Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus
Abstract
:1. Introduction
2. Results
2.1. PLP Depletion Causes Loss of Heterozygosity (LOH)
2.2. PLP Supplementation Rescues LOH at wts Locus
2.3. Mitotic Recombination as a Possible Mechanism of LOH at wts Locus
2.4. Effect of High Sugar Diet on wts Tumors Induced by PLP Deficiency
3. Discussion
4. Materials and Methods
4.1. Drosophila Stocks and Genetic Crosses
4.2. Analysis of Flies with Tumors and Survival Evaluation
4.3. Treatments
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Percudani, R.; Peracchi, A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 2003, 4, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and Its Role in Cell Metabolism and Physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, B.; Shen, S.; Zhang, J.; Jing, P. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations. J. Immunol. Res. 2017, 2017, 2197975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Contestabile, R.; di Salvo, M.L.; Bunik, V.; Tramonti, A.; Vernì, F. The multifaceted role of vitamin B6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol. 2020, 10, 200034. [Google Scholar] [CrossRef]
- Gylling, B.; Myte, R.; Schneede, J.; Hallmans, G.; Häggström, J.; Johansson, I.; Ulvik, A.; Ueland, P.M.; Van Guelpen, B.; Palmqvist, R. Vitamin B-6 and colorectal cancer risk: A prospective population-based study using 3 distinct plasma markers of vitamin B-6 status. Am. J. Clin. Nutr. 2017, 105, 897–904. [Google Scholar] [CrossRef]
- Kayashima, T.; Tanaka, K.; Okazaki, Y.; Matsubara, K.; Yanaka, N.; Kato, N. Consumption of vitamin B6 reduces colonic damage and protein expression of HSP70 and HO-1, the anti-tumor targets, in rats exposed to 1,2-dimethylhydrazine. Oncol. Lett. 2011, 2, 1243–1246. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.; Ueland, P.M.; Midttun, Ø.; Tell, G.S.; Fanidi, A.; Zheng, W.; Shu, X.; Xiang, Y.; Wu, J.; Prentice, R.; et al. Vitamin B6 catabolism and lung cancer risk: Results from the Lung Cancer Cohort Consortium (LC3). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 478–485. [Google Scholar] [CrossRef]
- Chen, C.-C.; Li, B.; Millman, S.E.; Chen, C.; Li, X.; Morris, J.P., 4th; Mayle, A.; Ho, Y.-J.; Loizou, E.; Liu, H.; et al. Vitamin B6 Addiction in Acute Myeloid Leukemia. Cancer Cell 2020, 37, 71–84.e7. [Google Scholar] [CrossRef]
- Kanellis, P.; Gagliardi, M.; Banath, J.P.; Szilard, R.K.; Nakada, S.; Galicia, S.; Sweeney, F.D.; Cabelof, D.C.; Olive, P.L.; Durocher, D. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions. PLoS Genet. 2007, 3, e134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzio, A.; Merigliano, C.; Gatti, M.; Vernì, F. Sugar and chromosome stability: Clastogenic effects of sugars in vitamin B6-deficient cells. PLoS Genet. 2014, 10, e1004199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascolo, E.; Amoroso, N.; Saggio, I.; Merigliano, C.; Vernì, F. Pyridoxine/pyridoxamine 5′-phosphate oxidase (Sgll/PNPO) is important for DNA integrity and glucose homeostasis maintenance in Drosophila. J. Cell. Physiol. 2020, 235, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Merigliano, C.; Mascolo, E.; La Torre, M.; Saggio, I.; Vernì, F. Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes. Sci. Rep. 2018, 8, 11432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sjöblom, T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals 2021, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.H.; Knudson, A.G.; Pandolfi, P.P. A continuum model for tumour suppression. Nature 2011, 476, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, A.H.; Pandolfi, P.P. Haplo-insufficiency: A driving force in cancer. J. Pathol. 2011, 223, 137–146. [Google Scholar] [CrossRef]
- Tuna, M.; Knuutila, S.; Mills, G.B. Uniparental disomy in cancer. Trends Mol. Med. 2009, 15, 120–128. [Google Scholar] [CrossRef]
- Cowell, J.K.; Hawthorn, L. The application of microarray technology to the analysis of the cancer genome. Curr. Mol. Med. 2007, 7, 103–120. [Google Scholar] [CrossRef]
- Hwang, M.S.; Mog, B.J.; Douglass, J.; Pearlman, A.H.; Hsiue, E.H.-C.; Paul, S.; DiNapoli, S.R.; Konig, M.F.; Pardoll, D.M.; Gabelli, S.B.; et al. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc. Natl. Acad. Sci. USA 2021, 118, e2022410118. [Google Scholar] [CrossRef]
- Cavenee, W.K.; Dryja, T.P.; Phillips, R.A.; Benedict, W.F.; Godbout, R.; Gallie, B.L.; Murphree, A.L.; Strong, L.C.; White, R.L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983, 305, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Zhang, S.; Yazdanparast, A.; Li, M.; Pawar, A.V.; Liu, Y.; Inavolu, S.M.; Cheng, L. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. BMC Genom. 2016, 17 (Suppl. 7), 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridanpää, M.; Anttila, S.; Husgafvel-Pursiainen, K. Detection of loss of heterozygosity in the p53 tumor suppressor gene using a PCR-based assay. Pathol. Res. Pract. 1995, 191, 399–402. [Google Scholar] [CrossRef]
- Lebok, P.; Kopperschmidt, V.; Kluth, M.; Hube-Magg, C.; Özden, C.; Taskin, B.; Hussein, K.; Mittenzwei, A.; Lebeau, A.; Witzel, I.; et al. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer 2015, 15, 963. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.E.; Kay, E.W.; Leader, M.; Mabruk, M. Analysis of APC allelic imbalance/loss of heterozygosity and APC protein expression in cutaneous squamous cell carcinomas. Cancer Genom. Proteom. 2011, 8, 149–155. [Google Scholar]
- Neff, R.T.; Senter, L.; Salani, R. BRCA mutation in ovarian cancer: Testing, implications and treatment considerations. Ther. Adv. Med. Oncol. 2017, 9, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Stern, C. Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics 1936, 21, 625–730. [Google Scholar] [CrossRef]
- Smith, D.A.; Baker, B.S.; Gatti, M. Mutations in genes encoding essential mitotic functions in Drosophila melanogaster. Genetics 1985, 110, 647–670. [Google Scholar] [CrossRef]
- Lee, T.; Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999, 22, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Graf, U.; Würgler, F.E.; Katz, A.J.; Frei, H.; Juon, H.; Hall, C.B.; Kale, P.G. Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagen. 1984, 6, 153–188. [Google Scholar] [CrossRef]
- Vogel, E.W.; Nivard, M.J. Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination. Mutagenesis 1993, 8, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, R.A.; Ugnivenko, E.G.; Khovanova, E.M.; Belitsky, G.A. Induction of tumor clones in D. melanogaster wts/+ heterozygotes with chemical carcinogens. Mutat. Res. 2001, 498, 181–191. [Google Scholar] [CrossRef]
- Eeken, J.C.J.; Klink, I.; van Veen, B.L.; Pastink, A.; Ferro, W. Induction of epithelial tumors in Drosophila melanogaster heterozygous for the tumor suppressor gene wts. Environ. Mol. Mutagen. 2002, 40, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, W.; Zhang, S.; Stewart, R.A.; Yu, W. Identifying tumor suppressors in genetic mosaics: The Drosophila lats gene encodes a putative protein kinase. Development 1995, 121, 1053–1063. [Google Scholar] [CrossRef]
- Justice, R.W.; Zilian, O.; Woods, D.F.; Noll, M.; Bryant, P.J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995, 9, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, Y.; Hirota, T.; Morisaki, T.; Hara, T.; Marumoto, T.; Iida, S.; Makino, K.; Yamamoto, H.; Hiraoka, T.; Kitamura, N.; et al. A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett. 1999, 459, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Zhang, S.; Turenchalk, G.S.; Stewart, R.A.; St John, M.A.; Chen, W.; Xu, T. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat. Genet. 1999, 21, 177–181. [Google Scholar] [CrossRef]
- St John, M.A.; Tao, W.; Fei, X.; Fukumoto, R.; Carcangiu, M.L.; Brownstein, D.G.; Parlow, A.F.; McGrath, J.; Xu, T. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat. Genet. 1999, 21, 182–186. [Google Scholar] [CrossRef]
- Lee, G.-H.; Sung, S.-Y.; Chang, W.-N.; Kao, T.-T.; Du, H.-C.; Hsiao, T.-H.; Safo, M.K.; Fu, T.-F. Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5’-phosphate, GABA and anti-epileptic drugs. Dis. Model. Mech. 2012, 5, 785–795. [Google Scholar] [CrossRef] [Green Version]
- García-Bellido, A.; Wandosell, F. The effect of inversions on mitotic recombination in Drosophila melanogaster. Mol. Gen. Genet. 1978, 161, 317–321. [Google Scholar] [CrossRef]
- Fenech, M. Nutritional treatment of genome instability: A paradigm shift in disease prevention and in the setting of recommended dietary allowances. Nutr. Res. Rev. 2003, 16, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Fernando, T.; Sawala, A.; Bailey, A.P.; Gould, A.P.; Driscoll, P.C. An Improved Method for Measuring Absolute Metabolite Concentrations in Small Biofluid or Tissue Samples. J. Proteome Res. 2019, 18, 1503–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natarajan, A.T.; Obe, G. Molecular mechanisms involved in the production of chromosomal aberrations. III. Restriction endonucleases. Chromosoma 1984, 90, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Thiagalingam, S.; Laken, S.; Willson, J.K.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc. Natl. Acad. Sci. USA 2001, 98, 2698–2702. [Google Scholar] [CrossRef] [Green Version]
- Kästner, U.; Hallmen, C.; Wiese, M.; Leistner, E.; Drewke, C. The human pyridoxal kinase, a plausible target for ginkgotoxin from Ginkgo biloba. FEBS J. 2007, 274, 1036–1045. [Google Scholar] [CrossRef]
Treatment | Tot. Flies | N. of Tumors | Eye | Head | Wing | Body | Leg | Halter |
---|---|---|---|---|---|---|---|---|
s.m. | 724 | 17 | 0.00% | 6.06% | 45.45% | 48.48% | 0.00% | 0.00% |
4DP 0.5 mM | 568 | 22 | 0.00% | 4.55% | 68.18% | 22.73% | 4.55% | 0.00% |
4DP 1 mM | 301 | 24 | 0.00% | 4.17% | 62.50% | 29.16% | 4.17% | 0.00% |
4DP 2 mM | 323 | 22 | 9.09% | 18.18% | 31.82% | 36.36% | 4.55% | 0.00% |
4DP 3.5 mM | 320 | 24 | 4.17% | 4.17% | 45.83% | 45.83% | 0.00% | 0.00% |
GK 0.2 mM | 428 | 30 | 3.33% | 6.67% | 46.67% | 30.00% | 6.67% | 6.67% |
GK 0.5 mM | 508 | 29 | 3.45% | 6.90% | 48.28% | 37.93% | 0.00% | 3.45% |
Treatment | Tot. Flies | N. of Tumors | Eye | Head | Wing | Body | Leg | Halter |
---|---|---|---|---|---|---|---|---|
s.m. | 724 | 17 | 0.00% | 6.06% | 45.45% | 48.48% | 0.00% | 0.00% |
PLP 1 mM | 408 | 15 | 0.00% | 6.67% | 66.67% | 20.00% | 6.67% | 0.00% |
PLP 2.5 mM | 726 | 37 | 0.00% | 13.51% | 35.14% | 45.95% | 2.70% | 2.70% |
4DP 2 mM | 323 | 22 | 9.09% | 18.18% | 31.82% | 36.36% | 4.55% | 0.00% |
4DP 2 mM + PLP 1 mM | 506 | 25 | 4.00% | 16.00% | 40.00% | 36.00% | 4.00% | 0.00% |
GK 0.2 mM | 428 | 30 | 3.33% | 6.67% | 46.67% | 30.00% | 6.67% | 6.67% |
GK 0.2 mM + PLP 1 mM | 468 | 19 | 0.00% | 26.32% | 26.32% | 47.37% | 0.00% | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnocchini, E.; Pilesi, E.; Schiano, L.; Vernì, F. Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus. Int. J. Mol. Sci. 2022, 23, 6087. https://doi.org/10.3390/ijms23116087
Gnocchini E, Pilesi E, Schiano L, Vernì F. Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus. International Journal of Molecular Sciences. 2022; 23(11):6087. https://doi.org/10.3390/ijms23116087
Chicago/Turabian StyleGnocchini, Eleonora, Eleonora Pilesi, Ludovica Schiano, and Fiammetta Vernì. 2022. "Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus" International Journal of Molecular Sciences 23, no. 11: 6087. https://doi.org/10.3390/ijms23116087
APA StyleGnocchini, E., Pilesi, E., Schiano, L., & Vernì, F. (2022). Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus. International Journal of Molecular Sciences, 23(11), 6087. https://doi.org/10.3390/ijms23116087