Flt3 Signaling in B Lymphocyte Development and Humoral Immunity
Abstract
:1. Introduction
2. Molecular and Cellular Regulation of Flt3 and FL
3. Flt3 Is Dispensable for HSC Generation and Maintenance
4. Flt3 Signaling as a Driver of HSC Activation and Lymphopoiesis
5. Flt3 Signaling in B Lymphopoiesis
6. Regulation of Peripheral B Development by Flt3/FL
7. Conclusions and Future Directions
Funding
Conflicts of Interest
Abbreviations
FL | Flt3-ligand |
LT-HSC | long-term hematopoietic stem cell |
ST-HSC | short-term hematopoietic stem cell |
LSK+ | Lineage-negative Sca-1+ ckit+ |
CMP | common myeloid progenitor |
CLP | common lymphoid progenitor |
GMP | granulocyte/monocyte progenitor |
MEP | megakaryocyte/erythroid progenitor |
LMPP | lymphoid-biased multipotential progenitor |
BM | bone marrow |
References
- Parcells, B.W.; Ikeda, A.K.; Simms-Waldrip, T.; Moore, T.B.; Sakamoto, K.M. FMS-Like Tyrosine Kinase 3 in Normal Hematopoiesis and Acute Myeloid Leukemia. Stem Cells 2006, 24, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, J.; Mansson, R.; Buza-Vidas, N.; Hultquist, A.; Liuba, K.; Jensen, C.T.; Bryder, D.; Yang, L.; Borge, O.-J.; Thoren, L.A.; et al. Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential: A Revised Road Map for Adult Blood Lineage Commitment. Cell 2005, 121, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Lyman, S.D.; James, L.; Escobar, S.; Downey, H.; De Vries, P.; Brasel, K.; Stocking, K.; Beckmann, M.P.; Copeland, N.G.; Cleveland, L.S. Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs. Oncogene 1995, 10, 149–157. [Google Scholar] [PubMed]
- McClanahan, T.; Culpepper, J.; Campbell, D.; Wagner, J.; Franz-Bacon, K.; Mattson, J.; Tsai, S.; Luh, J.; Guimaraes, M.J.; Mattei, M.G.; et al. Biochemical and genetic characterization of multiple splice variants of the Flt3 ligand. Blood 1996, 88, 3371–3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chklovskaia, E.; Jansen, W.; Nissen, C.; Lyman, S.D.; Rahner, C.; Landmann, L.; Wodnar-Filipowicz, A. Mechanism of flt3 ligand expression in bone marrow failure: Translocation from intracellular stores to the surface of T lymphocytes after chemotherapy-induced suppression of hematopoiesis. Blood 1999, 93, 2595–2604. [Google Scholar] [CrossRef] [PubMed]
- Sitnicka, E.; Bryder, D.; Theilgaard-Mönch, K.; Buza-Vidas, N.; Adolfsson, J.; Jacobsen, S.E.W. Key Role of flt3 Ligand in Regulation of the Common Lymphoid Progenitor but Not in Maintenance of the Hematopoietic Stem Cell Pool. Immunity 2002, 17, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Mackarehtschian, K.; Hardin, J.D.; Moore, K.A.; Boastm, S.; Goff, S.P.; Lemischka, I.R. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995, 3, 147–161. [Google Scholar] [CrossRef] [Green Version]
- McKenna, H.J.; Stocking, K.L.; Miller, R.E.; Brasel, K.; De Smedt, T.; Maraskovsky, E.; Maliszewski, C.R.; Lynch, D.H.; Smith, J.; Pulendran, B.; et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000, 95, 3489–3497. [Google Scholar] [CrossRef]
- Buza-Vidas, N.; Cheng, M.; Duarte, S.; Charoudeh, H.N.; Jacobsen, S.E.W.; Sitnicka, E. FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells. Blood 2009, 113, 3453–3460. [Google Scholar] [CrossRef]
- Buza-Vidas, N.; Woll, P.S.; Hultquist, A.; Duarte, S.; Lutteropp, M.; Bouriez-Jones, T.; Ferry, H.; Luc, S.; Jacobsen, S.E.W. FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood 2011, 118, 1544–1548. [Google Scholar] [CrossRef]
- Boyer, S.W.; Schroeder, A.V.; Smith-Berdan, S.; Forsberg, E.C. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell. 2011, 9, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, S.W.; Beaudin, A.E.; Forsberg, E.C. Mapping differentiation pathways from hematopoietic stem cells using Flk2/Flt3 lineage tracing. Cell Cycle 2012, 11, 3180–3188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudin, A.E.; Boyer, S.W.; Forsberg, E.C. Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non–self-renewing multipotent hematopoietic progenitor cells. Exp. Hematol. 2013, 42, 218–229.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudin, A.E.; Boyer, S.W.; Perez-Cunningham, J.; Hernandez, G.E.; Derderian, S.C.; Jujjavarapu, C.; Aaserude, E.; MacKenzie, T.; Forsberg, E.C. A Transient Developmental Hematopoietic Stem Cell Gives Rise to Innate-like B and T Cells. Cell Stem Cell 2016, 19, 768–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baena, A.R.Y.; Rajendiran, S.; Manso, B.A.; Krietsch, J.; Boyer, S.W.; Kirschmann, J.; Forsberg, E.C. New transgenic mouse models enabling pan-hematopoietic or selective hematopoietic stem cell depletion in vivo. Sci. Rep. 2022, 12, 3156. [Google Scholar] [CrossRef]
- Zriwil, A.; Böiers, C.; Kristiansen, T.A.; Wittmann, L.; Yuan, J.; Nerlov, C.; Sitnicka, E.; Jacobsen, S.E.W. Direct role ofFLT3 in regulation of early lymphoid progenitors. Br. J. Haematol. 2018, 183, 588–600. [Google Scholar] [CrossRef]
- Svensson, M.N.D.; Andersson, K.M.E.; Wasén, C.; Erlandsson, M.C.; Nurkkala-Karlsson, M.; Jonsson, I.-M.; Brisslert, M.; Bemark, M.; Bokarewa, M.I. Murine germinal center B cells require functional Fms-like tyrosine kinase 3 signaling for IgG1 class-switch recombination. Proc. Natl. Acad. Sci. USA 2015, 112, E6644–E6653. [Google Scholar] [CrossRef] [Green Version]
- Dolence, J.J.; Gwin, K.; Frank, E.; Medina, K.L. Threshold levels of Flt3-ligand are required for the generation and survival of lymphoid progenitors and B-cell precursors. Eur. J. Immunol. 2011, 41, 324–334. [Google Scholar] [CrossRef]
- Dolence, J.J.; Gwin, K.A.; Shapiro, M.B.; Medina, K.L. Flt3 signaling regulates the proliferation, survival, and maintenance of multipotent hematopoietic progenitors that generate B cell precursors. Exp. Hematol. 2014, 42, 380–393.e3. [Google Scholar] [CrossRef] [Green Version]
- Tsapogas, P.; Swee, L.K.; Nusser, A.; Nuber, N.; Kreuzaler, M.; Capoferri, G.; Rolink, H.; Ceredig, R.; Rolink, A. In vivo evidence for an instructive role of fms-like tyrosine kinase-3 (FLT3) ligand in hematopoietic development. Haematologica 2014, 99, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Gwin, K.A.; Shapiro, M.B.; Dolence, J.J.; Huang, Z.L.; Medina, K.L. Hoxa9 and Flt3 Signaling Synergistically Regulate an Early Checkpoint in Lymphopoiesis. J. Immunol. 2013, 191, 745–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornack, J.; Kawano, Y.; Garbi, N.; Hämmerling, G.J.; Melchers, F.; Tsuneto, M. Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150+long-term repopulating murine hematopoietic stem cells. Eur. J. Immunol. 2017, 47, 1477–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitnicka, E.; Brakebusch, C.; Martensson, I.-L.; Svensson-Frej, M.; Agace, W.; Sigvardsson, M.; Buza-Vidas, N.; Bryder, D.; M.Cilio, C.; Ahlenius, H.; et al. Complementary Signaling through flt3 and Interleukin-7 Receptor α Is Indispensable for Fetal and Adult B Cell Genesis. J. Exp. Med. 2003, 198, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- von Muenchow, L.; Alberti-Servera, L.; Klein, F.; Capoferri, G.; Finke, D.; Ceredig, R.; Rolink, A.; Tsapogas, P. Permissive roles of cytokines interleukin-7 and Flt3 ligand in mouse B-cell lineage commitment. Proc. Natl. Acad. Sci. USA 2016, 113, E8122–E8130. [Google Scholar] [CrossRef] [Green Version]
- Volpe, G.; Walton, D.S.; Del Pozzo, W.; Garcia, P.; Dassé, E.; O’Neill, L.P.; Griffiths, M.; Frampton, J.; Dumon, S. C/EBPα and MYB regulate FLT3 expression in AML. Leukemia 2013, 27, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Gwin, K.; Frank, E.; Bossou, A.; Medina, K.L. Hoxa9 Regulates Flt3 in Lymphohematopoietic Progenitors. J. Immunol. 2010, 185, 6572–6583. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, J.; Khaled, W.; Burke, S.; Li, P.; Chen, X.; Yang, W.; Jenkins, N.A.; Copeland, N.G.; Zhang, S.; et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med. 2012, 209, 2467–2483. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.L.; Carotta, S.; Corcoran, L.M.; Nutt, S.L. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 2006, 20, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Adolfsson, J.; Borge, O.J.; Bryder, D.; Theilgaard-Mönch, K.; Åstrand-Grundström, I.; Sitnicka, E.; Sasaki, Y.; Jacobsen, S.E. Upregulation of Flt3 Expression within the Bone Marrow Lin−Sca1+c-kit+ Stem Cell Compartment Is Accompanied by Loss of Self-Renewal Capacity. Immunity 2001, 15, 659–669. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Bryder, D.; Adolfsson, J.; Nygren, J.; Mansson, R.; Sigvardsson, M.; Jacobsen, S.E.W. Identification of Lin–Sca1+kit+CD34+Flt3– short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 2005, 105, 2717–2723. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.Y.; Kondo, M. Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. J. Exp. Med. 2006, 203, 1867–1873. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.Y.; Lin, S.M.; Kondo, M. Heterogeneity of Flt3-Expressing Multipotent Progenitors in Mouse Bone Marrow. J. Immunol. 2005, 175, 5016–5023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.; Laurenti, E.; Oser, G.; van der Wath, R.C.; Blanco-Bose, W.; Jaworski, M.; Offner, S.; Dunant, C.F.; Eshkind, L.; Bockamp, E.; et al. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell 2008, 135, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Mooney, C.J.; Cunningham, A.; Tsapogas, P.; Toellner, K.-M.; Brown, G. Selective Expression of Flt3 within the Mouse Hematopoietic Stem Cell Compartment. Int. J. Mol. Sci. 2017, 18, 1037. [Google Scholar] [CrossRef] [Green Version]
- Muzumdar, M.D.; Tasic, B.; Miyamichi, K.; Li, L.; Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 2007, 45, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Jamieson, C.H.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell 2009, 138, 271–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jönsson, M.; Engström, M.; Jönsson, J.-I. FLT3 ligand regulates apoptosis through AKT-dependent inactivation of transcription factor FoxO3. Biochem. Biophys. Res. Commun. 2004, 318, 899–903. [Google Scholar] [CrossRef]
- Miyamoto, K.; Araki, K.Y.; Naka, K.; Arai, F.; Takubo, K.; Yamazaki, S.; Matsuoka, S.; Miyamoto, T.; Ito, K.; Ohmura, M.; et al. Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool. Cell Stem Cell 2007, 1, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Drexler, H.G.; Quentmeier, H. Mini ReviewFLT3: Receptor and Ligand. Growth Factors 2004, 22, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-X.; Goetz, C.A.; Katerndahl, C.D.S.; Sakaguchi, N.; Farrar, M.A. A Flt3- and Ras-Dependent Pathway Primes B Cell Development by Inducing a State of IL-7 Responsiveness. J. Immunol. 2010, 184, 1728–1736. [Google Scholar] [CrossRef] [Green Version]
- Lyman, S.D.; Seaberg, M.; Hanna, R.; Zappone, J.; Brasel, K.; Abkowitz, J.L.; Prchal, J.T.; Schultz, J.C.; Shahidi, N.T. Plasma/serum levels of flt3 ligand are low in normal individuals and highly elevated in patients with Fanconi anemia and acquired aplastic anemia. Blood 1995, 86, 4091–4096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wodnar-Filipowicz, A.; Lyman, S.D.; Gratwohl, A.; Tichelli, A.; Speck, B.; Nissen, C. Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia. Blood 1996, 88, 4493–4499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chklovskaia, E.; Nissen, C.; Landmann, L.; Rahner, C.; Pfister, O.; Wodnar-Filipowicz, A. Cell-surface trafficking and release of flt3 ligand from T lymphocytes is induced by common cytokine receptor γ-chain signaling and inhibited by cyclosporin A. Blood 2001, 97, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Smith, J.L.; Caspary, G.; Brasel, K.; Pettit, D.; Maraskovsky, E.; Maliszewski, C.R. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 1999, 96, 1036–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobón, G.J.; Renaudineau, Y.; Hillion, S.; Cornec, D.; Devauchelle-Pensec, V.; Youinou, P.; Pers, J.-O. The Fms-like tyrosine kinase 3 ligand, a mediator of B cell survival, is also a marker of lymphoma in primary Sjögren’s syndrome. Arthritis Care Res. 2010, 62, 3447–3456. [Google Scholar] [CrossRef]
- Kallies, A.; Hasbold, J.; Fairfax, K.; Pridans, C.; Emslie, D.; McKenzie, B.S.; Lew, A.M.; Corcoran, L.M.; Hodgkin, P.D.; Tarlinton, D.M.; et al. Initiation of Plasma-Cell Differentiation Is Independent of the Transcription Factor Blimp-1. Immunity 2007, 26, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Dolence, J.J.; Gwin, K.A.; Shapiro, M.B.; Hsu, F.-C.; Shapiro, V.S.; Medina, K.L. Cell extrinsic alterations in splenic B cell maturation in Flt3-ligand knockout mice. Immun. Inflamm. Dis. 2015, 3, 103–117. [Google Scholar] [CrossRef]
Mouse Strain | BM and/or Peripheral B Cell Phenotypes | Functional Application | References |
---|---|---|---|
Flt3/Flk2-/- | Reductions in CLP and diminished frequencies of all BM B lineage cells. No reductions in HSC. | Determine the requirement for Flt3 in hematopoiesis, HSC maintenance in steady-state and upon hematopoietic stress. | [7,9] |
Flt3-Cretg/+ R26REYFP/+ | All HSC progeny, but not HSC, express EYFP. | Fate mapping. The flt3 promoter drives EYFP; all cells expressing Flt3 and their progeny are marked by EYFP expression. | [10] |
FlkSwitch | All HSC progeny, but not HSC, express GFP. Identification of fetal HSC with increased capacity to generate innate-like B and T cells. FL deficiency protects against myeloablative insult. | Fate mapping driven by Flk2Cre excision. All cells express membrane Tomato (mT) prior to Cre expression. Flk2 activated Cre excises mT and all recombined progeny are labeled GFP+. | [11,12,13,14] |
Flk2-Cre HSC-DTR | HSC specific cell death induced by administration of diphtheria toxin (DT) | Selective investigation of HSC biology under varying physiologic conditions. | [15] |
Flt3fl/fl Vav1-Cre | Flt3 signaling not required for establishment or maintenance of HSC in fetal or adult hematopoiesis. | Panhematopoietic loss of Flt3 in all hematopoietic cells. | [16] |
Flt3fl/fl Mx1-Cre | Reductions in Flt3+ MPP but no reductions in CLP suggesting Flt3 nonredundant for maintenance of CLP. | Hematopoietic loss of Flt3 in HSC and differentiated progeny. | [16] |
Flt3fl/fl Rag1-Cre | Reductions in frequencies of Flt3+ CLP; reductions in Pro-B, Pre-B, and IgM+ B cells in BM, suggesting requirement for Flt3 signaling after initiation of lymphoid gene expression. | Requirement for Flt3 signaling downstream of lymphoid priming in B cell development. Also used to evaluate requirement for Flt3 signaling in fetal hematopoiesis. | [16] |
Flt3l (FL)-/- | Reduced BM cellularity, numbers of Flt3+ MPP, CLP, BCP. Reduced spleen cellularity, reductions in numbers TS and FO, but not MZB cells. Defect in class switch recombination. | Determine the requirement for FL in the development of hematopoietic progenitors in BM and B cell maturation in the periphery. | [8,9,17] |
FL-/- Rag1GFP | Reduced GFP+ LSK+, GFP+ CLP, and GFP+ BCP. | Lymphoid/B lineage tracing and priming. | [18] |
FL+/- Rag1GFP | Reductions in flt3l mRNA and serum FL. Mice have reductions in GFP+ LSK+, GFP+ CLP, and GFP+ BCP. | Determination of dose-dependent requirement of FL in hematopoietic and lymphoid development. | [18] |
FL-/- Rag1GFP EmBcl2Tg | Increased MPP, CLP and Pro-B cells. No increase in lymphoid priming in LSK+ or CLP. | Impact of FL deficiency on the survival of lymphoid/B cell progenitors. | [19] |
FLT3L-Tg | Blood leukocytosis, splenomegaly, anemia, and reductions in platelets. Increase in BM lymphoid and myeloid progenitors. Reductions in PreB and IgM+ B cells in BM. | Determine the effect of FL overproduction on BM hematopoiesis and B cell differentiation. | [20] |
FL-/-Hoxa9-/- | Expanded frequencies in myeloid-biased HSC and more severe reductions in Flt3+ MPP, BLP and B cell subsets than in FL-/- or Hoxa9-/- single knockouts. | Determine the combinatorial roles of Hoxa9 and Flt3 signaling in regulation lymphoid/B cell development. | [21] |
FL-GFP | Discrimination of FL-GFPlo LT-HSC from FL-GFPhi proliferating ST-HSC. | Identification and characterization of hematopoietic and non-hematopoietic sources of FL. | [22] |
FL-/-IL7-/- | Complete ablation of BM and fetal liver derived B cells. No detectable serum immunoglobulin. | Determination of single versus complementary roles of FL and IL-7 in lymphocyte development. | [23] |
Flt3L-Tg IL7-/- | FL signaling is permissive for B cell survival and commitment but not IL-7 directed differentiation of Pro-B cells. | Determination if FL can bypass the requirement for IL-7 signaling in B cell development. | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, K.L. Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. Int. J. Mol. Sci. 2022, 23, 7289. https://doi.org/10.3390/ijms23137289
Medina KL. Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. International Journal of Molecular Sciences. 2022; 23(13):7289. https://doi.org/10.3390/ijms23137289
Chicago/Turabian StyleMedina, Kay L. 2022. "Flt3 Signaling in B Lymphocyte Development and Humoral Immunity" International Journal of Molecular Sciences 23, no. 13: 7289. https://doi.org/10.3390/ijms23137289
APA StyleMedina, K. L. (2022). Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. International Journal of Molecular Sciences, 23(13), 7289. https://doi.org/10.3390/ijms23137289