Peptidomic Approaches and Observations in Neurodegenerative Diseases
Abstract
:1. Introduction
2. Methods
3. Methods Used for the Peptidomic Analysis of Biofluids
4. History and Advancements in CSF Peptidome
5. CSF Peptidome in Alzheimer’s Disease
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schrader, M.; Schulz-Knappe, P.; Fricker, L.D. Historical perspective of peptidomics. EuPA Open Proteom. 2014, 3, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, W.M.; Starling, E.H. The mechanism of pancreatic secretion. J. Physiol. 1902, 28, 325–353. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.Y.; Lee, L.T.; Lai, C.H.; Vaudry, H.; Chan, Y.S.; Yung, W.H.; Chow, B.K. Secretin as a neurohypophysial factor regulating body water homeostasis. Proc. Natl. Acad. Sci. USA 2009, 106, 15961–15966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afroze, S.; Meng, F.; Jensen, K.; McDaniel, K.; Rahal, K.; Onori, P.; Gaudio, E.; Alpini, G.; Glaser, S.S. The physiological roles of secretin and its receptor. Ann. Transl. Med. 2013, 1, 29. [Google Scholar] [CrossRef]
- Wu, N.; Baiocchi, L.; Zhou, T.; Kennedy, L.; Ceci, L.; Meng, F.; Sato, K.; Wu, C.; Ekser, B.; Kyritsi, K.; et al. Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury. Hepatology 2020, 72, 2219–2227. [Google Scholar] [CrossRef]
- Artioli, G.G.; Sale, C.; Jones, R.L. Carnosine in health and disease. Eur. J. Sport Sci. 2019, 19, 30–39. [Google Scholar] [CrossRef]
- Malmsten, M.; Davoudi, M.; Walse, B.; Rydengard, V.; Pasupuleti, M.; Morgelin, M.; Schmidtchen, A. Antimicrobial peptides derived from growth factors. Growth Factors 2007, 25, 60–70. [Google Scholar] [CrossRef]
- Chong, C.; Coukos, G.; Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 2022, 40, 175–188. [Google Scholar] [CrossRef]
- Abbas, I.M.; Hoffmann, H.; Montes-Bayon, M.; Weller, M.G. Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples. Anal. Bioanal. Chem. 2018, 410, 3835–3846. [Google Scholar] [CrossRef]
- Hess, C.; Thomas, A.; Thevis, M.; Stratmann, B.; Quester, W.; Tschoepe, D.; Madea, B.; Musshoff, F. Simultaneous determination and validated quantification of human insulin and its synthetic analogues in human blood serum by immunoaffinity purification and liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 1813–1822. [Google Scholar] [CrossRef]
- Phetsanthad, A.; Vu, N.Q.; Yu, Q.; Buchberger, A.R.; Chen, Z.; Keller, C.; Li, L. Recent advances in mass spectrometry analysis of neuropeptides. Mass Spectrom. Rev. 2021, e21734. [Google Scholar] [CrossRef]
- Bergeron, F.; Leduc, R.; Day, R. Subtilase-like pro-protein convertases: From molecular specificity to therapeutic applications. J. Mol. Endocrinol. 2000, 24, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Boss, C.; Gatfield, J.; Brotschi, C.; Heidmann, B.; Sifferlen, T.; von Raumer, M.; Schmidt, G.; Williams, J.T.; Treiber, A.; Roch, C. The Quest for the Best Dual Orexin Receptor Antagonist (Daridorexant) for the Treatment of Insomnia Disorders. ChemMedChem 2020, 15, 2286–2305. [Google Scholar] [CrossRef]
- Duffet, L.; Kosar, S.; Panniello, M.; Viberti, B.; Bracey, E.; Zych, A.D.; Radoux-Mergault, A.; Zhou, X.; Dernic, J.; Ravotto, L.; et al. A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat. Methods 2022, 19, 231–241. [Google Scholar] [CrossRef]
- Marinova, Z.; Vukojevic, V.; Surcheva, S.; Yakovleva, T.; Cebers, G.; Pasikova, N.; Usynin, I.; Hugonin, L.; Fang, W.; Hallberg, M.; et al. Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J. Biol. Chem. 2005, 280, 26360–26370. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Corder, G.; Castro, D.C.; Bruchas, M.R.; Scherrer, G. Endogenous and Exogenous Opioids in Pain. Annu. Rev. Neurosci. 2018, 41, 453–473. [Google Scholar] [CrossRef]
- Song, Y.H.; Yoon, J.; Lee, S.H. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp. Mol. Med. 2021, 53, 328–338. [Google Scholar] [CrossRef]
- Ramos, B.; Baglietto-Vargas, D.; del Rio, J.C.; Moreno-Gonzalez, I.; Santa-Maria, C.; Jimenez, S.; Caballero, C.; Lopez-Tellez, J.F.; Khan, Z.U.; Ruano, D.; et al. Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1658–1672. [Google Scholar] [CrossRef]
- Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; Lofgreen, C.; Latendresse, S.; Petrova, A.; et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry 1999, 56, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Iwata, N.; Takaki, Y.; Fukami, S.; Tsubuki, S.; Saido, T.C. Region-specific reduction of A beta-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J. Neurosci. Res. 2002, 70, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef]
- Dunys, J.; Valverde, A.; Checler, F. Are N- and C-terminally truncated Abeta species key pathological triggers in Alzheimer’s disease? J. Biol. Chem. 2018, 293, 15419–15428. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.W.; Petrera, A.; Schilling, O. The emerging role of the peptidome in biomarker discovery and degradome profiling. Biol. Chem. 2015, 396, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Slavoff, S.A.; Mitchell, A.J.; Schwaid, A.G.; Cabili, M.N.; Ma, J.; Levin, J.Z.; Karger, A.D.; Budnik, B.A.; Rinn, J.L.; Saghatelian, A. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. 2013, 9, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foreman, R.E.; George, A.L.; Reimann, F.; Gribble, F.M.; Kay, R.G. Peptidomics: A Review of Clinical Applications and Methodologies. J. Proteome Res. 2021, 20, 3782–3797. [Google Scholar] [CrossRef] [PubMed]
- Vitorino, R. Digging Deep into Peptidomics Applied to Body Fluids. Proteomics 2018, 18, 1700401. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Korecka, M.; Toledo, J.B.; Trojanowski, J.Q.; Shaw, L.M. Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin. Chem. 2013, 59, 903–916. [Google Scholar] [CrossRef]
- Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef]
- Oeckl, P.; Weydt, P.; Thal, D.R.; Weishaupt, J.H.; Ludolph, A.C.; Otto, M. Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis. Acta Neuropathol. 2020, 139, 119–134. [Google Scholar] [CrossRef]
- Oeckl, P.; Metzger, F.; Nagl, M.; von Arnim, C.A.; Halbgebauer, S.; Steinacker, P.; Ludolph, A.C.; Otto, M. Alpha-, Beta-, and Gamma-synuclein Quantification in Cerebrospinal Fluid by Multiple Reaction Monitoring Reveals Increased Concentrations in Alzheimer’s and Creutzfeldt-Jakob Disease but No Alteration in Synucleinopathies. Mol. Cell. Proteom. 2016, 15, 3126–3138. [Google Scholar] [CrossRef] [Green Version]
- Distelmaier, K.; Muqaku, B.; Wurm, R.; Arfsten, H.; Seidel, S.; Kovacs, G.G.; Mayer, R.L.; Szekeres, T.; Wallisch, C.; Hubner, P.; et al. Proteomics-Enriched Prediction Model for Poor Neurologic Outcome in Cardiac Arrest Survivors. Crit. Care Med. 2020, 48, 167–175. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Desiderio, D.M. Proteomics analysis of human cerebrospinal fluid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 815, 179–189. [Google Scholar] [CrossRef]
- Parker, B.L.; Burchfield, J.G.; Clayton, D.; Geddes, T.A.; Payne, R.J.; Kiens, B.; Wojtaszewski, J.F.P.; Richter, E.A.; James, D.E. Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Mol. Cell. Proteom. 2017, 16, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Wijte, D.; McDonnell, L.A.; Balog, C.I.; Bossers, K.; Deelder, A.M.; Swaab, D.F.; Verhaagen, J.; Mayboroda, O.A. A novel peptidomics approach to detect markers of Alzheimer’s disease in cerebrospinal fluid. Methods 2012, 56, 500–507. [Google Scholar] [CrossRef]
- Florentinus-Mefailoski, A.; Bowden, P.; Scheltens, P.; Killestein, J.; Teunissen, C.; Marshall, J.G. The plasma peptides of Alzheimer’s disease. Clin. Proteom. 2021, 18, 17. [Google Scholar] [CrossRef]
- Holtta, M.; Minthon, L.; Hansson, O.; Holmen-Larsson, J.; Pike, I.; Ward, M.; Kuhn, K.; Ruetschi, U.; Zetterberg, H.; Blennow, K.; et al. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J. Proteome Res. 2015, 14, 654–663. [Google Scholar] [CrossRef]
- Hansson, K.T.; Skillback, T.; Pernevik, E.; Kern, S.; Portelius, E.; Hoglund, K.; Brinkmalm, G.; Holmen-Larsson, J.; Blennow, K.; Zetterberg, H.; et al. Expanding the cerebrospinal fluid endopeptidome. Proteomics 2017, 17, 1600384. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.S.; Moggridge, S.; Muller, T.; Sorensen, P.H.; Morin, G.B.; Krijgsveld, J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019, 14, 68–85. [Google Scholar] [CrossRef]
- Jimenez, C.R.; Koel-Simmelink, M.; Pham, T.V.; van der Voort, L.; Teunissen, C.E. Endogeneous peptide profiling of cerebrospinal fluid by MALDI-TOF mass spectrometry: Optimization of magnetic bead-based peptide capture and analysis of preanalytical variables. Proteom. Clin. Appl. 2007, 1, 1385–1392. [Google Scholar] [CrossRef]
- Bruegel, M.; Planert, M.; Baumann, S.; Focke, A.; Bergh, F.T.; Leichtle, A.; Ceglarek, U.; Thiery, J.; Fiedler, G.M. Standardized peptidome profiling of human cerebrospinal fluid by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Proteom. 2009, 72, 608–615. [Google Scholar] [CrossRef]
- Yuan, X.; Desiderio, D.M. Human cerebrospinal fluid peptidomics. J. Mass Spectrom. 2005, 40, 176–181. [Google Scholar] [CrossRef]
- Zougman, A.; Pilch, B.; Podtelejnikov, A.; Kiehntopf, M.; Schnabel, C.; Kumar, C.; Mann, M. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J. Proteome Res. 2008, 7, 386–399. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.; Zhang, W.; Zhang, Z.; Lajoie, G.A.; Ma, B. PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteom. 2012, 11, M111.010587. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, D.; Yu, Q.; Johnson, J.; Shipman, R.; Zhong, X.; Huang, J.; Yu, Q.; Zetterberg, H.; Asthana, S.; et al. In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD) Patients. ACS Chem. Biol. 2021. [Google Scholar] [CrossRef]
- Michalski, A.; Damoc, E.; Hauschild, J.P.; Lange, O.; Wieghaus, A.; Makarov, A.; Nagaraj, N.; Cox, J.; Mann, M.; Horning, S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteom. 2011, 10, M111.011015. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef]
- Brosch, M.; Swamy, S.; Hubbard, T.; Choudhary, J. Comparison of Mascot and X!Tandem performance for low and high accuracy mass spectrometry and the development of an adjusted Mascot threshold. Mol. Cell. Proteom. 2008, 7, 962–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eng, J.K.; McCormack, A.L.; Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, M.; Yin, S.; Jang, R.; Wang, J.; Xue, Z.; Xu, T. NeuroPep: A comprehensive resource of neuropeptides. Database 2015, 2015, bav038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, M.; Danielsson, O.; Griffiths, W.J.; Jornvall, H.; Johansson, J. Peptide repertoire of human cerebrospinal fluid: Novel proteolytic fragments of neuroendocrine proteins. J. Chromatogr. B Biomed. Sci. Appl. 2001, 754, 357–367. [Google Scholar] [CrossRef]
- Schwartz, T.W. The processing of peptide precursors. ‘Proline-directed arginyl cleavage’ and other monobasic processing mechanisms. FEBS Lett. 1986, 200, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Heine, G.; Zucht, H.D.; Schuhmann, M.U.; Burger, K.; Jurgens, M.; Zumkeller, M.; Schneekloth, C.G.; Hampel, H.; Schulz-Knappe, P.; Selle, H. High-resolution peptide mapping of cerebrospinal fluid: A novel concept for diagnosis and research in central nervous system diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 782, 353–361. [Google Scholar] [CrossRef]
- Mohring, T.; Kellmann, M.; Jurgens, M.; Schrader, M. Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J. Mass Spectrom. 2005, 40, 214–226. [Google Scholar] [CrossRef]
- Menzel, C.; Guillou, V.; Kellmann, M.; Khamenya, V.; Juergens, M.; Schulz-Knappe, P. High-throughput biomarker discovery and identification by mass spectrometry. Comb. Chem. High Throughput Screen. 2005, 8, 743–755. [Google Scholar] [CrossRef]
- Holtta, M.; Zetterberg, H.; Mirgorodskaya, E.; Mattsson, N.; Blennow, K.; Gobom, J. Peptidome analysis of cerebrospinal fluid by LC-MALDI MS. PLoS ONE 2012, 7, e42555. [Google Scholar] [CrossRef] [Green Version]
- Holtta, M.; Dean, R.A.; Siemers, E.; Mawuenyega, K.G.; Sigurdson, W.; May, P.C.; Holtzman, D.M.; Portelius, E.; Zetterberg, H.; Bateman, R.J.; et al. A single dose of the gamma-secretase inhibitor semagacestat alters the cerebrospinal fluid peptidome in humans. Alzheimers Res. Ther. 2016, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Carrette, O.; Demalte, I.; Scherl, A.; Yalkinoglu, O.; Corthals, G.; Burkhard, P.; Hochstrasser, D.F.; Sanchez, J.C. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 2003, 3, 1486–1494. [Google Scholar] [CrossRef]
- Carrette, O.; Burkhard, P.R.; Hughes, S.; Hochstrasser, D.F.; Sanchez, J.C. Truncated cystatin C in cerebrospiral fluid: Technical [corrected] artefact or biological process? Proteomics 2005, 5, 3060–3065. [Google Scholar] [CrossRef]
- Selle, H.; Lamerz, J.; Buerger, K.; Dessauer, A.; Hager, K.; Hampel, H.; Karl, J.; Kellmann, M.; Lannfelt, L.; Louhija, J.; et al. Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer’s disease. Comb. Chem. High Throughput Screen. 2005, 8, 801–806. [Google Scholar] [CrossRef]
- Golde, T.E. Inflammation takes on Alzheimer disease. Nat. Med. 2002, 8, 936–938. [Google Scholar] [CrossRef]
- Harrison, R.A.; Farries, T.C.; Northrop, F.D.; Lachmann, P.J.; Davis, A.E. Structure of C3f, a small peptide specifically released during inactivation of the third component of complement. Complement 1988, 5, 27–32. [Google Scholar] [CrossRef]
- Salisbury, J.P.; Boggio, K.J.; Hsu, Y.W.; Quijada, J.; Sivachenko, A.; Gloeckner, G.; Kowalski, P.J.; Easterling, M.L.; Rosbash, M.; Agar, J.N. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Mol. Brain 2013, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Ferri, G.L.; Possenti, R. vgf A neurotrophin-inducible gene expressed in neuroendocrine tissues. Trends Endocrinol. Metab. 1996, 7, 233–239. [Google Scholar] [CrossRef]
- Salton, S.R.; Ferri, G.L.; Hahm, S.; Snyder, S.E.; Wilson, A.J.; Possenti, R.; Levi, A. VGF: A novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front. Neuroendocrinol. 2000, 21, 199–219. [Google Scholar] [CrossRef]
- Quinn, J.P.; Kandigian, S.E.; Trombetta, B.A.; Arnold, S.E.; Carlyle, B.C. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun. 2021, 3, fcab261. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mondal, S.A.; Kumar, M.; Dutta, D. Proinflammatory and antiinflammatory attributes of fetuin-a: A novel hepatokine modulating cardiovascular and glycemic outcomes in metabolic syndrome. Endocr. Pract. 2014, 20, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Nilforooshan, R.; Weaving, G.; Tabet, N. Plasma fetuin-A is associated with the severity of cognitive impairment in mild-to-moderate Alzheimer’s disease. J. Alzheimers Dis. 2011, 24, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Puchades, M.; Hansson, S.F.; Nilsson, C.L.; Andreasen, N.; Blennow, K.; Davidsson, P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol. Brain Res. 2003, 118, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Usami, R.; Ichihara, S.; Kida, H.; Satoh, M.; Tomimoto, H.; Murata, M.; Oikawa, S. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease. Neurol. Res. 2017, 39, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Miller, V.M.; Levites, Y.; West, K.J.; Zwizinski, C.W.; Moore, B.D.; Troendle, F.J.; Bann, M.; Verbeeck, C.; Price, R.W.; et al. BRI2 (ITM2b) inhibits Abeta deposition in vivo. J. Neurosci. 2008, 28, 6030–6036. [Google Scholar] [CrossRef]
- Wang, J.; Cunningham, R.; Zetterberg, H.; Asthana, S.; Carlsson, C.; Okonkwo, O.; Li, L. Label-free quantitative comparison of cerebrospinal fluid glycoproteins and endogenous peptides in subjects with Alzheimer’s disease, mild cognitive impairment, and healthy individuals. Proteom. Clin. Appl. 2016, 10, 1225–1241. [Google Scholar] [CrossRef] [Green Version]
- Finehout, E.J.; Franck, Z.; Choe, L.H.; Relkin, N.; Lee, K.H. Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann. Neurol. 2007, 61, 120–129. [Google Scholar] [CrossRef]
- Hoshino, A.; Helwig, M.; Rezaei, S.; Berridge, C.; Eriksen, J.L.; Lindberg, I. A novel function for proSAAS as an amyloid anti-aggregant in Alzheimer’s disease. J. Neurochem. 2014, 128, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Jahn, H.; Wittke, S.; Zurbig, P.; Raedler, T.J.; Arlt, S.; Kellmann, M.; Mullen, W.; Eichenlaub, M.; Mischak, H.; Wiedemann, K. Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: Identification and prospective evaluation of new synaptic biomarkers. PLoS ONE 2011, 6, e26540. [Google Scholar] [CrossRef]
- Halim, A.; Brinkmalm, G.; Ruetschi, U.; Westman-Brinkmalm, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; Larson, G.; Nilsson, J. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. USA 2011, 108, 11848–11853. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.; Brinkmalm, G.; Ramadan, S.; Gilborne, L.; Noborn, F.; Blennow, K.; Wallin, A.; Svensson, J.; Abo-Riya, M.A.; Huang, X.; et al. Synthetic standard aided quantification and structural characterization of amyloid-beta glycopeptides enriched from cerebrospinal fluid of Alzheimer’s disease patients. Sci. Rep. 2019, 9, 5522. [Google Scholar] [CrossRef]
- Majerova, P.; Barath, P.; Michalicova, A.; Katina, S.; Novak, M.; Kovac, A. Changes of Cerebrospinal Fluid Peptides due to Tauopathy. J. Alzheimers Dis. 2017, 58, 507–520. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Hampel, H.; Zetterberg, H. Biomarkers in amyloid-beta immunotherapy trials in Alzheimer’s disease. Neuropsychopharmacology 2014, 39, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, M.; Sato, T.; Nagai, K.; Utagawa, I.; Suzuki, I.; Arito, M.; Iizuka, N.; Suematsu, N.; Okamoto, K.; Kato, T.; et al. Roles of serum fibrinogen alpha chain-derived peptides in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2014, 29, 808–818. [Google Scholar] [CrossRef]
- Abe, K.; Shang, J.; Shi, X.; Yamashita, T.; Hishikawa, N.; Takemoto, M.; Morihara, R.; Nakano, Y.; Ohta, Y.; Deguchi, K.; et al. A New Serum Biomarker Set to Detect Mild Cognitive Impairment and Alzheimer’s Disease by Peptidome Technology. J. Alzheimers Dis. 2020, 73, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Maes, E.; Oeyen, E.; Boonen, K.; Schildermans, K.; Mertens, I.; Pauwels, P.; Valkenborg, D.; Baggerman, G. The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrom. Rev. 2019, 38, 253–264. [Google Scholar] [CrossRef]
- Meier, F.; Brunner, A.D.; Koch, S.; Koch, H.; Lubeck, M.; Krause, M.; Goedecke, N.; Decker, J.; Kosinski, T.; Park, M.A.; et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteom. 2018, 17, 2534–2545. [Google Scholar] [CrossRef] [Green Version]
- Pfammatter, S.; Bonneil, E.; McManus, F.P.; Prasad, S.; Bailey, D.J.; Belford, M.; Dunyach, J.J.; Thibault, P. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Mol. Cell. Proteom. 2018, 17, 2051–2067. [Google Scholar] [CrossRef] [Green Version]
Protein Name | Gene Name | Regulated in AD | Reference |
---|---|---|---|
Alpha-2-HS-glycoprotein | AHSG | Down-regulated | [38,61] |
Alpha-2-HS-glycoprotein | AHSG | Up-regulated | [36,86] * |
Alpha-2-HS-glycoprotein (glycosylated) | AHSG | Down-regulated | [36] |
Amyloid beta A4 protein | APP | Down-regulated | [38,61] |
Amyloid-like protein 1 | APLP1 | Down-regulated | [38,61] |
Beta-2-microglobulin | B2M | Up-regulated | [62] |
Calsyntenin-1 | CLSTN1 | Down-regulated | [38] |
CD99 antigen-like protein 2 | CD99L2 | Down-regulated | [61] |
Chromogranin-A | CHGA | Up-regulated | [79] *** |
Chromogranin-A | CHGA | Down-regulated | [38] |
Clusterin (apolipoprotein-J) | CLU | Up-regulated | [79] *** |
Complement C4 factor (C4) | C4A | Up-regulated | [36] |
Complement component 1 Q subcomponent-binding protein, mitochondrial | C1QBP | Up-regulated | [37] ** |
Complement factor C2 | C2 | Up-regulated | [37] ** |
Complement factor C3 (C3f) | C3 | Down-regulated | [64] |
Complement factor C7 | C7 | Up-regulated | [37] ** |
Cystatin C | CST3 | Up-regulated | [62] |
Fibrinogen alpha chain | FGA | Down-regulated | [61] |
Fibrinogen alpha chain | FGA | Up-regulated | [85,86] * |
Fibrinogen beta chain | FGB | Down-regulated | [86] * |
Golgi apparatus protein 1 | GLG1 | Down-regulated | [61] |
Hyaluronan and proteoglycan link protein 2 | HAPLN2 | Down-regulated | [38] |
Integral membrane protein 2B | ITM2B | Down-regulated | [38] |
Integral membrane protein 2C | ITM2C | Down-regulated | [38] |
Metallothionein-1E | MT1E | Down-regulated | [61] |
Metallothionein-3 | MT3 | Down-regulated | [38] |
Neuroendocrine convertase 2 | PCSK2 | Down-regulated | [38] |
Neuromedin-S | NMS | Down-regulated | [38] |
Neuron specific protein family member 1 | Down-regulated | [38] | |
Neurosecretory protein VGF | VGF | Down-regulated | [36,38,62,64,79] *** |
Phospholemman | FXYD1 | Up-regulated | [79] *** |
Plasma protease C1 inhibitor | SERPING1 | Up-regulated | [86] * |
Prepronociceptin | PNOC | Down-regulated | [38] |
Proenkephalin-A | PENK | Down-regulated | [38] |
ProSAAS | PCSK1N | Up-regulated | [79] *** |
ProSAAS | PCSK1N | Down-regulated | [38,76] |
Prosaposin receptor GPR37 | GPR37 | Up-regulated | [82] |
Prostaglandin-H2 D-isomerase | PTGDS | Down-regulated | [38] |
Secretogranin-1 | CHGB | Down-regulated | [38] |
Secretogranin-2 | SCG2 | Down-regulated | [38] |
Secretogranin-3 | SCG3 | Down-regulated | [38] |
Serum albumin | ALB | Down-regulated | [38] |
Sodium/potassium/calcium exchanger 2 | SLC24A2 | Down-regulated | [38] |
Sortilin | SORT1 | Down-regulated | [38] |
Superoxide dismutase | SOD1 | Down-regulated | [38] |
Tachykinin-3 | TAC3 | Down-regulated | [38,61] |
Testican-1 | SPOCK1 | Down-regulated | [38,61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muqaku, B.; Oeckl, P. Peptidomic Approaches and Observations in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 7332. https://doi.org/10.3390/ijms23137332
Muqaku B, Oeckl P. Peptidomic Approaches and Observations in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2022; 23(13):7332. https://doi.org/10.3390/ijms23137332
Chicago/Turabian StyleMuqaku, Besnik, and Patrick Oeckl. 2022. "Peptidomic Approaches and Observations in Neurodegenerative Diseases" International Journal of Molecular Sciences 23, no. 13: 7332. https://doi.org/10.3390/ijms23137332
APA StyleMuqaku, B., & Oeckl, P. (2022). Peptidomic Approaches and Observations in Neurodegenerative Diseases. International Journal of Molecular Sciences, 23(13), 7332. https://doi.org/10.3390/ijms23137332