Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report
Abstract
:1. Introduction
2. Case Presentation
3. mNGS and qPCR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, S.M. Mycobacterial endocarditis: A comprehensive review. Rev. Bras. Cir. Cardiovasc. 2015, 30, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.S.; Lo, B.; Son, J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front. Microbiol. 2018, 9, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strabelli, T.M.; Siciliano, R.F.; Castelli, J.B.; Demarchi, L.M.; Leão, S.C.; Viana-Niero, C.; Miyashiro, K.; Sampaio, R.O.; Grinberg, M.; Uip, D.E. Mycobacterium chelonae valve endocarditis resulting from contaminated biological prostheses. J. Infect. 2010, 60, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hooda, A.; Pati, P.K.; John, B.; George, P.V.; Michael, J.S. Disseminated Mycobacterium chelonae infection causing pacemaker lead endocarditis in an immunocompetent host. BMJ Case Rep. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Takekoshi, D.; Al-Heeti, O.; Belvitch, P.; Schraufnagel, D.E. Native-valve endocarditis caused by Mycobacterium chelonae, misidentified as polymicrobial gram-positive bacillus infection. J. Infect. Chemother. 2013, 19, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, N.; Patra, S.; Singh, A.P.; Nagesh, C.M.; Reddy, B.; Badnur, S.C.; Nanjappa, M.C. Spontaneous endocarditis caused by rapidly growing non-tuberculous Mycobacterium chelonae in an immunocompetent patient with rheumatic heart disease. J. Cardiovasc. Dis. Res. 2013, 4, 254–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- d’Humières, C.; Salmona, M.; Dellière, S.; Leo, S.; Rodriguez, C.; Angebault, C.; Alanio, A.; Fourati, S.; Lazarevic, V.; Woerther, P.L.; et al. The potential role of clinical metagenomics in infectious diseases: Therapeutic perspectives. Drugs 2021, 81, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Kolb, M.; Lazarevic, V.; Emonet, S.; Calmy, A.; Girard, M.; Gaïa, N.; Charretier, Y.; Cherkaoui, A.; Keller, P.M.; Huber, C. Next-generation sequencing for the diagnosis of challenging culture-negative endocarditis. Front. Med. 2019, 6, 203. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ounit, R.; Wanamaker, S.; Close, T.J.; Lonardi, S. CLARK: Fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genom. 2015, 16, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Breitwieser, F.P.; Pertea, M.; Zimin, A.V.; Salzberg, S.L. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res. 2019, 29, 954–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler, P.; Kuster, S.P.; Bloemberg, G.; Schulthess, B.; Frank, M.; Tanner, F.C.; Rössle, M.; Böni, C.; Falk, V.; Wilhelm, M.J.; et al. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur. Heart J. 2015, 36, 2745–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Type and Sampling Time | Microscopy | Culture | PCR | mNGS | Mycobacterium abscessus/chelonae qPCR Ct * |
---|---|---|---|---|---|
BioConduit (BioIntegral Surgical) Day 1 | Acid-fast bacilli | No growth of mycobacteria or other bacteria | GeneXpert MTB/RIF negative; Mycobacterium genus-specific PCR negative; Mycobacterium chimaera species-specific PCR negative; Broad-range 16S rDNA PCR negative | ND | ND |
Vegetation on aortic prosthesis Day 1 | Acid-fast bacilli | No growth of mycobacteria or other bacteria | ND | M. chelonae detected below the level of major reagent contaminants | 40.12 ± 0.11 |
Aortic prosthesis (Vascutek) Day 1 | Acid-fast bacilli | No growth of mycobacteria or other bacteria | GeneXpert MTB/RIF negative; Mycobacterium genus-specific PCR negative; M. chimaera species-specific PCR negative; Broad-range 16S rDNA PCR negative | M. chelonae | 34.06 ± 0.12 |
Mediastinal swab Day 2 | ND | No growth of mycobacteria or other bacteria | ND | ND | ND |
Aortic autopsy Day 3 | No detection | Enterococcus faecium sporadically; apathogenic Neisseria spp. 1 CFU; anaerobic mixed flora sporadically; no growth of mycobacteria | ND | No detection | >42 |
Read Pairs | Aortic Prosthesis | Vegetation on Aortic Prosthesis | Aortic Autopsy | NEC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | 5,854,406 | 4,788,163 | 5,689,196 | 32,153 | ||||||||||||
Quality-filtered | 2,699,047 | 2,823,668 | 1,579,879 | 2128 | ||||||||||||
Human | 2,572,953 | 2,822,051 | 1,576,184 | 342 | ||||||||||||
Bovine | NA | 122,725 | NA | 52 | NA | 156 | NA | 1 | ||||||||
Pig | NA | 31 | NA | 11 | NA | 653 | NA | 2 | ||||||||
Fungi | 136 | 37 | 28 | 25 | 104 | 95 | 13 | 12 | ||||||||
DNA viruses | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
Unclassified | 100,770 | 2213 | 1390 | 1330 | 3229 | 2427 | 934 | 932 | ||||||||
Bacteria/Archaea | 25,188 | 1088 | 201 | 199 | 365 | 364 | 839 | 839 | ||||||||
Percentage in bacterial/archaeal fraction | Mycolicibacterium malmesburyense | 79 | Mycobacteroides chelonae | 48 | Cutibacterium acnes | 23 | Cutibacterium acnes | 24 | Rothia mucilaginosa | 7.7 | Rothia mucilaginosa | 6.1 | Cutibacterium acnes | 21 | Cutibacterium acnes | 21 |
Anaerobutyricum hallii | 8.2 | Cutibacterium acnes | 4.9 | Moraxella osloensis | 8 | Moraxella osloensis | 8 | Blautia obeum | 6 | Blautia obeum | 4.8 | Sphingomonas echinoides | 8.6 | Sphingomonas echinoides | 8.6 | |
Acetanaerobacterium elongatum | 3 | Mycobacteroides franklinii | 4.2 | Arcobacter lekithochrous | 6.5 | Arcobacter lekithochrous | 6.5 | Gemmiger formicilis | 4.9 | Gemmiger formicilis | 3.9 | Micrococcus luteus | 7 | Micrococcus luteus | 7 | |
Catenibacterium mitsuokai | 2.9 | Moraxella osloensis | 4 | Sphingomonas echinoides | 5 | Sphingomonas echinoides | 5 | Streptococcus salivarius | 4.7 | Streptococcus salivarius | 3.7 | Cloacibacterium normanense | 4.1 | Cloacibacterium normanense | 4.1 | |
Staphylococcus simiae | 2.2 | Micrococcus luteus | 3.8 | Micrococcus luteus | 4.5 | Micrococcus luteus | 4.5 | Neisseria mucosa | 4.1 | Neisseria mucosa | 3.3 | Acinetobacter johnsonii | 3.6 | Acinetobacter johnsonii | 3.6 | |
Mycobacteroides chelonae | 2.1 | Pseudomonas massiliensis | 2.1 | Mycobacteroides chelonae | 2.5 | Mycobacteroides chelonae | 2.5 | Arcobacter lekithochrous | 4.1 | Arcobacter lekithochrous | 3.3 | Enterococcus cecorum | 2.5 | Enterococcus cecorum | 2.5 | |
Modestobacter marinus | 2 | Alcanivorax hongdengensis | 2.5 | Alcanivorax hongdengensis | 2.5 | Akkermansia muciniphila | 3.3 | Akkermansia muciniphila | 2.6 | Ralstonia pickettii | 2.2 | Ralstonia pickettii | 2.2 | |||
Halomonas muralis | 2.5 | Halomonas muralis | 2.5 | Micrococcus luteus | 3 | Micrococcus luteus | 2.4 | Pseudomonas massiliensis | <2 | Pseudomonas massiliensis | <2 | |||||
Acinetobacter johnsonii | 2 | Acinetobacter johnsonii | 2 | Enterococcus faecium | 3 | Enterococcus faecium | 2.4 | Halomonas muralis | <2 | Halomonas muralis | <2 | |||||
Ruminococcus faecis | 3 | Ruminococcus faecis | 2.4 | Moraxella osloensis | <2 | Moraxella osloensis | <2 | |||||||||
Bacteroides vulgatus | 2.7 | Bacteroides vulgatus | 2.2 | |||||||||||||
Streptococcus parasanguinis | 2.7 | Streptococcus parasanguinis | 2.2 | |||||||||||||
Alistipes inops | 2.2 | |||||||||||||||
Fusicatenibacter saccharivorans | 2.2 | |||||||||||||||
Pipeline | Routine | Modified | Routine | Modified | Routine | Modified | Routine | Modified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büchler, A.C.; Lazarevic, V.; Gaïa, N.; Girard, M.; Eckstein, F.; Egli, A.; Sutter, S.T.; Schrenzel, J. Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report. Int. J. Mol. Sci. 2022, 23, 381. https://doi.org/10.3390/ijms23010381
Büchler AC, Lazarevic V, Gaïa N, Girard M, Eckstein F, Egli A, Sutter ST, Schrenzel J. Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report. International Journal of Molecular Sciences. 2022; 23(1):381. https://doi.org/10.3390/ijms23010381
Chicago/Turabian StyleBüchler, Andrea C., Vladimir Lazarevic, Nadia Gaïa, Myriam Girard, Friedrich Eckstein, Adrian Egli, Sarah Tschudin Sutter, and Jacques Schrenzel. 2022. "Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report" International Journal of Molecular Sciences 23, no. 1: 381. https://doi.org/10.3390/ijms23010381
APA StyleBüchler, A. C., Lazarevic, V., Gaïa, N., Girard, M., Eckstein, F., Egli, A., Sutter, S. T., & Schrenzel, J. (2022). Mycobacterium chelonae Infection Identified by Metagenomic Next-Generation Sequencing as the Probable Cause of Acute Contained Rupture of a Biological Composite Graft—A Case Report. International Journal of Molecular Sciences, 23(1), 381. https://doi.org/10.3390/ijms23010381