex Supplementation. Neurol. Psychiatry Brain Res. 2020, 38, 74–82. [Google Scholar] [CrossRef]
- Zhang, A.; Ackley, B.D.; Yan, D. Vitamin B12 Regulates Glial Migration and Synapse Formation through Isoform-Specific Control of PTP-3/LAR PRTP Expression. Cell Rep. 2020, 30, 3981–3988.e3. [Google Scholar] [CrossRef]
- Mazzocchi, A.; Giannì, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in Breast Milk and Effect on Infants’ Growth: A Systematic Review. Nutrients 2019, 11, 1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider-Worthington, C.R.; Bahorski, J.S.; Fields, D.A.; Gower, B.A.; Fernández, J.R.; Chandler-Laney, P.C. Associations Among Maternal Adiposity, Insulin, and Adipokines in Circulation and Human Milk. J. Hum. Lact. Off. J. Int. Lact. Consult. Assoc. 2020, 890334420962711. [Google Scholar] [CrossRef] [PubMed]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef]
- Quinn, E.A.; Largado, F.; Borja, J.B.; Kuzawa, C.W. Maternal Characteristics Associated with Milk Leptin Content in a Sample of Filipino Women and Associations with Infant Weight for Age. J. Hum. Lact. Off. J. Int. Lact. Consult. Assoc. 2015, 31, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.; Harvey, J. Leptin Regulation of Hippocampal Synaptic Function in Health and Disease. Vitam. Horm. 2021. [Google Scholar] [CrossRef]
- Bouret, S.G.; Draper, S.J.; Simerly, R.B. Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding. Science 2004, 304, 108–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calió, M.L.; Mosini, A.C.; Marinho, D.S.; Salles, G.N.; Massinhani, F.H.; Ko, G.M.; Porcionatto, M.A. Leptin Enhances Adult Neurogenesis and Reduces Pathological Features in a Transgenic Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2021, 148, 105219. [Google Scholar] [CrossRef] [PubMed]
- Sahin, G.S.; Dhar, M.; Dillon, C.; Zhu, M.; Shiina, H.; Winters, B.D.; Lambert, T.J.; Impey, S.; Appleyard, S.M.; Wayman, G.A. Leptin Stimulates Synaptogenesis in Hippocampal Neurons via KLF4 and SOCS3 Inhibition of STAT3 Signaling. Mol. Cell. Neurosci. 2020, 106, 103500. [Google Scholar] [CrossRef] [PubMed]
- Feng, E.-C.; Jiang, L. Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain. Zhongguo Dang Dai Er Ke Za Zhi Chin. J. Contemp. Pediatr. 2017, 19, 1267–1271. [Google Scholar]
- Feng, E.-C.; Jiang, L. Effects of Leptin on Neurocognitive and Motor Functions in Juvenile Rats in a Preterm Brain Damage Model. Mol. Med. Rep. 2018, 18, 4095–4102. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; McKinley, K.; Onugha, J.; Duazo, P.; Chernoff, M.; Quinn, E.A. Lower Levels of Human Milk Adiponectin Predict Offspring Weight for Age: A Study in a Lean Population of Filipinos. Matern. Child. Nutr. 2016, 12, 790–800. [Google Scholar] [CrossRef]
- Yu, X.; Rong, S.S.; Sun, X.; Ding, G.; Wan, W.; Zou, L.; Wu, S.; Li, M.; Wang, D. Associations of Breast Milk Adiponectin, Leptin, Insulin and Ghrelin with Maternal Characteristics and Early Infant Growth: A Longitudinal Study. Br. J. Nutr. 2018, 120, 1380–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.G.; Guerrero, M.L.; Altaye, M.; Ruiz-Palacios, G.M.; Martin, L.J.; Dubert-Ferrandon, A.; Newburg, D.S.; Morrow, A.L. Human Milk Adiponectin Is Associated with Infant Growth in Two Independent Cohorts. Breastfeed. Med. 2009, 4, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newburg, D.S.; Woo, J.G.; Morrow, A.L. Characteristics and Potential Functions of Human Milk Adiponectin. J. Pediatr. 2010, 156, S41–S46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, D.; Huang, C.; Wan, Y.; Wang, J.; Zan, X.; Yang, B. Overexpression of Adiponectin Alleviates Intracerebral Hemorrhage-Induced Brain Injury in Rats via Suppression of Oxidative Stress. Neurosci. Lett. 2018, 681, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Zhang, Y.; Doycheva, D.M.; Ding, Y.; Zhang, Y.; Tang, J.; Guo, H.; Zhang, J.H. Adiponectin Attenuates Neuronal Apoptosis Induced by Hypoxia-Ischemia via the Activation of AdipoR1/APPL1/LKB1/AMPK Pathway in Neonatal Rats. Neuropharmacology 2018, 133, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, B.; Back, P.; Davis, S.; Lee, J.; Mackenzie, D.; McNabb, W.; Roy, N.; Tavendale, M.; Harris, P. Insulin Regulation of Amino-Acid Metabolism in the Mammary Gland of Sheep in Early Lactation and Fed Fresh Forage. Anim. Int. J. Anim. Biosci. 2009, 3, 858–870. [Google Scholar] [CrossRef] [Green Version]
- Zinicola, M.; Bicalho, R.C. Association of Peripartum Plasma Insulin Concentration with Milk Production, Colostrum Insulin Levels, and Plasma Metabolites of Holstein Cows. J. Dairy Sci. 2019, 102, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Wingrove, J.; Swedrowska, M.; Scherließ, R.; Parry, M.; Ramjeeawon, M.; Taylor, D.; Gauthier, G.; Brown, L.; Amiel, S.; Zelaya, F.; et al. Characterisation of Nasal Devices for Delivery of Insulin to the Brain and Evaluation in Humans Using Functional Magnetic Resonance Imaging. J. Control. Release Off. J. Control. Release Soc. 2019, 302, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Torabi, N.; Noursadeghi, E.; Shayanfar, F.; Nazari, M.; Fahanik-babaei, J.; Saghiri, R.; Khodagholi, F.; Eliassi, A. Intranasal Insulin Improves the Structure–Function of the Brain Mitochondrial ATP–Sensitive Ca2+ Activated Potassium Channel and Respiratory Chain Activities under Diabetic Conditions. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2021, 1867, 166075. [Google Scholar] [CrossRef]
- Canteiro, P.; Antero, D.; Tramontin, N.; Simon, K.; Mendes, C.; Corrêa, M.E.; Silveira, P.; Muller, A. Insulin Treatment Protects the Brain against Neuroinflammation by Reducing Cerebral Cytokines and Modulating Mitochondrial Function. Brain Res. Bull. 2019, 149. [Google Scholar] [CrossRef]
- Benmoussa, A.; Provost, P. Milk MicroRNAs in Health and Disease. Compr. Rev. Food Sci. Food Saf. 2019, 18, 703–722. [Google Scholar] [CrossRef] [Green Version]
- Gebert, L.F.R.; MacRae, I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Hou, N.; Guo, Z.; Zhao, G.; Jia, G.; Luo, B.; Shen, X.; Bai, Y. Inhibition of MicroRNA-21-3p Suppresses Proliferation as Well as Invasion and Induces Apoptosis by Targeting RNA-Binding Protein with Multiple Splicing through Smad4/Extra Cellular Signal-Regulated Protein Kinase Signalling Pathway in Human Colorectal Cancer HCT116 Cells. Clin. Exp. Pharmacol. Physiol. 2018, 45, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Rasoolnezhad, M.; Safaralizadeh, R.; Hosseinpourfeizi, M.A.; Banan-Khojasteh, S.M.; Baradaran, B. MiRNA-138-5p: A Strong Tumor Suppressor Targeting PD-L-1 Inhibits Proliferation and Motility of Breast Cancer Cells and Induces Apoptosis. Eur. J. Pharmacol. 2021, 896, 173933. [Google Scholar] [CrossRef]
- Zhai, B.; Zhang, L.; Wang, C.; Zhao, Z.; Zhang, M.; Li, X. Identification of MicroRNA-21 Target Genes Associated with Hair Follicle Development in Sheep. PeerJ 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, A.; Bajracharya, S.D.; Yuen, P.S.T.; Zhou, H.; Star, R.A.; Illei, G.G.; Alevizos, I. Exosomes from Human Saliva as a Source of MicroRNA Biomarkers. Oral Dis. 2010, 16, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, M.; Wang, X.; Li, Q.; Wang, T.; Zhu, Q.; Zhou, X.; Wang, X.; Gao, X.; Li, X. Immune-Related MicroRNAs Are Abundant in Breast Milk Exosomes. Int. J. Biol. Sci. 2012, 8, 118–123. [Google Scholar] [CrossRef]
- Melnik, B.C.; Schmitz, G. MicroRNAs: Milk’s Epigenetic Regulators. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 427–442. [Google Scholar] [CrossRef]
- Alsaweed, M.; Lai, C.T.; Hartmann, P.; Geddes, D.; Kakulas, F. Human Milk MiRNAs Primarily Originate from the Mammary Gland Resulting in Unique MiRNA Profiles of Fractionated Milk. Sci. Rep. 2016, 6, 20680. [Google Scholar] [CrossRef]
- Kusuma, R.J.; Manca, S.; Friemel, T.; Sukreet, S.; Nguyen, C.; Zempleni, J. Human Vascular Endothelial Cells Transport Foreign Exosomes from Cow’s Milk by Endocytosis. Am. J. Physiol. Cell Physiol. 2016, 310, C800–C807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benmoussa, A.; Ly, S.; Shan, S.T.; Laugier, J.; Boilard, E.; Gilbert, C.; Provost, P. A Subset of Extracellular Vesicles Carries the Bulk of MicroRNAs in Commercial Dairy Cow’s Milk. J. Extracell. Vesicles 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Hao, Z.; Hu, J.; Liu, X.; Li, S.; Wang, J.; Shen, J.; Song, Y.; Ke, N.; Luo, Y. Small RNA Deep Sequencing Reveals the Expressions of MicroRNAs in Ovine Mammary Gland Development at Peak-Lactation and during the Non-Lactating Period. Genomics 2021, 113, 637–646. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Xu, Q.; Kang, X.; Wang, K.; Wu, K.; Fang, M. Integrated MiRNA-MRNA Analysis Reveals Regulatory Pathways Underlying the Curly Fleece Trait in Chinese Tan Sheep. BMC Genom. 2018, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; You, S.; Yao, Y.; Liu, Z.-J.; Hazi, W.; Li, C.-Y.; Zhang, X.-Y.; Hou, X.-X.; Wei, J.-C.; Li, X.-Y.; et al. Expression Profiles of Circular RNAs in Sheep Skeletal Muscle. Asian-Australas. J. Anim. Sci. 2018, 31, 1550–1557. [Google Scholar] [CrossRef]
- Hao, Z.Y.; Wang, J.Q.; Luo, Y.L.; Liu, X.; Li, S.B.; Zhao, M.L.; Jin, X.Y.; Shen, J.Y.; Ke, N.; Song, Y.Z.; et al. Deep Small RNA-Seq Reveals MicroRNAs Expression Profiles in Lactating Mammary Gland of 2 Sheep Breeds with Different Milk Performance. Domest. Anim. Endocrinol. 2021, 74, 106561. [Google Scholar] [CrossRef]
- Le Quesne, J.; Caldas, C. Micro-RNAs and Breast Cancer. Mol. Oncol. 2010, 4, 230–241. [Google Scholar] [CrossRef]
- Cakmak Genc, G.; Dursun, A.; Karakas Celik, S.; Calik, M.; Kokturk, F.; Piskin, I.E. IL28B, IL29 and Micro-RNA 548 in Subacute Sclerosing Panencephalitis as a Rare Disease. Gene 2018, 678, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Manca, S.; Upadhyaya, B.; Mutai, E.; Desaulniers, A.T.; Cederberg, R.A.; White, B.R.; Zempleni, J. Milk Exosomes Are Bioavailable and Distinct MicroRNA Cargos Have Unique Tissue Distribution Patterns. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; He, J.; Tian, X.; Li, H.; Wen, Y.; Shao, Q.; Cheng, C.; Wang, G.; Sun, X. Upregulation of MiRNA-9-5p Promotes Angiogenesis after Traumatic Brain Injury by Inhibiting Ptch-1. Neuroscience 2020, 440, 160–174. [Google Scholar] [CrossRef] [PubMed]
Amino Acids | In g/100 g of Sheep Milk | In g/100 g of Casein |
---|---|---|
Tryptophan | 0.084 | 1.3 |
Threonine | 0.268 | 3.6 |
Isoleucine | 0.338 | 5.1 |
Leucine | 0.587 | 9.0 |
Lysine | 0.513 | 7.3 |
Methionine | 0.155 | 2.1 |
Cysteine | 0.035 | 0.8 |
Phenylalanine | 0.284 | 5.2 |
Tyrosine | 0.281 | 5.6 |
Valine | 0.448 | 6.7 |
Arginine | 0.198 | 3.3 |
Histidine | 0.167 | 3.3 |
Alanine | 0.269 | 3.2 |
Aspartic acid | 0.328 | 7.7 |
Glutamic acid | 1.019 | 21.1 |
Glycine | 0.041 | 1.7 |
Proline | - | 10 |
Serine | 0.492 | 5.0 |
Dairy Products | TLs (g/100 g) | TNLs (%TL) | TPLs (%TL) |
---|---|---|---|
Sheep Milk | 5.28 ± 0.37 | 95.15 ± 2.30 | 3.20 ± 0.56 |
Yoghurt A | 8.10 ± 0.43 | 96.46 ± 1.07 | 2.45 ± 0.20 |
Yoghurt B | 8.23 ± 1.59 | 97.62 ± 0.22 | 2.29 ± 0.17 |
Yoghurt C | 7.23 ± 0.60 | 97.47 ± 0.53 | 2.10 ± 0.37 |
Yoghurt D | 7.47 ± 0.36 | 97.34 ± 0.47 | 2.25 ± 0.10 |
Yoghurt E | 9.20 ± 0.55 | 97.60 ± 0.38 | 2.55 ± 0.45 |
Isomer | Sheep’s Milk |
---|---|
trans-12, trans-14 | 1.31–3.47 |
trans-11, trans-13 | 1.21–5.08 |
trans-10, trans-12 | 1.17–1.77 |
trans-9, trans-11 | 1.13–1.99 |
trans-8, trans-10 | 1.05–1.37 |
trans-7, trans-9 | 0.48–0.61 |
12–14 (cis–trans plus trans–cis) | 0.52–1.83 |
11–13 (cis–trans plus trans–cis) | 0.76–4.23 |
10–12(cis–trans plus trans–cis) | 0.28–0.41 |
9–11 (cis–trans plus trans–cis) | 76.5–82.4 |
8–10 (cis–trans plus trans–cis) | 0.11–0.71 |
7–9 (cis–trans plus trans–cis) | 3.31–9.69 |
Vitamin | Sheep’s Milk | Cow’s Milk | Goat’s Milk |
---|---|---|---|
Retinol (µg) | 64 ± 19.5 | 35.0 ± 8.0 | 0.04 ± 0.0 |
Carotenoids (µg) | Trace amounts | 16.0 ± 8.0 | Trace amounts |
Vitamin A (µg) | 64.0 ± 5.5 | 37.0 ± 8.0 | 54.32 ± 0.00 |
Vitamin E (mg) | 0.11 ± 0.01 | 0.08 ± 0.01 | 0.04 ± 0.0 |
Thiamin (mg) | 0.07 ± 0.01 | 0.04 ± 0.01 | 0.059 ± 0.0 |
Riboflavin (mg) | 0.3 ± 0.02 | 0.2 ± 0.01 | 0.175 ± 0.0 |
Niacin (mg) | 0.41 ± 0.05 | 0.13 ± 0.05 | 0.235 ± 0.0 |
Pantothenic acid (mg) | 0.43 ± 0.02 | 0.43 ± 0.12 | 0.31 ± 0.0 |
Vitamin B6 (mg) | 0.07 ± 0.01 | 0.04 ± 0.01 | 0.048 ± 0.0 |
Folic acid (µg) | 6.0 ± 0.06 | 8.5 ± 1.5 | 1.0 ± 0.0 |
Biotin (µg) | 2.5 ± 0.0 | 2.0 ± 0.5 | 1.75 ± 0.3 |
Vitamin B12 (µg) | 0.66 ± 0.05 | 0.5 ± 0.3 | 0.065 ± 0.0 |
Vitamin C (mg) | 4.6 ± 0.4 | 1.0 ± 0.5 | 1.295 ± 0.0 |
Vitamin D (µg) | 0.2 ± 0.0 | 0.2 ± 0.1 | 0.15 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flis, Z.; Molik, E. Importance of Bioactive Substances in Sheep’s Milk in Human Health. Int. J. Mol. Sci. 2021, 22, 4364. https://doi.org/10.3390/ijms22094364
Flis Z, Molik E. Importance of Bioactive Substances in Sheep’s Milk in Human Health. International Journal of Molecular Sciences. 2021; 22(9):4364. https://doi.org/10.3390/ijms22094364
Chicago/Turabian StyleFlis, Zuzanna, and Edyta Molik. 2021. "Importance of Bioactive Substances in Sheep’s Milk in Human Health" International Journal of Molecular Sciences 22, no. 9: 4364. https://doi.org/10.3390/ijms22094364
APA StyleFlis, Z., & Molik, E. (2021). Importance of Bioactive Substances in Sheep’s Milk in Human Health. International Journal of Molecular Sciences, 22(9), 4364. https://doi.org/10.3390/ijms22094364