Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Performance of smMIPs-NGS
2.3. Genetic Screening of 15 Ion Channels in Painful-Diabetic Neuropathy
2.4. Genetic Screening of 15 Ion Channels in Painless Diabetic Neuropathy
3. Discussion
3.1. Summary of Detected Variants
3.2. Effect of VUS on Protein Function
3.3. Possible Link between VUS and Clinical Manifestations
3.3.1. Ca2+ Channels
3.3.2. K+ Channels
3.3.3. TRP Channels
3.4. Painful-DN Patients with ICG Variant Have More Pain Than Painful-DN without ICG Variant
3.5. Conclusions and Future Perspectives
4. Methods
4.1. Study Population and Clinical Assessment
4.2. DNA Isolation and Storage
4.3. Gene Panel and smMIPs-NGS Protocol
4.4. Data Analysis
4.5. Variant Interpretation
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Ethics Approval and Patients Consent
Disclaimer
References
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kishore, L.; Kaur, N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res. 2014, 80, 21–35. [Google Scholar] [CrossRef]
- Spallone, V.; Greco, C. Painful and painless diabetic neuropathy: One disease or two? Curr. Diabetes Rep. 2013, 13, 533–549. [Google Scholar] [CrossRef]
- Shillo, P.; Sloan, G.; Greig, M.; Hunt, L.; Selvarajah, D.; Elliott, J.; Gandhi, R.; Wilkinson, I.D.; Tesfaye, S. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr. Diabetes Rep. 2019, 19, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.; Kulkarni, J.; Boulton, A.J. Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.H.; Hébert, H.L.; Veluchamy, A. Neuropathic pain in the community: Prevalence, impact, and risk factors. Pain 2020, 161 (Suppl. 1), S127–S137. [Google Scholar] [CrossRef]
- Van Acker, K.; Bouhassira, D.; De Bacquer, D.; Weiss, S.; Matthys, K.; Raemen, H.; Mathieu, C.; Colin, I.M. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 2009, 35, 206–213. [Google Scholar] [CrossRef]
- Gylfadottir, S.S.; Christensen, D.H.; Nicolaisen, S.K.; Andersen, H.; Callaghan, B.C.; Itani, M.; Khan, K.S.; Kristensen, A.G.; Nielsen, J.S.; Sindrup, S.H.; et al. Diabetic polyneuropathy and pain, prevalence, and patient characteristics: A cross-sectional questionnaire study of 5514 patients with recently diagnosed type 2 diabetes. Pain 2020, 161, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.; Clark, A.J.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol. Rev. 2019, 99, 1079–1151. [Google Scholar] [CrossRef]
- Blesneac, I.; Themistocleous, A.; Fratter, C.; Conrad, L.; Ramirez, J.D.; Cox, J.J.; Tesfaye, S.; Shillo, P.R.; Rice, A.S.; Tucker, S.J.; et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain 2018, 159, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef] [PubMed]
- Marwaha, L.; Bansal, Y.; Singh, R.; Saroj, P.; Bhandari, R.; Kuhad, A. TRP channels: Potential drug target for neuropathic pain. Inflammopharmacology 2016, 24, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Rivolta, I.; Binda, A.; Masi, A.; DiFrancesco, J.C. Cardiac and neuronal HCN channelopathies. Pflug. Arch. Eur. J. Physiol. 2020, 472, 931–951. [Google Scholar] [CrossRef] [PubMed]
- Busserolles, J.; Tsantoulas, C.; Eschalier, A.; López García, J.A. Potassium channels in neuropathic pain: Advances, challenges, and emerging ideas. Pain 2016, 157 (Suppl. 1), S7–S14. [Google Scholar] [CrossRef]
- Basso, L.; Altier, C. Transient Receptor Potential Channels in neuropathic pain. Curr. Opin. Pharmacol. 2017, 32, 9–15. [Google Scholar] [CrossRef]
- Takayama, Y.; Uta, D.; Furue, H.; Tominaga, M. Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. USA 2015, 112, 5213–5218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Yang, Y.D.; Lee, J.; Lee, B.; Kim, T.; Jang, Y.; Back, S.K.; Na, H.S.; Harfe, B.D.; Wang, F.; et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 2012, 15, 1015–1021. [Google Scholar] [CrossRef]
- Huang, F.; Wang, X.; Ostertag, E.M.; Nuwal, T.; Huang, B.; Jan, Y.-N.; Basbaum, A.I.; Jan, L.Y. TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing. Nat. Neurosci. 2013, 16, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Royal, P.; Andres-Bilbe, A.; Prado, P.Á.; Verkest, C.; Wdziekonski, B.; Schaub, S.; Baron, A.; Lesage, F.; Gasull, X.; Levitz, J.; et al. Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron 2019, 101, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Lafrenière, R.G.; Cader, M.Z.; Poulin, J.-F.; Andres-Enguix, I.; Simoneau, M.; Gupta, N.; Boisvert, K.; Lafrenière, F.; McLaughlan, S.; Dubé, M.-P.; et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat. Med. 2010, 16, 1157–1160. [Google Scholar] [CrossRef]
- Pettingill, P.; Weir, G.; Wei, T.; Wu, Y.; Flower, G.; Lalic, T.; Handel, A.; Duggal, G.; Chintawar, S.; Cheung, J.; et al. A causal role for TRESK loss of function in migraine mechanisms. Brain 2019, 142, 3852–3867. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Xiao, Z.; Ren, F.; Guo, Z.; Chen, Z.; Zhao, H.; Cao, Y.-Q. Functional Analysis of a Migraine-Associated TRESK K+ Channel Mutation. J. Neurosci. 2013, 33, 12810–12824. [Google Scholar] [CrossRef] [Green Version]
- Eijkenboom, I.; Sopacua, M.; Hoeijmakers, J.G.J.A.; De Greef, B.T.; Lindsey, P.; Almomani, R.; Marchi, M.; Vanoevelen, J.; Smeets, H.J.M.; Waxman, S.G.; et al. Yield of peripheral sodium channels gene screening in pure small fibre neuropathy. J. Neurol. Neurosurg. Psychiatry 2019, 90, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Zorina-Lichtenwalter, K.; Parisien, M.; Diatchenko, L. Genetic studies of human neuropathic pain conditions: A review. Pain 2018, 159, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Shashi, V.; McConkie-Rosell, A.; Schoch, K.; Kasturi, V.; Rehder, C.; Jiang, Y.; Goldstein, D.; McDonald, M. Practical considerations in the clinical application of whole-exome sequencing. Clin. Genet. 2016, 89, 173–181. [Google Scholar] [CrossRef]
- Grandl, J.; Kim, S.E.; Uzzell, V.; Bursulaya, B.; Petrus, M.; Bandell, M.; Patapoutian, A. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat. Neurosci. 2010, 13, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Mosavi, L.K.; Cammett, T.J.; Desrosiers, D.C.; Peng, Z.-Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 2004, 13, 1435–1448. [Google Scholar] [CrossRef]
- Krishna, M.M.; Englander, S.W. The N-terminal to C-terminal motif in protein folding and function. Proc. Natl. Acad. Sci. USA 2005, 102, 1053–1058. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Cho, H.; Jung, J.; Yang, Y.D.; Yang, D.-J.; Oh, U. Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Mol. Pain 2014, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-J.; Li, Y. KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol. Sin. 2016, 37, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp, I.; Holló, K.; Antal, M. Plasticity of hyperpolarization-activated and cyclic nucleotid-gated cation channel subunit 2 expression in the spinal dorsal horn in inflammatory pain. Eur. J. Neurosci. 2010, 32, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Descoeur, J.; Pereira, V.; Pizzoccaro, A.; Francois, A.; Ling, B.; Maffre, V.; Couette, B.; Busserolles, J.; Courteix, C.; Noel, J.; et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 2011, 3, 266–278. [Google Scholar] [CrossRef]
- Young, G.T.; Emery, E.C.; Mooney, E.R.; Tsantoulas, C.; McNaughton, P.A. Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels. Pain 2014, 155, 1708–1719. [Google Scholar] [CrossRef]
- Resta, F.; Micheli, L.; Laurino, A.; Spinelli, V.; Mello, T.; Sartiani, L.; Di Cesare Mannelli, L.; Cerbai, E.; Ghelardini, C.; Romanelli, M.N.; et al. Selective HCN1 block as a strategy to control oxaliplatin-induced neuropathy. Neuropharmacology 2018, 131, 403–413. [Google Scholar] [CrossRef]
- Mis, M.A.; Yang, Y.; Tanaka, B.S.; Gomis-Perez, C.; Liu, S.; Dib-Hajj, F.; Adi, T.; Garcia-Milian, R.; Schulman, B.R.; Dib-Hajj, S.D.; et al. Resilience to Pain: A Peripheral Component Identified Using Induced Pluripotent Stem Cells and Dynamic Clamp. J. Neurosci. 2019, 39, 382–392. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Estacion, M.; Mis, M.A.; Tanaka, B.S.; Schulman, B.R.; Chen, L.; Liu, S.; Dib-Hajj, F.B.; Dib-Hajj, S.D.; Waxman, S.G. KCNQ variants and pain modulation: A missense variant in Kv7.3 contributes to pain resilience. Brain Commun. 2021, 3, fcab212. [Google Scholar] [CrossRef]
- Alessandri-Haber, N.; Joseph, E.; Dina, O.A.; Liedtke, W.; Levine, J.D. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 2005, 118, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Nirenberg, M.; Chaouni, R.; Biller, T.; Gilbert, R.; Paisán-Ruiz, C. A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome. Clin. Genet. 2018, 93, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Obata, K.; Katsura, H.; Mizushima, T.; Yamanaka, H.; Kobayashi, K.; Dai, Y.; Fukuoka, T.; Tokunaga, A.; Tominaga, M.; Noguchi, K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Investig. 2005, 115, 2393–2401. [Google Scholar] [CrossRef] [Green Version]
- Kremeyer, B.; Lopera, J.Z.; Cox, J.J.; Momin, A.; Rugiero, F.; Marsh, S.; Woods, C.G.; Jones, N.G.; Paterson, K.J.; Fricker, F.R.; et al. A Gain-of-Function Mutation in TRPA1 Causes Familial Episodic Pain Syndrome. Neuron 2010, 66, 671–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proudfoot, C.J.; Garry, E.M.; Cottrell, D.F.; Rosie, R.; Anderson, H.; Robertson, D.C.; Fleetwood-Walker, S.M.; Mitchell, R. Analgesia Mediated by the TRPM8 Cold Receptor in Chronic Neuropathic Pain. Curr. Biol. 2006, 16, 1591–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Wang, C.; Yu, Y.-H.; Ren, Y.-Y.; Xie, K.-L.; Wang, G.-L. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain. BMC Neurosci. 2011, 12, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, J.D.; Alessandri-Haber, N. TRP channels: Targets for the relief of pain. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2007, 1772, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-H.; Schulman, B.R.; Effraim, P.R.; Sulayman, D.-H.; Jacobs, D.S.; Waxman, S.G. Genomic analysis of 21 patients with corneal neuralgia after refractive surgery. Pain Rep. 2020, 5, e826. [Google Scholar] [CrossRef]
- Darby, W.G.; Grace, M.S.; Baratchi, S.; McIntyre, P. Modulation of TRPV4 by diverse mechanisms. Int. J. Biochem. Cell Biol. 2016, 78, 217–228. [Google Scholar] [CrossRef]
- Farrar, J.T. What Is Clinically Meaningful: Outcome Measures in Pain Clinical Trials. Clin. J. Pain 2000, 16, S106–S112. [Google Scholar] [CrossRef]
- Serlin, R.C.; Mendoza, T.R.; Nakamura, Y.; Edwards, K.R.; Cleeland, C.S. When is cancer pain mild, moderate or severe? Grading pain severity by its interference with function. Pain 1995, 61, 277–284. [Google Scholar] [CrossRef]
- Wadhawan, S.; Pant, S.; Golhar, R.; Kirov, S.; Thompson, J.; Jacobsen, L.; Qureshi, I.; Ajroud-Driss, S.; Freeman, R.; Simpson, D.M.; et al. NaV channel variants in patients with painful and nonpainful peripheral neuropathy. Neurol. Genet. 2017, 3, e207. [Google Scholar] [CrossRef] [Green Version]
- Treede, R.-D.; Jensen, T.S.; Campbell, J.N.; Cruccu, G.; Dostrovsky, J.O.; Griffin, J.W.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70, 1630–1635. [Google Scholar] [CrossRef]
- Hoeijmakers, J.G.; Faber, C.G.; Lauria, G.; Merkies, I.S.; Waxman, S.G. Small-fibre neuropathies—Advances in diagnosis, pathophysiology and management. Nat. Rev. Neurol. 2012, 8, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, R.; Megchelenbrink, W.; Cizek, P.; Ledent, M.; Velemans, G.; Szklarczyk, D.; Huynen, M.A. WeGET: Predicting new genes for molecular systems by weighted co-expression. Nucleic Acids Res. 2016, 44, D567–D573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almomani, R.; Marchi, M.; Sopacua, M.; Lindsey, P.; Salvi, E.; de Koning, B.; Santoro, S.; Magri, S.; Smeets, H.J.M.; Boneschi, F.M.; et al. Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencing. PLoS ONE 2020, 15, e0238467. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, G.; Acuña-Hidalgo, R.; Keogh, M.J.; Quenez, O.; Steehouwer, M.; Lelieveld, S.; Rousseau, S.; Richard, A.-C.; Oud, M.S.; Marguet, F.; et al. Somatic variants in autosomal dominant genes are a rare cause of sporadic Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018, 14, 1632–1639. [Google Scholar] [CrossRef]
Gene | c. Position & | p. Position | Number of Patients | Classification Based Richards et al. [22] | Location | MAF GnomAD (%) | Ref. |
---|---|---|---|---|---|---|---|
ANO3 | c.638C>T | p.(Ser213Phe) | 1 | VUS | N-terminus | 0 | - |
c.1357A>G | p.(Ile453Val) | 1 | VUS | N-terminus | 0 | - | |
c.2950C>T | p.(Leu984Phe) | 1 | VUS | Transmembrane domain VIII | 0.0046 | - | |
HCN1 | c.1214G>A | p.(Arg405Gln) | 1 | VUS | C-terminus | 0.0004 | - |
KCNK18 | c.414_415del | p.(Phe139Trpfs*25) | 1 | VUS | Exon 3, the new reading frame ends in a STOP codon at position 25 | 0.043 | [19,20,21,23] |
c.361dup | p.(Tyr121Leufs*44) | 1 | VUS | Exon 3, the new reading frame ends in a STOP codon at position 44 | 0.024 | [19] | |
TRPA1 | c.2481del | p.(Ala828Leufs*17) | 1 | VUS | Exon 21, the new reading frame ends in a STOP codon at position 17 | 0 | - |
c.352C>G | p.(Leu118Val) | 1 | VUS | Ankyrin repeat II-containing domain | 0.047 | - | |
c.1954C>T | p.(Arg652*) | 1 | VUS | Cytoplasmic domain between ANK repeats and 1st transmembrane domain | 0.015 | - | |
TRPM8 | c.2114del | p.(Val705Glyfs*79) | 1 | VUS | Exon 16, the new reading frame ends in a STOP codon at position 79 | 0.0004 | - |
c.1437G>T | p.(Glu479Asp) | 1 | VUS | N-terminus | 0.012 | - | |
c.2195C>T | p.(Thr732Ile) | 1 | VUS | Linker between transmembrane domain I and II | 0.069 | - | |
TRPV4 | c.2336+1G>A | p.? # | 1 | VUS | Donor splice site of intron 14 | 0.0012 | - |
Sex | Age | DM Type | Age of Onset DM | Age of Onset Neuropathy | Max Pain during Night | Mean Pain during Night | Max Pain during Day | Mean Pain during Day | Potential Underlying Cause of Neuropathy | TTT | Positive Family History for Neuropathy | Variant |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 61 | DM2 | 34 | 54 | 6 | 4 | 5 | 3 | Adenoma of the thyroid gland, hypothyroidism | Abnormal (feet) | Yes | ANO3 p.(Ser213Phe) |
F | 68 | DM2 | 43 | 60 | 6 | 4 | 10 | 4 | Unknown | Normal | No | ANO3 p.(Ile453Val) |
M | 43 | DM2 | 34 | 37 | 0 | 0 | 8 | 2 | Slipped disk (three times) | Normal | No | ANO3 p.(Leu984Phe) |
M | 65 | DM2 | 57 | 65 | 9 | 9 | 4 | 3 | Back surgery after a car crash, slipped disk | Abnormal (feet and hands) | No | HCN1 p.(Arg405Gln) |
F | 75 | DM2 | 49 | 72 | 8 | 3 | 7 | 3 | Unknown | Abnormal (feet and hands) | No | KCNK18 p.(Phe139Trpfs*25) |
M | 77 | DM2 | 60 | - | - | - | - | - | - | - | - | KCNK18 p.(Tyr121Leufs*44) |
M | 48 | DM2 | 33 | - | - | - | - | - | - | - | No | TRPA1 p.(Ala828Leufs *17) TRPM8 p.(Glu479Asp) |
M | 65 | DM2 | 65 | 65 | 10 | 10 | 8 | 8 | Spine injury | Abnormal (feet) | No | TRPA1 p.(Leu118Val) |
M | 73 | DM2 | 58 | 69 | 8 | 6 | 8 | 6 | Unknown | Abnormal (feet) | No | TRPA1 p.(Arg652*) |
M | 57 | DM2 | 18 | 46 | 7 | 0 | 7 | 0 | Hypothyroidism | Abnormal (feet and hands) | Yes | TRPA8 p.(Val705Glyfs*79) |
F | 77 | DM2 | 75 | 75 | 9 | 5 | 9 | 6 | Hypothyroidism | Abnormal (feet and hands) | No | TRPM8 p.(Thr732Ile) |
M | 73 | DM1 | 8 | - | - | - | - | - | - | - | - | TRPV4 p.? |
Gene | c. Position & | p. Position | Number of Patients | Classification Based Richards et al. [22] | Location | MAF GnomAD (%) | Ref. |
---|---|---|---|---|---|---|---|
ANO1 | c.1892G>A | p.(Arg631Gln) | 1 | VUS | Linker between transmembrane domain V and VI | 0.012 | - |
KCNK18 | c.414_415del | p.(Phe139Trpfs*25) | 1 | VUS | Exon 3, the new reading frame ends in a STOP codon at position 25 | 0.043 | [19,20,21,23] |
c.361dup | p.(Tyr121Leufs*44) | 2 | VUS | Exon 3, the new reading frame ends in a STOP codon at position 44 | 0.024 | [19] | |
KCNQ3 | c.1226C>G | p.(Pro409Arg) | 1 | VUS | C-terminus | 0.067 | - |
TRPA1 | c.352C>G | p.(Leu118Val) | 1 | VUS | Ankyrin repeat II-containing domain | 0.047 | - |
c.1980C>A | p.(Phe660Leu) | 1 | VUS | Cytoplasmic domain between ANK repeats and transmembrane domain I | 0.01 | - | |
TRPM8 | c.2956G>A | p.(Val986Ile) | 1 | VUS | C-terminus | 0.002 | - |
TRPV1 | c.1450G>C | p.(Gly484Arg) | 1 | VUS | Transmembrane domain II | 0 | - |
c.1781C>T | p.(Ala594Val) | 1 | VUS | Transmembrane domain V | 0.042 | - | |
c.1790C>T | p.(Thr597Met) | 1 | VUS | Transmembrane domain V | 0.0021 | - | |
TRPV4 | c.711A>G | p.? # | 1 | VUS | Ankyrin repeat I-containing domain | 0.0008 | - |
c.958C>T | p.(Arg320*) | 1 | VUS | N-terminus | 0.0039 | - | |
c.1039G>T | p.(Asp347Tyr) | 1 | VUS | N-terminus | 0.018 | - |
Sex | Age | DM Type | Age of Onset DM | Age of Onset Neuropathy | Potential Underlying Cause of Neuropathy | TTT | Positive Family History for Neuropathy | Variant |
---|---|---|---|---|---|---|---|---|
M | 78 | DM2 | 55 | - | - | - | No | ANO1 p.(Arg631Gln) |
M | 68 | DM2 | 64 | - | - | - | - | KCNK18 p.(Phe139Trpfs*25) |
M | 50 | DM2 | 46 | - | - | - | No | KCNK18 p.(Tyr121Leufs*44) |
M | 73 | DM2 | 57 | - | - | - | - | KCNK18 p.(Tyr121Leufs*44) |
M | 69 | DM1 | 13 | - | - | - | - | KCNQ3 p.(Pro409Arg) |
F | 61 | DM1 | 32 | 61 | Thyroidectomy | Abnormal (feet) | Yes | TRPA1 p.(Leu118Val) |
F | 39 | DM2 | 26 | - | - | - | - | TRPA1 p.(Phe660Leu) |
M | 81 | DM2 | 66 | 78 | Hypothyroidism | Abnormal (hands and feet) | No | TRPM8 p.(Val986Ile) |
M | 54 | DM1 | 7 | - | - | - | - | TRPV1 p.(Gly484Arg) |
F | 62 | DM2 | 60 | - | - | - | - | TRPV1 p.(Ala594Val) |
M | 43 | DM1 | 17 | 35 | Unknown | Abnormal (hands and feet) | Yes | TRPV1 p.(Thr597Met) |
M | 76 | DM1 | 23 | 66 | Slipped disc LS 5/S1 | Normal | No | TRPV4 p.? |
M | 52 | DM2 | 50 | - | - | - | - | TRPV4 p.(Arg320*) |
M | 67 | DM2 | 67 | 68 | - | Normal | No | TRPV4 p.(Asp347Tyr) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślęczkowska, M.; Almomani, R.; Marchi, M.; de Greef, B.T.A.; Sopacua, M.; Hoeijmakers, J.G.J.; Lindsey, P.; Salvi, E.; Bönhof, G.J.; Ziegler, D.; et al. Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy. Int. J. Mol. Sci. 2022, 23, 7190. https://doi.org/10.3390/ijms23137190
Ślęczkowska M, Almomani R, Marchi M, de Greef BTA, Sopacua M, Hoeijmakers JGJ, Lindsey P, Salvi E, Bönhof GJ, Ziegler D, et al. Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy. International Journal of Molecular Sciences. 2022; 23(13):7190. https://doi.org/10.3390/ijms23137190
Chicago/Turabian StyleŚlęczkowska, Milena, Rowida Almomani, Margherita Marchi, Bianca T. A. de Greef, Maurice Sopacua, Janneke G. J. Hoeijmakers, Patrick Lindsey, Erika Salvi, Gidon J. Bönhof, Dan Ziegler, and et al. 2022. "Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy" International Journal of Molecular Sciences 23, no. 13: 7190. https://doi.org/10.3390/ijms23137190
APA StyleŚlęczkowska, M., Almomani, R., Marchi, M., de Greef, B. T. A., Sopacua, M., Hoeijmakers, J. G. J., Lindsey, P., Salvi, E., Bönhof, G. J., Ziegler, D., Malik, R. A., Waxman, S. G., Lauria, G., Faber, C. G., Smeets, H. J. M., & Gerrits, M. M. (2022). Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy. International Journal of Molecular Sciences, 23(13), 7190. https://doi.org/10.3390/ijms23137190