A Structural Potential of Rare Trinucleotide Repeat Tracts in RNA
Abstract
:1. Introduction
2. Results and Discussion
2.1. RNA Repeats Thermodynamics
2.2. The Effect of Molecular Crowding
2.3. Inter-strand Interactions of Various RNA Repeat Tracts
2.4. In Vitro Structure Probing of RNAs with Multiple TNR Tracts
2.4.1. Searching for the Exemplary RNAs
2.4.2. Interaction of Unstructured Trinucleotide Repeat Tracts—The GABRA4 3′UTR
2.4.3. Interaction of Purine-Rich Trinucleotide Repeat Tracts—The CHIC1 ORF
3. Materials and Methods
3.1. Oligonucleotide Synthesis
3.2. UV-Melting Experiments
3.3. Selection of RNAs for Structural Studies
3.4. Preparation of Target RNA Fragments
3.5. Structure PROBING for Target RNAs
3.5.1. Chemical Mapping
3.5.2. Primer Extension and Mapping Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richard, G.-F.; Kerrest, A.; Dujon, B. Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiol. Mol. Biol. Rev. 2008, 72, 686–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, G.; Gáspári, Z.; Jurka, J. Microsatellites in Different Eukaryotic Genomes: Surveys and Analysis. Genome Res. 2000, 10, 967–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payseur, B.A.; Jing, P.; Haasl, R.J. A Genomic Portrait of Human Microsatellite Variation. Mol. Biol. Evol. 2011, 28, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawaya, S.; Bagshaw, A.; Buschiazzo, E.; Kumar, P.; Chowdhury, S.; Black, M.A.; Gemmell, N. Microsatellite Tandem Repeats Are Abundant in Human Promoters and Are Associated with Regulatory Elements. PLoS ONE 2013, 8, e31529. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, K.J.; Gagnon, K.T. RNA Biology of Disease-Associated Microsatellite Repeat Expansions. Acta Neuropathol. Commun. 2017, 5, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabfard, M.; Kavousi, K.; Delbari, A.; Ohadi, M. Link between Short Tandem Repeats and Translation Initiation Site Selection. Hum. Genom. 2018, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, K.; Mukhina, S.; Zhang, G.; Tan, J.S.C.; Ong, H.S.; Makeyev, E.V. A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival. Mol. Cell 2018, 72, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Nevo, E. Microsatellites within Genes: Structure, Function, and Evolution. Mol. Biol. Evol. 2004, 21, 991–1007. [Google Scholar] [CrossRef]
- Clark, R.M.; Bhaskar, S.S.; Miyahara, M.; Dalgliesh, G.L.; Bidichandani, S.I. Expansion of GAA Trinucleotide Repeats in Mammals. Genomics 2006, 87, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, P.; de Mezer, M.; Krzyzosiak, W.J. Trinucleotide Repeats in Human Genome and Exome. Nucleic Acids Res. 2010, 38, 4027–4039. [Google Scholar] [CrossRef]
- Busan, S.; Weeks, K.M. Role of Context in RNA Structure: Flanking Sequences Reconfigure CAG Motif Folding in Huntingtin Exon 1 Transcripts. Biochemistry 2013, 52, 8219–8225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobczak, K.; Michlewski, G.; De Mezer, M.; Kierzek, E.; Krol, J.; Olejniczak, M.; Kierzek, R.; Krzyzosiak, W.J. Structural Diversity of Triplet Repeat RNAs. J. Biol. Chem. 2010, 285, 12755–12764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kierzek, R.; Burkard, M.E.; Turner, D.H. Thermodynamics of Single Mismatches in RNA Duplexes. Biochemistry 1999, 38, 14214–14223. [Google Scholar] [CrossRef]
- Krzyzosiak, W.J.; Sobczak, K.; Wojciechowska, M.; Fiszer, A.; Mykowska, A.; Kozlowski, P. Triplet Repeat RNA Structure and Its Role as Pathogenic Agent and Therapeutic Target. Nucleic Acids Res. 2012, 40, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; White, R.J.; Xia, T.; Welle, S.; Turner, D.H.; Mathews, M.B.; Thornton, C.A. Expanded CUG Repeat RNAs Form Hairpins That Activate the Double-Stranded RNA-Dependent Protein Kinase PKR. RNA 2000, 6, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Kiliszek, A.; Kierzek, R.; Krzyzosiak, W.J.; Rypniewski, W. Structural Insights into CUG Repeats Containing the “Stretched U-U Wobble”: Implications for Myotonic Dystrophy. Nucleic Acids Res. 2009, 37, 4149–4156. [Google Scholar] [CrossRef] [Green Version]
- Kiliszek, A.; Kierzek, R.; Krzyzosiak, W.J.; Rypniewski, W. Atomic Resolution Structure of CAG RNA Repeats: Structural Insights and Implications for the Trinucleotide Repeat Expansion Diseases. Nucleic Acids Res. 2010, 38, 8370–8376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiliszek, A.; Kierzek, R.; Krzyzosiak, W.J.; Rypniewski, W. Crystal Structures of CGG RNA Repeats with Implications for Fragile X-Associated Tremor Ataxia Syndrome. Nucleic Acids Res. 2011, 39, 7308–7315. [Google Scholar] [CrossRef] [PubMed]
- Kiliszek, A.; Kierzek, R.; Krzyzosiak, W.J.; Rypniewski, W. Crystallographic Characterization of CCG Repeats. Nucleic Acids Res. 2012, 40, 8155–8162. [Google Scholar] [CrossRef] [PubMed]
- Kiliszek, A.; Rypniewski, W. Structural Studies of CNG Repeats. Nucleic Acids Res. 2014, 42, 8189–8199. [Google Scholar] [CrossRef] [Green Version]
- Malgowska, M.; Gudanis, D.; Kierzek, R.; Wyszko, E.; Gabelica, V.; Gdaniec, Z. Distinctive Structural Motifs of RNA G-Quadruplexes Composed of AGG, CGG and UGG Trinucleotide Repeats. Nucleic Acids Res. 2014, 42, 10196–10207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abriata, L.A.; Spiga, E.; Peraro, M.D. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics. Biophys. J. 2016, 111, 743–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzer, J.; Poolman, B. How Crowded Is the Prokaryotic Cytoplasm? FEBS Lett. 2013, 587, 2094–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, M.C.; Lacroix, R.; Mckenna, B.K.; Liu, L.; Winkelman, J.; Ehrlich, D.J. Intracellular Protein and Nucleic Acid Measured in Eight Cell Types Using Deep-Ultraviolet Mass Mapping. Cytom. Part A 2013, 83, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.S.; Znosko, B.M. Thermodynamic Characterization and Nearest Neighbor Parameters for RNA Duplexes under Molecular Crowding Conditions. Nucleic Acids Res. 2019, 47, 3658–3666. [Google Scholar] [CrossRef] [Green Version]
- Jasinska, A.; Michlewski, G.; de Mezer, M.; Sobczak, K.; Kozlowski, P.; Napierala, M.; Krzyzosiak, W.J. Structures of Trinucleotide Repeats in Human Transcripts and Their Functional Implications. Nucleic Acids Res. 2003, 31, 5463–5468. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.H.; Mathews, D.H. NNDB: The Nearest Neighbor Parameter Database for Predicting Stability of Nucleic Acid Secondary Structure. Nucleic Acids Res. 2010, 38, D280. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Merino, E.J.; Wilkinson, K.A.; Coughlan, J.L.; Weeks, K.M. RNA Structure Analysis at Single Nucleotide Resolution by Selective 2′-Hydroxyl Acylation and Primer Extension (SHAPE). J. Am. Chem. Soc. 2005, 127, 4223–4231. [Google Scholar] [CrossRef]
- Peattie, D.A.; Gilbert, W. Chemical Probes for Higher-Order Structure in RNA. Proc. Natl. Acad. Sci. USA 1980, 77, 4679. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Cech, T.R. Secondary Structure of the Circular Form of the Tetrahymena RRNA Intervening Sequence: A Technique for RNA Structure Analysis Using Chemical Probes and Reverse Transcriptase. Proc. Natl. Acad. Sci. USA 1985, 82, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijerina, P.; Mohr, S.; Russell, R. DMS Footprinting of Structured RNAs and RNA-Protein Complexes. Nat. Protoc. 2007, 2, 2608. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA Secondary Structure Prediction and Analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D Structure Composition for Large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. MiRDB: An Online Database for Prediction of Functional MicroRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A Mammalian MicroRNA Expression Atlas Based on Small RNA Library Sequencing. Cell 2007, 129, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Motameny, S.; Wolters, S.; Nürnberg, P.; Schumacher, B. Next Generation Sequencing of MiRNAs—Strategies, Resources and Methods. Genes 2010, 1, 70. [Google Scholar] [CrossRef] [Green Version]
- Buermans, H.P.J.; Ariyurek, Y.; van Ommen, G.; den Dunnen, J.T.; ’T Hoen, P.A.C. New Methods for next Generation Sequencing Based MicroRNA Expression Profiling. BMC Genom. 2010, 11, 716. [Google Scholar] [CrossRef] [Green Version]
- Simmler, M.C.; Heard, E.; Rougeulle, C.; Cruaud, C.; Weissenbach, J.; Avner, P. Localization and Expression Analysis of a Novel Conserved Brain Expressed Transcript, Brx/BRX, Lying within the Xic/XIC Candidate Region. Mamm. Genome 1997, 8, 760–766. [Google Scholar] [CrossRef]
- Thandapani, P.; Song, J.; Gandin, V.; Cai, Y.; Rouleau, S.G.; Garant, J.M.; Boisvert, F.M.; Yu, Z.; Perreault, J.P.; Topisirovic, I.; et al. Aven Recognition of RNA G-Quadruplexes Regulates Translation of the Mixed Lineage Leukemia Protooncogenes. Elife 2015, 4, 1–30. [Google Scholar] [CrossRef]
- Song, J.; Perreault, J.-P.; Topisirovic, I.; Richard, S. RNA G-Quadruplexes and Their Potential Regulatory Roles in Translation. Translation 2016, 4, e1244031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endoh, T.; Kawasaki, Y.; Sugimoto, N. Translational Halt during Elongation Caused by G-Quadruplex Formed by mRNA. Methods 2013, 64, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Giedroc, D.P.; Cornish, P.V. Frameshifting RNA Pseudoknots: Structure and Mechanism. Virus Res. 2009, 139, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Doma, M.K.; Parker, R. Endonucleolytic Cleavage of Eukaryotic MRNAs with Stalls in Translation Elongation. Nature 2006, 440, 561–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harigaya, Y.; Parker, R. No-Go Decay: A Quality Control Mechanism for RNA in Translation. Wiley Interdiscip. Rev. RNA 2010, 1, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hubalewska, M.; Ignatova, Z. Transient Ribosomal Attenuation Coordinates Protein Synthesis and Co-Translational Folding. Nat. Struct. Mol. Biol. 2009, 16, 274–280. [Google Scholar] [CrossRef]
- O’Brien, E.P.; Vendruscolo, M.; Dobson, C.M. Prediction of Variable Translation Rate Effects on Cotranslational Protein Folding. Nat. Commun. 2012, 3, 1–9. [Google Scholar] [CrossRef]
- Komar, A.A. A Pause for Thought along the Co-Translational Folding Pathway. Trends Biochem. Sci. 2009, 34, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Mergny, J.L.; Lacroix, L. UV Melting of G-Quadruplexes. Curr. Protoc. Nucleic Acid Chem. 2009, 17, 1–15. [Google Scholar] [CrossRef]
- Mergny, J.L.; Lacroix, L. Analysis of Thermal Melting Curves. Oligonucleotides 2003, 13, 515–537. [Google Scholar] [CrossRef]
- Kreig, A.; Calvert, J.; Sanoica, J.; Cullum, E.; Tipanna, R.; Myong, S. G-Quadruplex Formation in Double Strand DNA Probed by NMM and CV Fluorescence. Nucleic Acids Res. 2015, 43, 7961–7970. [Google Scholar] [CrossRef] [PubMed]
- Kierzek, E.; Ciesielska, A.; Pasternak, K.; Mathews, D.H.; Turner, D.H.; Kierzek, R. The Influence of Locked Nucleic Acid Residues on the Thermodynamic Properties of 2′-O-Methyl RNA/RNA Heteroduplexes. Nucleic Acids Res. 2005, 33, 5082–5093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salisbury, E.; Schoser, B.; Schneider-Gold, C.; Wang, G.L.; Huichalaf, C.; Jin, B.; Sirito, M.; Sarkar, P.; Krahe, R.; Timchenko, N.A.; et al. Expression of RNA CCUG Repeats Dysregulates Translation and Degradation of Proteins in Myotonic Dystrophy 2 Patients. Am. J. Pathol. 2009, 175, 748–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fratczak, A.; Kierzek, R.; Kierzek, E. LNA-Modified Primers Drastically Improve Hybridization to Target RNA and Reverse Transcription. Biochemistry 2009, 48, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Lenartowicz, E.; Kesy, J.; Ruszkowska, A.; Soszynska-Jozwiak, M.; Michalak, P.; Moss, W.N.; Turner, D.H.; Kierzek, R.; Kierzek, E. Self-Folding of Naked Segment 8 Genomic RNA of Influenza A Virus. PLoS ONE 2016, 11, e0148281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of MiRNA Expression across Human Tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef] [PubMed]
Unstructured | Duplex | Quadruplex |
---|---|---|
A(UUA)3U | A(CAA)3C | G(AGG)3A |
G(AAG)3A | A(CGA)3C | G(UGG)3U |
G(UUG)3U | U(GCU)3G | |
A(GAA)3G | U(CGU)3C | |
A(UAA)3U | C(GCC)3G | |
U(CUU)3C | G(GCG)3G | |
U(CCU)3C | A(GCA)3G | |
A(CCA)3C | G(CCUG)3C | |
A(CUA)3C | ||
U(CAU)3C | ||
G(UAG)3U | ||
G(AUG)3A | ||
U(AUUCU)3A |
Gene ID | Variant | Repeat Type | Repeats Number | Transcript Region | Region Lenght | Distance between Repeats | Codon Type | |
---|---|---|---|---|---|---|---|---|
Non-CNG type | GABRA4 | NM_000809 | UUG | 10 | 3′UTR | 9325 | 318 | - |
UAA | 14 | 3′UTR | - | |||||
ALG13 | NM_001099922 | CCA | 14 | ORF | 3414 | Pro | ||
CCU | 13 | ORF | 0 | Pro | ||||
HRC | NM_002152 | AGG | 8 | ORF | 2100 | Asp | ||
AUG | 14 | ORF | 138 | Glu | ||||
ARID3A | NM_005224 | UGG | 10 | 5′UTR | 292 | |||
AGG | 6 | ORF | 1782 | 434 | Glu | |||
CNG type | ZFHX3 | NM_001164766 | GCC | 10 | 5′UTR | 515 | ||
AAC | 9 | ORF | 8370 | 2642 | ||||
GCA | 7 | ORF | 4369 | Gly | ||||
GCG | 7 | ORF | 947 | |||||
MAFA | NM_201589 | GCG | 5 | ORF | 1062 | His | ||
CCA | 10 | ORF | 352 | Gly | ||||
ATXN8OS | NR_002717 | CUA | 10 | ncRNA | 1472 | |||
GCU | 14 | 0 | ||||||
RPS6KA6 | NM_014496 | GCG | 11 | 5′UTR | 300 | |||
CUA | 12 | 3′UTR | 5927 | 3637 | ||||
AR | NM_000044 | GCA | 23 | ORF | 2763 | Gln | ||
GCG | 17 | ORF | 1130 | Gly | ||||
VEZF1 | NM_001330393 | GCC | 6 | 5′UTR | 382 | |||
GCA | 13 | ORF | 1539 | 1298 | Gln | |||
HTT | NM_002111 | GCA | 21 | ORF | 9435 | Gln | ||
GCC | 7 | ORF | 3 | Pro | ||||
AAK1 | NM_014911 | GCA | 6 | ORF | 2886 | Gln | ||
GUU | 10 | 3′UTR | 17,872 | 12,815 | ||||
POU4F2 | NM_004575 | GCG | 11 | ORF | 1230 | Gly | ||
CCA | 6 | ORF | 331 | His | ||||
HMGB3 | NM_001301228 | GCC | 17 | 5′UTR | 262 | |||
AGG | 7 | ORF | 603 | 663 | Glu | |||
** SKIDA1 | NM_207371 | GCC | 10, 8 | ORF | 2727 | Ala | ||
GCG | 8, 4 | ORF | 174 | Ala | ||||
CCA | 7, 6 | ORF | 65 | His | ||||
AGG | 5, 4 | ORF | 188 | Glu | ||||
** ZSWIM6 | NM_020928 | GCC | 10, 4 | ORF | 3648 | Ala | ||
GCG | 6, 6, 6, 6 | ORF | 44 | Gly | ||||
** KCNMA1 | NM_001014797 | GCG | 6, 5, 7 | ORF | 3549 | Gly | ||
CCU | 7 | ORF | 60 | Ser | ||||
CUU | 4 | ORF | 0 | Ser | ||||
** CHIC1 | NM_001039840 | CGU | 4, 5 | ORF | 675 | Ser | ||
AGG | 4, 4, 3 | ORF | 23 | Glu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magner, D.; Nowak, R.; Lenartowicz Onyekaa, E.; Pasternak, A.; Kierzek, R. A Structural Potential of Rare Trinucleotide Repeat Tracts in RNA. Int. J. Mol. Sci. 2022, 23, 5850. https://doi.org/10.3390/ijms23105850
Magner D, Nowak R, Lenartowicz Onyekaa E, Pasternak A, Kierzek R. A Structural Potential of Rare Trinucleotide Repeat Tracts in RNA. International Journal of Molecular Sciences. 2022; 23(10):5850. https://doi.org/10.3390/ijms23105850
Chicago/Turabian StyleMagner, Dorota, Rafal Nowak, Elzbieta Lenartowicz Onyekaa, Anna Pasternak, and Ryszard Kierzek. 2022. "A Structural Potential of Rare Trinucleotide Repeat Tracts in RNA" International Journal of Molecular Sciences 23, no. 10: 5850. https://doi.org/10.3390/ijms23105850
APA StyleMagner, D., Nowak, R., Lenartowicz Onyekaa, E., Pasternak, A., & Kierzek, R. (2022). A Structural Potential of Rare Trinucleotide Repeat Tracts in RNA. International Journal of Molecular Sciences, 23(10), 5850. https://doi.org/10.3390/ijms23105850