Nanocarrier-Loaded Imidaclothiz Promotes Plant Uptake and Decreases Pesticide Residue
Abstract
:1. Introduction
2. Result and Discussion
2.1. Self-Assembly of Imidaclothiz/SPc Complex through Hydrophobic Interaction
2.2. Reduced Particle Size and Characterization of Imidaclothiz/SPc Complex
2.3. Reduced Contact Angle and Increased Plant Uptake of Imidaclothiz/SPc Complex
2.4. Improved Bioactivity of SPc-Loaded Imidaclothiz toward Green Peach Aphids
2.5. Relative Safety of SPc-Loaded Imidaclothiz
3. Experimental Methods
3.1. Materials
3.2. SPc Synthesis
3.3. Construction of Imidaclothiz Nano-Delivery System
3.4. Loading Capacity Measurement
3.5. Isothermal Titration Calorimetry (ITC) Assay
3.6. Particle Size Measurement and Complex Morphology Characterization
3.7. Contact Angle Analysis
3.8. Plant Uptake Analysis
3.9. Bioactivity Evaluation through Root Application in Laboratory
3.10. Bioactivity Evaluation through Spraying Application in Field
3.11. Safety Assessment of SPc-Loaded Imidaclothiz
3.12. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, L.; Ma, D.; Zhou, Z.; Xu, C.; Cao, C.; Zhao, P.; Huang, Q. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem. Eng. J. 2019, 368, 212–222. [Google Scholar] [CrossRef]
- Gilbertson, L.M.; Pourzahedi, L.; Laughton, S.; Gao, X.; Zimmerman, J.B.; Theis, T.L. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 2020, 15, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Shan, Y.; Bilal, M.; Xu, B.; Cao, L.; Huang, Q. Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding. Chem. Eng. J. 2020, 395, 125093. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, Y.; Wang, C.; Shi, G.; Xie, J.; Gao, B. Nano-soy-protein microcapsule-enabled self-healing biopolyurethane-coated controlled-release fertilizer: Preparation, performance, and mechanism. Mater. Today Chem. 2021, 20, 100413. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, X.; Wang, H.; Zhuang, Q.; Qian, J. Construction of novel benzoxazine-linked covalent organic framework with antimicrobial activity via postsynthetic cyclization. Mater. Today Chem. 2022, 23, 100707. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha-Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; Xu, Y.; Yan, S.; Shen, J.; Yin, M. A facile-synthesized star polycation constructed as a highly efficient gene vector in pest management. ACS Sustain. Chem. Eng. 2019, 7, 6316–6322. [Google Scholar] [CrossRef]
- Yan, S.; Hu, Q.; Li, J.; Chao, Z.; Cai, C.; Yin, M. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides. ACS Sustain. Chem. Eng. 2019, 7, 17406–17413. [Google Scholar] [CrossRef]
- Yan, S.; Qian, J.; Cai, C.; Ma, Z.; Li, J.; Yin, M. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J. Pest Sci. 2020, 93, 449–459. [Google Scholar] [CrossRef]
- Yan, S.; Ren, B.Y.; Shen, J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Sci. 2021, 28, 21–34. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Li, M.; Chao, Z.; Du, X.; Yan, S. A first greenhouse application of bacteria-expressed and nanocarrier-delivered RNA pesticide for Myzus persicae control. J. Pest Sci. 2022. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, K.; Cheng, W.; Li, J.; Liang, X.; Shen, J. Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight. Chem. Eng. J. 2021, 417, 129327. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, Y.; Chao, Z.; Chen, H.; Zhang, Y.; Yin, M. Visualization of the process of a nanocarrier-mediated gene delivery: Stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J. Nanobiotechnol. 2022, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Hu, Q.; Jiang, Q.; Chen, H.; Wei, J.; Yin, M. Simple osthole/nanocarrier pesticide efficiently controls both pests and diseases fulfilling the need of green production of strawberry. ACS Appl. Mater. Interfaces 2021, 13, 36350–36360. [Google Scholar] [CrossRef]
- Yan, S.; Cheng, W.Y.; Han, Z.H.; Wang, D.; Yin, M.Z.; Du, X.G. Nanometerization of thiamethoxam by a cationic star polymer nanocarrier efficiently enhances the contact and plant-uptake dependent stomach toxicity against green peach aphids. Pest Manag. Sci. 2021, 77, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xie, Y.; Peng, M.; Wang, Z.; Li, T.; Yin, M. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: Strikingly enhanced bioactivity and reduced pesticide residue. Environ. Sci. Nano 2022, 9, 988–999. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z.; Peng, M.; Li, L.; Yin, M.; Yan, S. A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug. Nano Today 2022, 43, 101452. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Wu, M.; Cai, J.; Yao, J.; Dai, B.; Lu, Y. Study of imidaclothiz residues in cabbage and soil by HPLC with UV detection. Bull. Environ. Contam. Toxicol. 2010, 84, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Zhu, Y.C.; Ma, C.; Huang, Y.; Shen, J. Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper. Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Manag. Sci. 2008, 64, 1278–1284. [Google Scholar] [PubMed]
- Michelle, L.H.; Anson, R.M.; Dave, G. Environmental risks and challenges associated with neonicotinoid insecticides. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar]
- Juan, M.M.L.; Gabriel, M.; Sung, V.D.; Dat, T.D.; Marc-Antoine, V.; Ken, G. Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environ. Pollut. 2019, 250, 29–39. [Google Scholar]
- Chen, Z.; Dong, F.; Ren, X.; Wu, X.; Yuan, L.; Li, L. Enantioselective fate of dinotefuran from tomato cultivation to home canning for refining dietary exposure. J. Hazard. Mater. 2021, 405, 124254. [Google Scholar] [CrossRef]
- Xiong, J.; Tan, B.; Ma, X.; Li, H.; You, J. Tracing neonicotinoid insecticides and their transformation products from paddy field to receiving waters using polar organic chemical integrative samplers. J. Hazard. Mater. 2021, 413, 125421. [Google Scholar] [CrossRef]
- Wang, K.; Qi, S.; Mu, X.; Chai, T.; Yang, Y.; Wang, D. Evaluation of the toxicity, AChE activity and DNA damage caused by imidacloprid on earthworms, Eisenia fetida. Bull. Environ. Contam. Toxicol. 2015, 95, 475–480. [Google Scholar] [CrossRef]
- Chen, Y.; Zang, L.; Liu, M.; Zhang, C.; Shen, G.; Du, W. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. Environ. Int. 2019, 127, 550–557. [Google Scholar] [CrossRef]
- Nidheesh, T.D.; Shylesha, A.N.; Jayappa, A.H.; Jagadish, K.S.; Sharma, K. Safety evaluation of insecticides to the ladybird beetle, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae), a major predator of mealybugs. J. Biol. Control 2020, 34, 153–157. [Google Scholar] [CrossRef]
- Louie, S.M.; Tilton, R.D.; Lowry, G.V. Critical review: Impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ. Sci. Nano 2016, 2, 283–310. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Beezhold, D.; Shvedova, A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Appl. Pharm. 2017, 329, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Lowry, G.V.; Avellan, A.; Gilbertson, L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019, 14, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liang, J.; Tang, L.; Li, H.; Zhu, Y.; Jiang, D. Nano-pesticides: A great challenge for biodiversity. Nano Today 2019, 28, 100757. [Google Scholar] [CrossRef]
- Agathokleous, E.; Feng, Z.; Iavicoli, I.; Calabrese, E. Nano-pesticides: A great challenge for biodiversity? The need for a broader perspective. Nano Today 2020, 30, 100808. [Google Scholar] [CrossRef]
- Chen, L.; Lin, Y.; Zhou, H.; Hao, L.; Chen, H.; Zhou, X. A stable polyamine-modified zein-based nanoformulation with high foliar affinity and lowered toxicity for sustained avermectin release. Pest Manag. Sci. 2021, 77, 3300–3312. [Google Scholar] [CrossRef]
- Plohl, O.; Gyergyek, S.; Zemljič, L.F. Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides. Micropor. Mesopor. Mat. 2021, 310, 110663. [Google Scholar] [CrossRef]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.K.; Bajpai, J.; Baipai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Petosa, A.R.; Rajput, F.; Selvam, O.; Öhl, C.; Tufenkji, N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res. 2017, 111, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Selyutina, O.Y.; Khalikov, S.S.; Polyakov, N.E. Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection. Environ. Sci. Pollut. R. 2020, 27, 5864–5872. [Google Scholar] [CrossRef]
- Holloway, P.J. Surface factors affecting the wetting of leaves. Pest Manag. Sci. 1970, 1, 156–163. [Google Scholar] [CrossRef]
- Müller, C.; Riederer, M. Plant surface properties in chemical ecology. J. Chem. Ecol. 2005, 31, 2621–2651. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.A.M.D.; Santos, R.T.D.S.; Della’Vechia, J.F.; Griesang, F.; Polanczyk, R.A. Effect of addition of adjuvants on physical and chemical characteristics of Bt bioinsecticide mixture. Sci. Rep. 2019, 9, 12525. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Hu, J.; Ma, Y.; Wu, T.; Gao, Y.; Du, F. Topology-regulated pesticide retention on plant leaves through concave Janus carriers. ACS Sustain. Chem. Eng. 2019, 7, 13148–13156. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, H.; Hao, L.; Li, Z.; Xu, H.; Chen, H. Dialdehyde carboxymethyl cellulose-zein conjugate as water-based nanocarrier for improving the efficacy of pesticides. Ind. Crops Prod. 2020, 150, 112358. [Google Scholar] [CrossRef]
- Xu, Z.N. A static contact angle algorithm for silicone rubber aging experiments. IEEE Trans. Power Deliv. 2013, 28, 491–498. [Google Scholar] [CrossRef]
- Tao, Y.; Jia, C.; Jing, J.; Zhao, M.; Yu, P.; He, M. Uptake, translocation, and biotransformation of neonicotinoid imidaclothiz in hydroponic vegetables: Implications for potential intake risk. J. Agric. Food Chem. 2021, 69, 4064–4073. [Google Scholar] [CrossRef]
- Casida, J.E. Neonicotinoid metabolism: Compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agric. Food Chem. 2011, 59, 2923–2931. [Google Scholar] [CrossRef]
- Dong, M.; Chen, D.; Che, L.; Gu, N.; Yin, M.; Du, X. Biotoxicity evaluation of a cationic star polymer on a predatory ladybird and cooperative pest control by polymer-delivered pesticides and ladybird. ACS Appl. Mater. Interfaces 2022, 14, 6083–6092. [Google Scholar] [CrossRef]
- Zhang, D.X.; Wang, R.; Cao, H.; Luo, J.; Jing, T.F.; Li, B.X. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids Surf. B 2022, 209, 112166. [Google Scholar] [CrossRef]
- Jones, A.; Harrington, P.; Turnbull, G. Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years. Pest Manag. Sci. 2014, 70, 1780–1784. [Google Scholar] [CrossRef] [PubMed]
- Main, A.R.; Headley, J.V.; Peru, K.M.; Michel, N.L.; Cessna, A.J.; Morrissey, C.A. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region. PLoS ONE 2014, 9, e92821. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, A.; Limay-Rios, V.; Baute, T.; Smith, J.; Xue, Y. Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in Southwestern Ontario. PLoS ONE 2015, 10, e0118139. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Liu, X.; Wu, X.; Dong, F.; Xu, J.; Zheng, Y. Kinetics, mechanisms and toxicity of the degradation of imidaclothiz in soil and water. J. Hazard. Mater. 2021, 403, 124033. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dai, Y.; Huang, G.; Gu, Y.; Ni, J.; Wei, H. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag. Sci. 2011, 67, 1245–1252. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Feng, L.; Mao, L.; Jiang, H. Oxidative stress of imidaclothiz on earthworm Eisenia fetida. Comp. Biochem. Phys. C 2017, 191, 1–6. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, B.; Wang, C. Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid. Environ. Sci. Pollut. Res. 2014, 21, 12345–12353. [Google Scholar] [CrossRef]
- Doyle, M.L. Characterization of binding interactions by isothermal titration calorimetry. Curr. Opin. Biotechnol. 1997, 8, 31–35. [Google Scholar] [CrossRef]
- Grolier, J.P.E.; Del-Río, J.M. Isothermal titration calorimetry: A thermodynamic interpretation of measurements. J. Chem. Thermodyn. 2012, 55, 193–202. [Google Scholar] [CrossRef]
- Zhu, H.; Shen, Y.; Cui, J.; Wang, A.; Li, N.; Wang, C. Avermectin loaded carboxymethyl cellulose nanoparticles with stimuli-responsive and controlled release properties. Ind. Crops Prod. 2020, 152, 112497. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, Y.; Xu, H.; Hu, P.; Liang, W.; Xie, L. Development of multifunctional avermectin poly(succinimide) nanoparticles to improve bioactivity and transportation in rice. J. Agric. Food Chem. 2018, 66, 11244–11253. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wang, W.X.; Shen, J. Reproductive polyphenism and its advantages in aphids: Switching between sexual and asexual reproduction. J. Integr. Agric. 2020, 19, 1447–1457. [Google Scholar] [CrossRef]
- Deng, D.; Duan, W.; Wang, H.; Zhang, K.; Guo, J.; Yuan, L. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 2019, 28, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.; Zhou, H.; Chao, Z.; Yan, S.; Shen, J. Nanocarrier-delivered dsRNA suppresses wing development of green peach aphids. Insect Sci. 2022, 29, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, X.F.; Wang, S.; Liu, L.Y.; Zeng, E.Y. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China. Environ. Pollut. 2021, 284, 117358. [Google Scholar] [CrossRef]
Formulation | Mass Ratio | Sample Number | Size (nm) | Average Size (nm) |
---|---|---|---|---|
Imidaclothiz | - | 1 | 182.00 | 187.76 ± 6.31 a |
2 | 186.76 | |||
3 | 194.51 | |||
Imidaclothiz/SPc complex | 1:1 | 1 | 82.12 | 84.28 ± 2.04 b |
2 | 84.55 | |||
3 | 86.18 | |||
1:2 | 1 | 64.55 | 60.76 ± 3.28 c | |
2 | 58.94 | |||
3 | 58.80 | |||
1:3 | 1 | 43.67 | 44.84 ± 1.26 d | |
2 | 44.67 | |||
3 | 46.18 | |||
F3,8 = 879.818, p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Peng, M.; Yin, M.; Shen, J.; Yan, S. Nanocarrier-Loaded Imidaclothiz Promotes Plant Uptake and Decreases Pesticide Residue. Int. J. Mol. Sci. 2022, 23, 6651. https://doi.org/10.3390/ijms23126651
Jiang Q, Peng M, Yin M, Shen J, Yan S. Nanocarrier-Loaded Imidaclothiz Promotes Plant Uptake and Decreases Pesticide Residue. International Journal of Molecular Sciences. 2022; 23(12):6651. https://doi.org/10.3390/ijms23126651
Chicago/Turabian StyleJiang, Qinhong, Min Peng, Meizhen Yin, Jie Shen, and Shuo Yan. 2022. "Nanocarrier-Loaded Imidaclothiz Promotes Plant Uptake and Decreases Pesticide Residue" International Journal of Molecular Sciences 23, no. 12: 6651. https://doi.org/10.3390/ijms23126651