Classification of Amyloidosis by Model-Assisted Mass Spectrometry-Based Proteomics
Abstract
:1. Introduction
2. Results
Model-Assisted Typing of Amyloidosis Based on Proteomics Data
3. Discussion
4. Materials and Methods
4.1. Clinical Specimens
4.2. Immuno-Electron Microscopy and Mass Spectrometry
4.2.1. Microdissection and Sample Processing
4.2.2. Liquid Chromatography and Mass Spectrometry
4.3. Data Analysis
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid nomenclature 2018: Recom-mendations by the international society of amyloidosis (isa) nomenclature committee. Amyloid 2018, 25, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calin, A. Therapeutic focus. Piroxicam. Br. J. Clin. Pract. 1988, 42, 161–164. [Google Scholar]
- Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schönland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic immunoglobulin light chain amyloidosis. Nat. Rev. Dis. Prim. 2018, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Satoskar, A.A.; Efebera, Y.; Hasan, A.; Brodsky, S.; Nadasdy, G.; Dogan, A.; Nadasdy, T. Strong transthyretin immunostaining: Po-tential pitfall in cardiac amyloid typing. Am. J. Surg. Pathol. 2011, 35, 1685–1690. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.; Murphy, C.L.; Westermark, P. Unreliability of immunohistochemistry for typing amyloid deposits. Arch. Pathol. Lab. Med. 2008, 132, 14. [Google Scholar] [CrossRef]
- Gilbertson, J.A.; Theis, J.D.; Vrana, J.A.; Lachmann, H.; Wechalekar, A.; Whelan, C.; Hawkins, P.N.; Dogan, A.; Gillmore, J.D. A comparison of immunohistochemistry and mass spectrometry for determining the amyloid fibril protein from formalin-fixed biopsy tissue. J. Clin. Pathol. 2015, 68, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, H.; Booth, D.R.; Booth, S.E.; Bybee, A.; Gilbertson, J.A.; Gillmore, J.D.; Pepys, M.B.; Hawkins, P.N. Misdiagnosis of Hereditary Amyloidosis as AL (Primary) Amyloidosis. N. Engl. J. Med. 2002, 346, 1786–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoskar, A.A.; Burdge, K.; Cowden, D.J.; Nadasdy, G.M.; Hebert, L.A.; Nadasdy, T. Typing of amyloidosis in renal biopsies: Diagnos-tic pitfalls. Arch. Pathol. Lab. Med. 2007, 131, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Schönland, S.O.; Hegenbart, U.; Bochtler, T.; Mangatter, A.; Hansberg, M.; Ho, A.D.; Lohse, P.; Röcken, C. Immunohistochemistry in the classification of systemic forms of amyloidosis: A systematic investigation of 117 patients. Blood 2012, 119, 488–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abildgaard, N.; Rojek, A.M.; Møller, H.E.; Palstrøm, N.B.; Nyvold, C.G.; Rasmussen, L.M.; Hansen, C.T.; Beck, H.C.; Marcussen, N. Immunoelectron microscopy and mass spectrometry for classification of amyloid deposits. Amyloid 2020, 27, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrana, J.A.; Gamez, J.D.; Madden, B.J.; Theis, J.D.; Bergen, H.R., 3rd; Dogan, A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 2009, 114, 4957–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, F.; Lavatelli, F.; Di Silvestre, D.; Valentini, V.; Rossi, R.; Palladini, G.; Obici, L.; Verga, L.; Mauri, P.; Merlini, G. Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood 2012, 119, 1844–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canetti, D.; Rendell, N.B.; Gilbertson, J.A.; Botcher, N.; Nocerino, P.; Blanco, A.; Di Vagno, L.; Rowczenio, D.; Verona, G.; Mangione, P.P.; et al. Diagnostic amyloid proteomics: Experience of the UK National Amyloidosis Centre. Clin. Chem. Lab. Med. 2020, 58, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.J.; Sam, F.; Hoo, P.T.S.; Patel, R.S.; Seldin, D.C.; Connors, L.H. Evidence for a Functional Role of the Molecular Chaperone Clusterin in Amyloidotic Cardiomyopathy. Am. J. Pathol. 2011, 178, 61–68. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, L.; Li, R. What does complement do in Alzheimer’s disease? Old molecules with new insights. Transl. Neurodegener. 2013, 2, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhakdi, S.; Käflein, R.; Halstensen, T.S.; Hugo, F.; Preissner, K.T.; Mollnes, T.E. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes. Clin. Exp. Immunol. 1988, 74, 459–464. [Google Scholar]
- Gallo, G.; Wisniewski, T.; Choi-Miura, N.H.; Ghiso, J.; Frangione, B. Potential role of apolipoprotein-E in fibrillogenesis. Am. J. Pathol. 1994, 145, 526–530. [Google Scholar] [PubMed]
- Lux, A.; Gottwald, J.; Behrens, H.-M.; Daniel, C.; Amann, K.; Röcken, C. Complement 9 in amyloid deposits. Amyloid 2021, 28, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Clement, C.G.; Truong, L.D. An evaluation of Congo red fluorescence for the diagnosis of amyloidosis. Hum. Pathol. 2014, 45, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Yakupova, E.I.; Bobyleva, L.G.; Vikhlyantsev, I.M.; Bobylev, A.G. Congo Red and amyloids: History and relationship. Biosci. Rep. 2019, 39, BSR20181415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrana, J.A.; Theis, J.D.; Dasari, S.; Mereuta, O.M.; Dispenzieri, A.; Zeldenrust, S.R.; Gertz, M.A.; Kurtin, P.J.; Grogg, K.L.; Dogan, A. Clinical diagnosis and typing of systemic am-yloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica 2014, 99, 1239–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agibetov, A.; Seirer, B.; Dachs, T.-M.; Koschutnik, M.; Dalos, D.; Rettl, R.; Duca, F.; Schrutka, L.; Agis, H.; Kain, R.; et al. Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study. J. Clin. Med. 2020, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
Rank | #Accession | Protein Name | Mean Importance |
---|---|---|---|
1 | P10909 | Clusterin | 10.94 |
2 | P02743 | Serum amyloid P-component | 10.47 |
3 | P06727 | Apolipoprotein A-IV | 9.99 |
4 | P04004 | Vitronectin | 9.20 |
5 | P02649 | Apolipoprotein E | 8.94 |
6 | P02748 | Complement component C9 | 7.25 |
7 | P12109 | Collagen alpha-1(VI) chain | 6.25 |
8 | P12110 | Collagen alpha-2(VI) chain | 5.19 |
9 | P12111 | Collagen alpha-3(VI) chain | 4.93 |
10 | P23142 | Fibulin-1 | 4.83 |
Signature Protein (s) | Correct/Total | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|
ApoA4 | +: 21/22 −: 22/23 | 0.95 | 0.96 | 0.95 | 0.96 | 0.96 |
ApoE | +: 22/22 −: 22/23 | 1.00 | 0.96 | 0.96 | 1.00 | 0.98 |
SAP | +: 21/22 −: 23/23 | 0.95 | 1.00 | 1.00 | 0.96 | 0.98 |
Clusterin | +: 20/22 −: 23/23 | 0.90 | 1.00 | 1.00 | 0.92 | 0.96 |
Vitronectin | +: 6/22 −: 23/23 | 0.27 | 1.00 | 1.00 | 0.59 | 0.64 |
Complement C9 | +: 2/22 −: 23/23 | 0.09 | 1.00 | 1.00 | 0.53 | 0.56 |
Collagen alpha-1(VI) chain | +: 14/22 −: 21/23 | 0.64 | 0.91 | 0.88 | 0.72 | 0.78 |
Collagen alpha-2(VI) chain | +: 13/22 −: 20/23 | 0.59 | 0.87 | 0.81 | 0.69 | 0.73 |
Collagen alpha-3(VI) chain | +: 13/22 −: 20/23 | 0.59 | 0.87 | 0.81 | 0.69 | 0.73 |
Fibulin-1 | +: 7/22 −: 23/23 | 0.32 | 1.00 | 1.00 | 0.61 | 0.67 |
ApoA4 and ApoE | +: 20/22 −: 22/23 | 0.91 | 0.96 | 0.95 | 0.92 | 0.93 |
ApoA4, ApoE, Clusterin | +: 22/22 −: 23/23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
ApoA4, ApoE, Vitronectin | +: 22/22 −: 22/23 | 1.00 | 0.96 | 0.96 | 1.00 | 0.98 |
ApoA4, ApoE, Complement C9 | +: 22/22 −: 22/23 | 1.00 | 0.96 | 0.96 | 1.00 | 0.98 |
ApoA4, ApoE, Collagen alpha−1(VI) chain | +: 20/22 −: 22/23 | 0.91 | 0.96 | 0.95 | 0.92 | 0.93 |
ApoA4, ApoE, Collagen alpha−2(VI) chain | +: 20/22 −: 23/23 | 0.91 | 1.00 | 1.00 | 0.92 | 0.96 |
ApoA4, ApoE, Collagen alpha−3(VI) chain | +: 21/22 −: 22/23 | 0.95 | 0.96 | 0.95 | 0.96 | 0.96 |
ApoA4, ApoE, Fibulin−1 | +: 20/22 −: 23/23 | 0.91 | 1.00 | 1.00 | 0.92 | 0.96 |
ApoA4, ApoE and SAP | +: 22/22 −: 23/23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Amyloid Signature Proteins | Correct/Total | Accuracy |
---|---|---|
ApoA4 | 99/103 | 0.96 |
ApoE | 99/103 | 0.96 |
SAP | 103/103 | 1.00 |
Clusterin | 97/103 | 0.94 |
Vitronectin | 64/103 | 0.62 |
Complement C9 | 26/103 | 0.25 |
Collagen alpha-1(VI) chain | 83/103 | 0.81 |
Collagen alpha-2(VI) chain | 82/103 | 0.80 |
Collagen alpha-3(VI) chain | 84/103 | 0.82 |
Fibulin-1 | 72/103 | 0.70 |
ApoA4 and ApoE | 100/103 | 0.97 |
ApoA4, ApoE, Clusterin | 101/103 | 0.98 |
ApoA4, ApoE and Vitronectin | 102/103 | 0.99 |
ApoA4, ApoE and Complement C9 | 102/103 | 0.99 |
ApoA4, ApoE and Collagen alpha-1(VI) chain | 102/103 | 0.99 |
ApoA4, ApoE and Collagen alpha-2(VI) chain | 102/103 | 0.99 |
ApoA4, ApoE and Collagen alpha-3(VI) chain | 102/103 | 0.99 |
ApoA4, ApoE, and Fibulin-1 | 101/103 | 0.98 |
ApoA4, ApoE and SAP | 103/103 | 1.00 |
#Accession | Protein Name | Subtype |
---|---|---|
P0DJI8 | Serum amyloid A-1 | AA |
P0DJI9 | Serum amyloid A-2 | |
P0DOX7 | Immunoglobulin kappa light chain | AL-kappa |
P01834 | Immunoglobulin kappa constant | |
P0DOX8 | Immunoglobulin lambda-1 light chain | AL-lambda |
P0DOY2 | Immunoglobulin lambda constant 2 | |
P02766 | Transthyretin | ATTR |
Subtype Classification | Amyloidogenic Proteins | Correct/Total | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|---|
AA | Serum amyloid A-1 protein (SA) | 6/6 | 1.00 | 1.00 | 1.00 | 1.00 | 0.96 */0.99 |
SA and Serum amyloid A-2 protein | 6/6 | 1.00 | 1.00 | 1.00 | 1.00 | ||
AL-K | Immunoglobulin kappa light chain (IgK) | 4/4 | 1.00 | 1.00 | 1.00 | 1.00 | |
IgK and Ig kappa constant | 4/4 | 1.00 | 0.99 | 0.80 | 1.00 | ||
AL-L | Ig lambda-1 light chain (IgL-1) | 25/25 | 1.00 | 0.95 | 0.86 | 1.00 | |
IgL-1 and Ig lambda constant 2 | 25/25 | 1.00 | 1.00 | 1.00 | 1.00 | ||
ATTR | Transthyretin (four-protein model) | 64/68 | 0.94 | 1.00 | 1.00 | 0.90 | |
Transthyretin (seven-protein model) | 67/68 | 0.99 | 1.00 | 1.00 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palstrøm, N.B.; Rojek, A.M.; Møller, H.E.H.; Hansen, C.T.; Matthiesen, R.; Rasmussen, L.M.; Abildgaard, N.; Beck, H.C. Classification of Amyloidosis by Model-Assisted Mass Spectrometry-Based Proteomics. Int. J. Mol. Sci. 2022, 23, 319. https://doi.org/10.3390/ijms23010319
Palstrøm NB, Rojek AM, Møller HEH, Hansen CT, Matthiesen R, Rasmussen LM, Abildgaard N, Beck HC. Classification of Amyloidosis by Model-Assisted Mass Spectrometry-Based Proteomics. International Journal of Molecular Sciences. 2022; 23(1):319. https://doi.org/10.3390/ijms23010319
Chicago/Turabian StylePalstrøm, Nicolai Bjødstrup, Aleksandra M. Rojek, Hanne E. H. Møller, Charlotte Toftmann Hansen, Rune Matthiesen, Lars Melholt Rasmussen, Niels Abildgaard, and Hans Christian Beck. 2022. "Classification of Amyloidosis by Model-Assisted Mass Spectrometry-Based Proteomics" International Journal of Molecular Sciences 23, no. 1: 319. https://doi.org/10.3390/ijms23010319
APA StylePalstrøm, N. B., Rojek, A. M., Møller, H. E. H., Hansen, C. T., Matthiesen, R., Rasmussen, L. M., Abildgaard, N., & Beck, H. C. (2022). Classification of Amyloidosis by Model-Assisted Mass Spectrometry-Based Proteomics. International Journal of Molecular Sciences, 23(1), 319. https://doi.org/10.3390/ijms23010319