Current Opinion in LAIV: A Matter of Parent Virus Choice
Abstract
:1. Introduction
2. The World Health Organization Recommendations for the Composition of Influenza Vaccines
3. Derivation of Conventional Reassortant Influenza Vaccines; Optimal Genome Composition of the Vaccine Candidate
4. Naturally Occurring Temperature-Sensitive WT Influenza Viruses
5. Naturally Occurring Cold-Adapted WT Influenza Viruses
6. Sensitivity of WT Viruses to Nonspecific Thermostable Serum γ-Inhibitors
7. Infectivity of WT Viruses and LAIV Candidates
8. Thermal and pH Stability of the HA of Influenza Viruses
9. Pros and Cons of Reverse Genetics
10. Egg-Adapted Mutations in Hemagglutinin; Cell-Derived Vaccines
11. Are Viruses Alive? Pro et Contra
12. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Media Centre. News release, 13 December. Available online: https://www.who.int/news/item/13-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year (accessed on 18 June 2022).
- Nirmala, J.; Perez, A.; Culhane, M.R.; Allerson, M.W.; Sreevatsan, S.; Torremorell, M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Duwell, M.M.; Blythe, D.; Radebaugh, M.W.; Kough, E.M.; Bachaus, B.; Crum, D.A.; Perkins, K.A., Jr.; Blanton, L.; Davis, C.T.; Jang, Y.; et al. Influenza A(H3N2) variant virus outbreak at three fairs - Maryland, 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1169–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehia, N.; Hassan, W.M.M.; Sedeek, A.; Elhusseiny, M.H. Genetic variability of avian influenza virus subtype H5N8 in Egypt in 2017 and 2018. Arch. Virol. 2020, 165, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Wille, M.; Holmes, E.C. The ecology and evolution of influenza viruses. Cold Spring Harb. Perspect. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.S.; Bloom, J.D. Linking influenza virus evolution within and between human hosts. Virus Evol. 2020, 6, veaa010. [Google Scholar] [CrossRef] [Green Version]
- Rivas, M.J.; Alegretti, M.; Coppola, L.; Ramas, V.; Chiparelli, H.; Goni, N. Epidemiology and genetic variability of circulating influenza B viruses in Uruguay, 2012-2019. Microorganisms 2020, 8, 591. [Google Scholar] [CrossRef] [Green Version]
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Reviews Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Kiseleva, I.; Larionova, N. Influenza: A Century of Research; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2021. [Google Scholar] [CrossRef]
- Rajão, D.S.; Pérez, D.R. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front. Microbiol. 2018, 9, 123. [Google Scholar] [CrossRef]
- Palache, A.; Rockman, S.; Taylor, B.; Akcay, M.; Billington, J.K.; Barbosa, P. Vaccine complacency and dose distribution inequities limit the benefits of seasonal influenza vaccination, despite a positive trend in use. Vaccine 2021, 39, 6081–6087. [Google Scholar] [CrossRef]
- WHO. Chronologic Position Papers. Available online: https://www.immunize.org/who/ (accessed on 14 April 2022).
- WHO. Global Action Plan to Increase Vaccine Supply for Influenza Vaccines. Available online: http://whqlibdoc.who.int/hq/2006/WHO_IVB_06.13_eng.pdf (accessed on 14 April 2022).
- Mohn, K.G.; Smith, I.; Sjursen, H.; Cox, R.J. Immune responses after live attenuated influenza vaccination. Hum. Vaccines Immunother. 2018, 14, 571–578. [Google Scholar] [CrossRef]
- Krammer, F.; Palese, P. Advances in the development of influenza virus vaccines. Nat. Rev. Drug Discov. 2015, 14, 167–182. [Google Scholar] [CrossRef]
- Chen, J.R.; Liu, Y.M.; Tseng, Y.C.; Ma, C. Better influenza vaccines: An industry perspective. J. Biomed. Sci. 2020, 27, 33. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.D.; Poh, C.L. Development of universal influenza vaccines targeting conserved viral proteins. Vaccines 2019, 7, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, H.; Rees, N.; McHale, S.; Rak, A.; Anderson, J. Seasonal influenza vaccination during a pandemic. Hum. Vaccines Immunother. 2020, 16, 2219–2221. [Google Scholar] [CrossRef]
- Salem, M.L.; El-Hennawy, D. The possible beneficial adjuvant effect of influenza vaccine to minimize the severity of COVID-19. Med. Hypotheses 2020, 140, 109752. [Google Scholar] [CrossRef] [PubMed]
- WHO. Overview of Influenza Activity Globally. Influenza Update N° 415 of 21 March 2022. Available online: https://www.who.int/publications/m/item/influenza-update-n-415 (accessed on 14 April 2022).
- WHO. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza- (accessed on 9 June 2022).
- Ambrosch, A.; Rockmann, F. Effect of two-step hygiene management on the prevention of nosocomial influenza in a season with high influenza activity. J. Hosp. Infect. 2016, 94, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belshe, R.B.; Coelingh, K.; Ambrose, C.S.; Woo, J.C.; Wu, X. Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity. Vaccine 2010, 28, 2149–2156. [Google Scholar] [CrossRef]
- Chow, E.J.; Rolfes, M.A.; O’Halloran, A.; Alden, N.B.; Anderson, E.J.; Bennett, N.M.; Billing, L.; Dufort, E.; Kirley, P.D.; George, A.; et al. Respiratory and nonrespiratory diagnoses associated with influenza in hospitalized adults. JAMA Netw. Open 2020, 3, e201323. [Google Scholar] [CrossRef] [Green Version]
- Hannoun, C. The evolving history of influenza viruses and influenza vaccines. Expert Rev. Vaccines 2013, 12, 1085–1094. [Google Scholar] [CrossRef]
- WHO. Recommendations on the Composition of Influenza Virus Vaccines. Available online: https://www.who.int/teams/global-influenza-programme/vaccines/who-recommendations (accessed on 14 April 2022).
- Rota, P.A.; Wallis, T.R.; Harmon, M.W.; Rota, J.S.; Kendal, A.P.; Nerome, K. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 1990, 175, 59–68. [Google Scholar] [CrossRef]
- Yang, J.R.; Huang, Y.P.; Chang, F.Y.; Hsu, L.C.; Lin, Y.C.; Huang, H.Y.; Wu, F.T.; Wu, H.S.; Liu, M.T. Phylogenetic and evolutionary history of influenza B viruses, which caused a large epidemic in 2011–2012, Taiwan. PLoS ONE 2012, 7, e47179. [Google Scholar] [CrossRef] [PubMed]
- De Jong, J.C.; Beyer, W.E.P.; Palache, A.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 2000, 61, 94–99. [Google Scholar] [CrossRef]
- Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- CDC. Influenza (Flu). Antigenic Characterization. Available online: https://www.cdc.gov/flu/about/professionals/antigenic.htm (accessed on 14 April 2022).
- WHO. Revised Requirements for Influenza Vaccine (Inactivated). Requirements for Biological Substances No. 17. WHO Technical Report Series No. 638. Annex 3. 1978, pp. 148–170. Available online: https://www.who.int/biologicals/publications/trs/areas/vaccines/influenza/WHO_TRS_638_InfluenzaA3.pdf (accessed on 14 April 2022).
- WHO. Requirements for Influenza Vaccine (Live). Requirements for Biological Substances No. 28. WHO Technical Report Series No. 638. Annex 3. 1978, pp. 171–194. Available online: https://www.who.int/biologicals/publications/trs/areas/vaccines/influenza/WHO_TRS_638_InfluenzaA3.pdf (accessed on 14 April 2022).
- WHO. Expert Committee on Biological Standardization. Recommendations for the Production and Control of Influenza Vaccines (Human, Live Attenuated). 2009, pp. 1–68. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.204.2585&rep=rep1&type=pdf (accessed on 14 April 2022).
- WHO. Expert Committee on Biological Standardization. Sixtieth Report. WHO Technical Report Series No. 977. Annex 4. 2013:153–227. Recommendations to Assure the Quality, Safety and Efficacy of Influenza Vaccines (Human, Live Attenuated) for Intranasal Administration. Available online: https://www.who.int/biologicals/areas/vaccines/influenza/TRS_977_Annex_4.pdf?ua=1 (accessed on 14 April 2022).
- CDC. Selecting Viruses for the Seasonal Influenza Vaccine. Available online: https://www.cdc.gov/flu/prevent/vaccine-selection.htm (accessed on 14 April 2022).
- Shcherbik, S.; Pearce, N.; Kiseleva, I.; Larionova, N.; Rudenko, L.; Xu, X.; Wentworth, D.E.; Bousse, T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J. Virol. Methods 2016, 227, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wareing, M.D.; Marsh, G.A.; Tannock, G.A. Preparation and characterisation of attenuated cold-adapted influenza A reassortants derived from the A/Leningrad/134/17/57 donor strain. Vaccine 2002, 20, 2082–2090. [Google Scholar] [CrossRef]
- Maassab, H.F.; Bryant, M.L. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev. Med. Virol. 1999, 9, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Kiseleva, I.V.; Larionova, N.V.; Fedorova, E.A.; Isakova-Sivak, I.N.; Rudenko, L.G. New methodological approaches in the development of Russian live attenuated vaccine for pandemic influenza. Transl. Biomed. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shcherbik, S.V.; Pearce, N.C.; Levine, M.L.; Klimov, A.I.; Villanueva, J.M.; Bousse, T.L. Rapid strategy for screening by pyrosequencing of influenza virus reassortants-candidates for live attenuated vaccines. PLoS ONE 2014, 9, e92580. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, C.S.; Luke, C.; Coelingh, K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respir. Viruses 2008, 2, 193–202. [Google Scholar] [CrossRef]
- Carter, N.J.; Curran, M.P. Live attenuated influenza vaccine (FluMist(R); FluenzTM): A review of its use in the prevention of seasonal influenza in children and adults. Drugs 2011, 71, 1591–1622. [Google Scholar] [CrossRef]
- Shcherbik, S.; Pearce, N.; Carney, P.; Bazhenova, E.; Larionova, N.; Kiseleva, I.; Rudenko, L.; Kumar, A.; Goldsmith, C.S.; Dugan, V.; et al. Evaluation of A(H1N1)pdm09 LAIV vaccine candidates stability and replication efficiency in primary human nasal epithelial cells. Vaccine X 2019, 2, 100031. [Google Scholar] [CrossRef] [PubMed]
- Larionova, N.; Kiseleva, I.; Isakova-Sivak, I.; Rekstin, A.; Dubrovina, I.; Bazhenova, E.; Ross, T.M.; Swayne, D.; Gubareva, L.; Tsvetnitsky, V.; et al. Live attenuated influenza vaccines against highly pathogenic H5N1 avian influenza: Development and preclinical characterization. J. Vaccines Vaccin. 2013, 4, 208. [Google Scholar] [CrossRef] [Green Version]
- NIBSC. Candidate Influenza Vaccine Viruses. Available online: https://www.nibsc.org/science_and_research/virology/influenza_resource_/full_reagent_update.aspx (accessed on 14 April 2022).
- Baez, M.; Palese, P.; Kilbourne, E.D. Gene composition of high-yielding influenza vaccine strains obtained by recombination. J. Infect. Dis. 1980, 141, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.E.; Bucher, D.J.; Pokorny, B.A.; Mikhail, A.; Kilbourne, E.D. Identification of PR8 M1 protein in influenza virus high-yield reassortants by M1-specific monoclonal antibodies. Virology 1989, 171, 634–636. [Google Scholar] [CrossRef]
- Fulvini, A.A.; Ramanunninair, M.; Le, J.; Pokorny, B.A.; Arroyo, J.M.; Silverman, J.; Devis, R.; Bucher, D. Gene constellation of influenza A virus reassortants with high growth phenotype prepared as seed candidates for vaccine production. PLoS ONE 2011, 6, e20823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, J.; Orff, E.J.; Fulvini, A.A.; Huang, L.; Onodera, S.; Pokorny, B.A.; Malewicz, A.; Primakov, P.; Bucher, D.J. Development of high yield reassortants for influenza type B viruses and analysis of their gene compositions. Vaccine 2015, 33, 879–884. [Google Scholar] [CrossRef] [Green Version]
- NIBSC. Influenza Reagents. Available online: https://nibsc.org/products/brm_product_catalogue/influenza_reagents.aspx (accessed on 14 April 2022).
- Subbarao, K.; Webster, R.G.; Kawaoka, Y.; Murphy, B.R. Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses? Virus Res. 1995, 39, 105–118. [Google Scholar] [CrossRef]
- Desheva, J.A.; Lu, X.H.; Rekstin, A.R.; Rudenko, L.G.; Swayne, D.E.; Cox, N.J.; Katz, J.M.; Klimov, A.I. Characterization of an influenza A H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine 2006, 24, 6859–6866. [Google Scholar] [CrossRef]
- Larionova, N.; Kiseleva, I.; Dubrovina, I.; Bazhenova, E.; Rudenko, L. Peculiarities of reassortment of a cold-adapted influenza A master donor virus with influenza A viruses containing hemagglutinin and neuraminidase of avian H5N1 origin. Influenza Other Respir. Viruses 2011, 5 (Suppl. 1), 346–349. [Google Scholar]
- Rudneva, I.A.; Timofeeva, T.A.; Shilov, A.A.; Kochergin-Nikitsky, K.S.; Varich, N.L.; Ilyushina, N.A.; Gambaryan, A.S.; Krylov, P.S.; Kaverin, N.V. Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants. Arch. Virol. 2007, 152, 1139–1145. [Google Scholar] [CrossRef]
- WHO. Availability of Two New Candidate Reassortant Vaccine Viruses for Pandemic (H1N1) 2009 Virus Vaccine Development. 14 September 2009. Available online: https://www.who.int/csr/resources/publications/swineflu/x_181_x_181a.pdf (accessed on 14 April 2022).
- Hussain, S.; Turnbull, M.L.; Pinto, R.M.; McCauley, J.W.; Engelhardt, O.G.; Digard, P. Segment 2 from influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D. J. Gen. Virol. 2019, 100, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, B.; Zheng, T.; Gerber, M.; Printz-Schweigert, A.; Ong, C.; Marquet, R.; Isel, C.; Rockman, S.; Brown, L. Influenza NA and PB1 gene segments interact during the formation of viral progeny: Localization of the binding region within the PB1 gene. Viruses 2016, 8, 238. [Google Scholar] [CrossRef]
- Wolkerstorfer, A.; Katinger, D.; Romanova, J. Factors affecting the immunogenicity of the live attenuated influenza vaccine produced in continuous cell line. Microbiol. Indep. Res. J. 2016, 3, 13–24. [Google Scholar] [CrossRef]
- Wong, S.S.; Webby, R.J. Traditional and new influenza vaccines. Clin. Microbiol. Rev. 2013, 26, 476–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudenko, L.; Kiseleva, I.; Stukova, M.; Erofeeva, M.; Naykhin, A.; Donina, S.; Larionova, N.; Pisareva, M.; Krivitskaya, V.; Flores, J. Clinical testing of pre-pandemic live attenuated A/H5N2 influenza candidate vaccine in adult volunteers: Results from a placebo-controlled, randomized double-blind phase I study. Vaccine 2015, 33, 5110–5117. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, L.; Desheva, J.; Korovkin, S.; Mironov, A.; Rekstin, A.; Grigorieva, E.; Donina, S.; Gambaryan, A.; Katlinsky, A. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I-II clinical trials). Influenza Other Respir. Viruses 2008, 2, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, J.; Chanock, V.; Chanock, R.M. Temperature-sensitive mutants of influenza virus. I. Behavior in tissue culture and in experimental animals. J. Infect. Dis. 1971, 123, 145–157. [Google Scholar] [CrossRef]
- Maassab, H.F.; DeBorde, D.C. Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine 1985, 3, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Oxford, J.S.; Corcoran, T.; Schild, G.C. Naturally occurring temperature-sensitive influenza A viruses of the H1N1 and H3N2 subtypes. J. Gen. Virol. 1980, 48, 383–389. [Google Scholar] [CrossRef]
- Chu, C.M.; Tian, S.F.; Ren, G.F.; Zhang, Y.M.; Zhang, L.X.; Liu, G.Q. Occurrence of temperature-sensitive influenza A viruses in nature. J. Virol. 1982, 41, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Polezhaev, F.I.; Aleksandrova, G.I. Isolation of temperature-sensitive strains of the influenza virus in the epidemic caused by the A/Victoria virus in 1975–1976. Vopr. Virusol. 1979, 4, 430. [Google Scholar]
- Zhang, Y.M.; Tian, S.F.; Zhu, J.M. Identification of naturally occurring temperature-sensitive strains of influenza A virus and location of their genetic lesions. Sci. Sin. B 1982, 25, 411–419. [Google Scholar] [PubMed]
- Richman, D.D.; Murphy, B.R. The association of the temperature-sensitive phenotype with viral attenuation in animals and humans: Implications for the development and use of live virus vaccines. Rev. Infect. Dis. 1979, 1, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, I.; Larionova, N. (Eds.) Influenza virus ecology and evolution. In Influenza: A Century of Research; Bentham Science Publisher: Sharjah, United Arab Emirates, 2021; pp. 63–97. [Google Scholar] [CrossRef]
- Larionova, N.V.; Kiseleva, I.V.; Rudenko, L.G. Evolution of influenza viruses based on sensitivity to temperature of replication. J. Microbiol. Epidemiol. Immunobiol. 2019, 6, 47–55. [Google Scholar] [CrossRef]
- Rudenko, L.G.; Kiseleva, I.V.; Larionova, N.V.; Grigorieva, E.P.; Naikhin, A.N. Analysis of some factors influencing immunogenicity of live cold–adapted reassortant influenza vaccines. In Proceedings of the Options for the Control of Influenza V, Okinawa, Japan, 6–9 October 2003; pp. 542–546. [Google Scholar]
- Kiseleva, I.V.; Voeten, J.T.; Teley, L.C.; Larionova, N.V.; Drieszen-van der Cruijsen, S.K.; Basten, S.M.; Heldens, J.G.; van den Bosch, H.; Rudenko, L.G. PB2 and PA genes control the expression of the temperature-sensitive phenotype of cold-adapted B/USSR/60/69 influenza master donor virus. J. Gen. Virol. 2010, 91, 931–937. [Google Scholar] [CrossRef]
- Rogers, G.N.; D’Souza, B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 1989, 173, 317–322. [Google Scholar] [CrossRef]
- Rogers, G.N.; Pritchett, T.J.; Lane, J.L.; Paulson, J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology 1983, 131, 394–408. [Google Scholar] [CrossRef]
- Kiseleva, I.; Larionova, N.; Fedorova, E.; Bazhenova, E.; Dubrovina, I.; Isakova-Sivak, I.; Rudenko, L. Contribution of neuraminidase of influenza viruses to the sensitivity to sera inhibitors and reassortment efficiency. Open Microbiol. J. 2014, 8, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Larionova, N.; Kiseleva, I.; Isakova, I.; Litvinova, O.; Rudenko, L. Naturally occuring temperature-sensitive strains of influenza B virus. Vopr. Virusol. 2006, 51, 38–41. [Google Scholar]
- Trifkovic, S.; Gilbertson, B.; Fairmaid, E.; Cobbin, J.; Rockman, S.; Brown, L.E. Gene segment interactions can drive the emergence of dominant yet suboptimal gene constellations during influenza virus reassortment. Front. Microbiol. 2021, 12, 683152. [Google Scholar] [CrossRef]
- Wiley, D.C.; Skehel, J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987, 56, 365–394. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, R.W.; Martin, S.R.; Wharton, S.A.; Skehel, J.J.; Bayley, P.M.; Wiley, D.C. Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 1986, 155, 484–497. [Google Scholar] [CrossRef]
- Wharton, S.A.; Skehel, J.J.; Wiley, D.C. Studies of influenza haemagglutinin-mediated membrane fusion. Virology 1986, 149, 27–35. [Google Scholar] [CrossRef]
- Skehel, J.J.; Wiley, D.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Scholtissek, C. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine 1985, 3, 215–218. [Google Scholar] [CrossRef]
- Krenn, B.M.; Egorov, A.; Romanovskaya-Romanko, E.; Wolschek, M.; Nakowitsch, S.; Ruthsatz, T.; Kiefmann, B.; Morokutti, A.; Humer, J.; Geiler, J.; et al. Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS ONE 2011, 6, e18577. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Zambon, M.; Lalvani, A.; Barclay, W. Urgent challenges in implementing live attenuated influenza vaccine. Lancet Infect. Dis. 2018, 18, e25–e32. [Google Scholar] [CrossRef]
- CDC. Summary of the 2016–2017 Influenza Season. Available online: https://www.cdc.gov/flu/about/season/flu-season-2016-2017.htm (accessed on 14 April 2022).
- Yang, H.; Chang, J.C.; Guo, Z.; Carney, P.J.; Shore, D.A.; Donis, R.O.; Cox, N.J.; Villanueva, J.M.; Klimov, A.I.; Stevens, J. Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins. J. Virol. 2014, 88, 4828–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, C.R.; Jin, H.; Chen, Z. A single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivity. PLoS Pathog. 2014, 10, e1003831. [Google Scholar] [CrossRef] [PubMed]
- Gould, P.S.; Easton, A.J.; Dimmock, N.J. Live attenuated influenza vaccine contains substantial and unexpected amounts of defective viral genomic RNA. Viruses 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimmock, N.J.; Easton, A.J. Can defective interfering RNAs affect the live attenuated influenza vaccine? Lancet Infect. Dis. 2017, 17, 1234–1235. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, T.; Hensen, L.; Matrosovich, T.; Bergmann, J.; Winkler, M.; Peteranderl, C.; Klenk, H.D.; Weber, F.; Herold, S.; Pöhlmann, S.; et al. pH optimum of hemagglutinin-mediated membrane fusion determines sensitivity of influenza A viruses to the interferon-induced antiviral state and IFITMs. J. Virol. 2017, 91, e00246-e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Farroukh, M.; Kiseleva, I.; Bazhenova, E.; Stepanova, E.; Puchkova, L.; Rudenko, L. Understanding the variability of certain biological properties of H1N1pdm09 influenza viruses. Vaccines 2022, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Zhou, N.; Webster, R. Eight-plasmid rescue system for influenza A virus. Int. Congr. Ser. 2001, 1219, 1007–1013. [Google Scholar] [CrossRef]
- Blanco-Lobo, P.; Nogales, A.; Rodríguez, L.; Martínez-Sobrido, L. Novel approaches for the development of live attenuated influenza vaccines. Viruses 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Neumann, G.; Watanabe, T.; Ito, H.; Watanabe, S.; Goto, H.; Gao, P.; Hughes, M.; Perez, D.R.; Donis, R.; Hoffmann, E.; et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. USA 1999, 96, 9345–9350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fodor, E.; Devenish, L.; Engelhardt, O.G.; Palese, P.; Brownlee, G.G.; García-Sastre, A. Rescue of influenza A virus from recombinant DNA. J. Virol. 1999, 73, 9679–9682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolson, C.; Major, D.; Wood, J.M.; Robertson, J.S. Generation of influenza vaccine viruses on Vero cells by reverse genetics: An H5N1 candidate vaccine strain produced under a quality system. Vaccine 2005, 23, 2943–2952. [Google Scholar] [CrossRef]
- Jin, H.; Subbarao, K. Live attenuated influenza vaccine. Curr. Top. Microbiol. Immunol. 2015, 386, 181–204. [Google Scholar] [CrossRef]
- Nechaeva, E.A.; Sen’kina, T.Y.; Ryzhikov, A.B.; Radaeva, I.F.; P’Yankova, O.G.; Danil’chenko, N.V.; Sviridenko, T.M.; Bogryantzeva, M.P.; Gilina, N.V.; Varaksin, N.A.; et al. Development of live cultural pandemic influenza vaccine Vector-Flu. BMC Proc. 2011, 5 (Suppl. 8), P104. [Google Scholar] [CrossRef] [Green Version]
- Nechaeva, E.A.; Ryzhikov, A.B.; Pyankova, O.G.; Radaeva, I.F.; Pyankov, O.V.; Danilchenko, N.V.; Agafonov, A.P.; Kiseleva, I.V.; Larionova, N.V.; Rudenko, L.G. Study of immunogenicity and protective efficacy of live MDCK-derived pandemic influenza vaccine. Glob. J. Infect. Dis. Clin. Res. 2019, 5, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shi, X.; Schwartz, R.; Kemble, G. Use of MDCK cells for production of live attenuated influenza vaccine. Vaccine 2009, 27, 6460–6463. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, M.; Yeolekar, L.; Tyagi, P.; Sagar, U.; Narale, S.; Anaspure, Y.; Tupe, S.; Wadkar, K.; Ingle, N.; Dhere, R.; et al. Evaluation of manufacturing feasibility and safety of an MDCK cell-based live attenuated influenza vaccine (LAIV) platform. Vaccine 2020, 38, 8379–8386. [Google Scholar] [CrossRef] [PubMed]
- Heldens, J.; Hulskotte, E.; Voeten, T.; Breedveld, B.; Verweij, P.; van Duijnhoven, W.; Rudenko, L.; van Damme, P.; van den Bosch, H. Safety and immunogenicity in man of a cell culture derived trivalent live attenuated seasonal influenza vaccine: A Phase I dose escalating study in healthy volunteers. Vaccine 2014, 32, 5118–5124. [Google Scholar] [CrossRef] [PubMed]
- Romanova, J.; Katinger, D.; Ferko, B.; Vcelar, B.; Sereinig, S.; Kuznetsov, O.; Stukova, M.; Erofeeva, M.; Kiselev, O.; Katinger, H.; et al. Live cold-adapted influenza A vaccine produced in Vero cell line. Virus Res. 2004, 103, 187–193. [Google Scholar] [CrossRef]
- Bazhenova, E.; Kiseleva, I.; Isakova-Sivak, I.; Kotomina, T. Two alternative approaches to generate live attenuated influenza vaccine candidates against potentially pandemic avian influenza H7N9 virus. Biomed. J. Sci. Tech. Res. 2018, 33, 6503–6510. [Google Scholar] [CrossRef]
- Allen, J.D.; Ross, T.M. H3N2 influenza viruses in humans: Viral mechanisms, evolution, and evaluation. Hum. Vaccines Immunother. 2018, 14, 1840–1847. [Google Scholar] [CrossRef] [Green Version]
- Bolton, M.J.; Ort, J.T.; McBride, R.; Swanson, N.J.; Wilson, J.; Awofolaju, M.; Greenplate, A.R.; Drapeau, E.M.; Pekosz, A.; Paulson, J.C.; et al. Antigenic and virological properties of an H3N2 variant that will likely dominate the 2021–2022 Northern Hemisphere influenza season. medRxiv 2021. [Google Scholar] [CrossRef]
- Mostafa, A.; Pleschka, S. Influenza H3N2 vaccines: Recent challenges. Trends Microbiol. 2018, 26, 87–89. [Google Scholar] [CrossRef]
- Zost, S.J.; Parkhouse, K.; Gumina, M.E.; Kim, K.; Diaz Perez, S.; Wilson, P.C.; Treanor, J.J.; Sant, A.J.; Cobey, S.; Hensley, S.E. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc. Natl. Acad. Sci. USA 2017, 114, 12578–12583. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.W.; Yang, J.M. Changed epitopes drive the antigenic drift for influenza A (H3N2) viruses. BMC Bioinform. 2011, 12 (Suppl. 1), S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widjaja, L.; Ilyushina, N.; Webster, R.G.; Webby, R.J. Molecular changes associated with adaptation of human influenza A virus in embryonated chicken eggs. Virology 2006, 350, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbarao, K.; Barr, I. A Tale of two mutations: Beginning to understand the problems with egg-based influenza vaccines? Cell Host Microbe 2019, 25, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.C.; Lv, H.; Thompson, A.J.; Wu, D.C.; Ng, W.W.S.; Kadam, R.U.; Lin, C.W.; Nycholat, C.M.; McBride, R.; Liang, W.; et al. Preventing an antigenically disruptive mutation in egg-based H3N2 seasonal influenza vaccines by mutational incompatibility. Cell Host Microbe 2019, 25, 836–844.e835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubareva, L.V.; Wood, J.M.; Meyer, W.J.; Katz, J.M.; Robertson, J.S.; Major, D.; Webster, R.G. Codominant mixtures of viruses in reference strains of influenza virus due to host cell variation. Virology 1994, 199, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Nakowitsch, S.; Wolschek, M.; Morokutti, A.; Ruthsatz, T.; Krenn, B.M.; Ferko, B.; Ferstl, N.; Triendl, A.; Muster, T.; Egorov, A.; et al. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1. Vaccine 2011, 29, 3517–3524. [Google Scholar] [CrossRef]
- Robertson, J. Clinical influenza virus and the embryonated hen’s egg. Rev. Med. Virol. 1993, 3, 97–106. [Google Scholar] [CrossRef]
- Robertson, J.S.; Cook, P.; Attwell, A.M.; Williams, S.P. Replicative advantage in tissue culture of egg-adapted influenza virus over tissue-culture derived virus: Implications for vaccine manufacture. Vaccine 1995, 13, 1583–1588. [Google Scholar] [CrossRef]
- Monto, A.S.; Maassab, H.F.; Bryan, E.R. Relative efficacy of embryonated eggs and cell culture for isolation of contemporary influenza viruses. J. Clin. Microbiol. 1981, 13, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Gambaryan, A.S.; Robertson, J.S.; Matrosovich, M.N. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 1999, 258, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambaryan, A.S.; Tuzikov, A.B.; Piskarev, V.E.; Yamnikova, S.S.; Lvov, D.K.; Robertson, J.S.; Bovin, N.V.; Matrosovich, M.N. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: Non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 1997, 232, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Chen, L.M.; Carney, P.J.; Garten, R.; Foust, A.; Le, J.; Pokorny, B.A.; Manojkumar, R.; Silverman, J.; Devis, R.; et al. Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J. Virol. 2010, 84, 8287–8299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ampofo, W.K.; Baylor, N.; Cobey, S.; Cox, N.J.; Daves, S.; Edwards, S.; Ferguson, N.; Grohmann, G.; Hay, A.; Katz, J.; et al. Improving influenza vaccine virus selection: Report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. Influenza Other Respir. Viruses 2012, 6, 142–152, e141–e145. [Google Scholar] [PubMed] [Green Version]
- Kiseleva, I.; Larionova, N. Influenza prophylaxis and treatment. In Influenza: A Century of Research; Kiseleva, I., Larionova, N., Eds.; Bentham Science Publisher: Sharjah, United Arab Emirates, 2021; pp. 98–141. [Google Scholar] [CrossRef]
- Tzeng, T.T.; Chen, P.L.; Weng, T.C.; Tsai, S.Y.; Lai, C.C.; Chou, H.I.; Chen, P.W.; Lu, C.C.; Liu, M.T.; Sung, W.C.; et al. Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells. J. Biomed. Sci. 2020, 27, 47. [Google Scholar] [CrossRef] [Green Version]
- Brüssow, H. The not so universal tree of life or the place of viruses in the living world. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2009, 364, 2263–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claverie, J.M.; Ogata, H. Ten good reasons not to exclude giruses from the evolutionary picture. Nat. Rev. Microbiol. 2009, 7, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forterre, P.; Prangishvili, D. The origin of viruses. Res. Microbiol. 2009, 160, 466–472. [Google Scholar] [CrossRef]
- Hegde, N.R.; Maddur, M.S.; Kaveri, S.V.; Bayry, J. Reasons to include viruses in the tree of life. Nat. Rev. Microbiol. 2009, 7, 615. [Google Scholar] [CrossRef]
- Ludmir, E.B.; Enquist, L.W. Viral genomes are part of the phylogenetic tree of life. Nat. Rev. Microbiol. 2009, 7, 615. [Google Scholar] [CrossRef] [Green Version]
- Moreira, D.; López-García, P. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 2009, 7, 306–311. [Google Scholar] [CrossRef]
- Raoult, D. There is no such thing as a tree of life (and of course viruses are out!). Nat. Rev. Microbiol. 2009, 7, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarreal, L.P.; Witzany, G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010, 262, 698–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarreal, L. Are viruses alive? Sci. Am. 2005, 291, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Claverie, J.M.; Abergel, C. Mimivirus and its virophage. Annu. Rev. Genet. 2009, 43, 49–66. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Desnues, C.; Pagnier, I.; Robert, C.; Barrassi, L.; Fournous, G.; Merchat, M.; Suzan-Monti, M.; Forterre, P.; Koonin, E.; et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008, 455, 100–104. [Google Scholar] [CrossRef]
- Sun, S.; La Scola, B.; Bowman, V.D.; Ryan, C.M.; Whitelegge, J.P.; Raoult, D.; Rossmann, M.G. Structural studies of the Sputnik virophage. J. Virol. 2010, 84, 894–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaia, M.; Benamar, S.; Boughalmi, M.; Pagnier, I.; Croce, O.; Colson, P.; Raoult, D.; La Scola, B. Zamilon, a novel virophage with Mimiviridae host specificity. PLoS ONE 2014, 9, e94923. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, I. Current Opinion in LAIV: A Matter of Parent Virus Choice. Int. J. Mol. Sci. 2022, 23, 6815. https://doi.org/10.3390/ijms23126815
Kiseleva I. Current Opinion in LAIV: A Matter of Parent Virus Choice. International Journal of Molecular Sciences. 2022; 23(12):6815. https://doi.org/10.3390/ijms23126815
Chicago/Turabian StyleKiseleva, Irina. 2022. "Current Opinion in LAIV: A Matter of Parent Virus Choice" International Journal of Molecular Sciences 23, no. 12: 6815. https://doi.org/10.3390/ijms23126815
APA StyleKiseleva, I. (2022). Current Opinion in LAIV: A Matter of Parent Virus Choice. International Journal of Molecular Sciences, 23(12), 6815. https://doi.org/10.3390/ijms23126815