Purinergic Signaling in Oral Tissues
Abstract
:1. Introduction
2. Brief Outline of the Purine System as Intercellular Signal Network
Family | Name | Function | References |
---|---|---|---|
Nucleoside triphosphate diphosphohydrolases (NTPDases) | NTPDase 1/CD39 | ATP → AMP | [41] |
NTPDase 2 | ATP → ADP (sustained accumulation) | ||
NTPDases 3 and 8 | ATP → ADP (transient accumulation) | ||
Ectonucleotide pyrophosphatases/phospho- diesterases (ENPPs) | ENPP1 | ATP → AMP and PPi | [42] |
ENPP3 | ATP → ADP | ||
Alkaline phosphatases (APs) | Tissue-specific AP (TNAP) | PPi → Pi (mainly in mineralized tissues) | [43] |
AMP → ADO | [44] | ||
Acid phosphatases | Prostatic acid phosphatase (PAP) | AMP → ADO | [45] |
Ecto-5′-nucleotidase | e-5′-NT/CD73 | AMP → ADO | [38] |
Ecto- adenosine deaminase | e-ADA | ADO → INO | |
Purine-nucleoside phosphorylase | e-PNP | INO → HYPO |
3. Purinergic Signals in the Gustatory System
4. Purinergic Signaling in the Salivary Glands
5. Purinergic Signaling in Teeth and Periodontium
6. Purinergic Signal in Pathological Conditions of the Oral Cavity
7. Clinical Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A1R, A2AR, A2BR, A3R | adenosine receptor subtypes A1, A2A, A2B, A3 |
ABC | ATP binding cassette |
AD/EGCG-g-NOCC@clgn I | adenosine/epigallocatechingallate-N,O-carboxymethylchitosan/collagen type I |
AMPK | adenosine monophosphate-activated protein kinase |
APs | alkaline phosphatases |
CALHM | calcium homeostasis modulator |
CNT | concentrative nucleoside transporters |
CGRP | calcitonin gene-related peptide |
Cx | connexin |
DMP1 | dentin matrix protein 1 |
DPSCs | dental pulp stem cells |
DSPP | dental sialophosphoprotein |
e-ADA | ecto-adenosine deaminase |
ECM | extracellular matrix |
ENPPs | ectonucleotide pyrophosphatases/phosphodiesterases |
ENT | equilibrative nucleoside transporters |
ERK1/2 | extracellular signal-regulated kinase 1/2 |
EVs | extracellular vesicles |
GECs | gingival epithelial cells |
HDPCs | human dental pulp cells |
HLA | human leukocyte antigen |
HGF | human gingival fibroblasts |
HNC | head and neck cancer |
ICAM | intercellular adhesion molecule |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
MEK | mitogen-activated protein kinase |
MMPs | matrix metalloproteinases |
MSCs | mesenchymal stem cells |
NDK | nucleoside diphosphate kinase |
NLRP3 | NOD-like receptor pyrin domain-containing protein 3 |
NO | nitric oxide |
e-5′NT/CD73 | 5′-ectonucleotidase |
NTPDase | ecto-nucleotide diphosphohydrolase |
P2R | P2 receptors |
Panx | pannexin |
PAP | prostatic acid phosphatase |
PDLSCs | periodontal ligament stem cells |
PGE2 | prostaglandin E2 |
PLC/IP3-DAG | phospholipase C/inositol triphosphate-diacylglycerol |
PNP | purine nucleoside phosphorylase |
PYK2 | proline-rich tyrosine kinase 2 |
RANKL | receptor activator of nuclear factor kappa-B ligand |
RT | radiotherapy |
RT-PCR | retro-transcription protein chain polymerase |
SHEDs | human exfoliated deciduous teeth |
Shh | sonic hedgehog |
SMG | submandibular gland |
SNARE | soluble N-ethylmaleimide-sensitive factor attachment protein receptor |
STIM1 | stromal interaction molecule 1 |
SS | Sjögren’s syndrome |
TG | trigeminal ganglion |
TNAP | tissue-specific AP |
TRP | activation of transient receptor potential |
VCAM | vascular cell adhesion molecule |
VNUT | vesicular nucleotide transporter |
References
- Watson, J.D.; Crick, F.H.C. A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Dahm, R. Friedrich Miescher and the discovery of DNA. Dev. Biol. 2005, 278, 274–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.-G.; Huang, C.; et al. From purines to purinergic signalling: Molecular functions and human diseases. Signal Transduct. Target. Ther. 2021, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Purinergic receptors. J. Theor. Biol. 1976, 62, 491–503. [Google Scholar] [CrossRef]
- Burnstock, G. Introduction to Purinergic Signalling in the Brain. Adv. Exp. Med. Biol. 2020, 1202, 1–12. [Google Scholar] [CrossRef]
- Ben, D.D.; Antonioli, L.; Lambertucci, C.; Spinaci, A.; Fornai, M.; D’Antongiovanni, V.; Pellegrini, C.; Blandizzi, C.; Volpini, R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin. Drug Discov. 2020, 15, 687–703. [Google Scholar] [CrossRef]
- Antonioli, L.; Pacher, P.; Haskó, G. Adenosine and inflammation: It’s time to (re)solve the problem. Trends Pharmacol. Sci. 2022, 43, 43–55. [Google Scholar] [CrossRef]
- Jain, S.; Jacobson, K.A. Purinergic Signaling in Liver Pathophysiology. Front. Endocrinol. 2021, 12, 718429. [Google Scholar] [CrossRef]
- Jain, S.; Jacobson, K.A. Purinergic signaling in diabetes and metabolism. Biochem. Pharmacol. 2021, 187, 114393. [Google Scholar] [CrossRef]
- Monaghan, M.-L.T.; Bailey, M.A.; Unwin, R.J. Purinergic signalling in the kidney: In physiology and disease. Biochem. Pharmacol. 2021, 187, 114389. [Google Scholar] [CrossRef]
- Zhang, Y.; Wernly, B.; Cao, X.; Mustafa, S.J.; Tang, Y.; Zhou, Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res. Cardiol. 2021, 116, 22. [Google Scholar] [CrossRef]
- Lazarowski, E.R.; Boucher, R.C. Purinergic receptors in airway hydration. Biochem. Pharmacol. 2021, 187, 114387. [Google Scholar] [CrossRef]
- Dotiwala, A.K.; Samra, N.S. Anatomy: Head and Neck, Tongue; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lim, J.C.; Mitchell, C.H. Inflammation, Pain, and Pressure—Purinergic Signaling in Oral Tissues. J. Dent. Res. 2012, 91, 1103–1109. [Google Scholar] [CrossRef] [Green Version]
- Finger, T.; Kinnamon, S. Purinergic neurotransmission in the gustatory system. Auton. Neurosci. 2021, 236, 102874. [Google Scholar] [CrossRef]
- Khalafalla, M.G.; Woods, L.T.; Jasmer, K.J.; Forti, K.M.; Camden, J.M.; Jensen, J.L.; Limesand, K.H.; Galtung, H.K.; Weisman, G.A. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front. Pharmacol. 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Muñoz, M.; Hernández-Muñoz, R.; Butanda-Ochoa, A. Structure–activity features of purines and their receptors: Implications in cell physiopathology. Mol. Biomed. 2022, 3, 5. [Google Scholar] [CrossRef]
- Nelson, K.L.; Voruganti, V.S. Purine metabolites and complex diseases: Role of genes and nutrients. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 296–302. [Google Scholar] [CrossRef]
- Lazarowski, E.R. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal. 2012, 8, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Helenius, M.; Jalkanen, S.; Yegutkin, G.G. Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim. Biophys. Acta 2012, 1823, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
- Vultaggio-Poma, V.; Sarti, A.C.; Di Virgilio, F. Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020, 9, 2496. [Google Scholar] [CrossRef]
- Burnstock, G.; Verkhratsky, A. (Eds.) Mechanisms of ATP release and inactivation. In Purinergic Signaling and the Nervous System; Springer: Berlin/Heidelberg, Germany, 2012; pp. 79–118. [Google Scholar]
- Mielnicka, A.; Michaluk, P. Exocytosis in Astrocytes. Biomolecules 2021, 11, 1367. [Google Scholar] [CrossRef]
- Dosch, M.; Gerber, J.; Jebbawi, F.; Beldi, G. Mechanisms of ATP Release by Inflammatory Cells. Int. J. Mol. Sci. 2018, 19, 1222. [Google Scholar] [CrossRef] [Green Version]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release mechanisms of major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Kaebisch, C.; Schipper, D.; Babczyk, P.; Tobiasch, E. The role of purinergic receptors in stem cell differentiation. Comput. Struct. Biotechnol. J. 2014, 13, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Wright, N.J.; Lee, S.-Y. Toward a Molecular Basis of Cellular Nucleoside Transport in Humans. Chem. Rev. 2021, 121, 5336–5358. [Google Scholar] [CrossRef]
- Cano-Soldado, P.; Pastor-Anglada, M. Transporters that translocate nucleosides and structural similar drugs: Structural requirements for substrate recognition. Med. Res. Rev. 2012, 32, 428–457. [Google Scholar] [CrossRef]
- Ferrari, D.; McNamee, E.N.; Idzko, M.; Gambari, R.; Eltzschig, H.K. Purinergic Signaling During Immune Cell Trafficking. Trends Immunol. 2016, 37, 399–411. [Google Scholar] [CrossRef]
- Burnstock, G.; Ralevic, V. Purinergic Signaling and Blood Vessels in Health and Disease. Pharmacol. Rev. 2014, 66, 102–192. [Google Scholar] [CrossRef]
- Yegutkin, G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta 2008, 1783, 673–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnstock, G. Purinergic signalling: From discovery to current developments. Exp. Physiol. 2014, 99, 16–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnstock, G. Purine and pyrimidine receptors. Cell. Mol. Life Sci. 2007, 64, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Ijzerman, A.P.; Jacobson, K.A.; Müller, C.E.; Cronstein, B.N.; Cunha, R.A. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol. Rev. 2022, 74, 340–372. [Google Scholar] [CrossRef] [PubMed]
- Illes, P.; Müller, C.E.; Jacobson, K.A.; Grutter, T.; Nicke, A.; Fountain, S.J.; Kennedy, C.; Schmalzing, G.; Jarvis, M.F.; Stojilkovic, S.S.; et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br. J. Pharmacol. 2021, 178, 489–514. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Delicado, E.G.; Gachet, C.; Kennedy, C.; von Kügelgen, I.; Li, B.; Miras-Portugal, M.T.; Novak, I.; Schöneberg, T.; Perez-Sen, R.; et al. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br. J. Pharmacol. 2020, 177, 2413–2433. [Google Scholar] [CrossRef]
- Patritti-Cram, J.; Coover, R.A.; Jankowski, M.P.; Ratner, N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021, 69, 1837–1851. [Google Scholar] [CrossRef]
- Yegutkin, G.G. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: Functional implications and measurement of activities. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 473–497. [Google Scholar] [CrossRef]
- Losenkova, K.; Zuccarini, M.; Karikoski, M.; Laurila, J.; Boison, D.; Jalkanen, S.; Yegutkin, G.G. Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia. J. Cell Sci. 2020, 133, jcs241463. [Google Scholar] [CrossRef]
- Vultaggio-Poma, V.; Falzoni, S.; Salvi, G.; Giuliani, A.L.; Di Virgilio, F. Signalling by extracellular nucleotides in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119237. [Google Scholar] [CrossRef]
- Kukulski, F.; Lévesque, S.A.; Lavoie, É.G.; Lecka, J.; Bigonnesse, F.; Knowles, A.F.; Robson, S.C.; Kirley, T.L.; Sévigny, J. Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal. 2005, 1, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, H. Ectonucleotidases: Some recent developments and a note on nomenclature. Drug Dev. Res. 2001, 52, 44–56. [Google Scholar] [CrossRef]
- Patel, J.J.; Zhu, D.; Opdebeeck, B.; D’Haese, P.; Millán, J.L.; Bourne, L.E.; Wheeler-Jones, C.P.; Arnett, T.R.; Macrae, V.E.; Orriss, I.R. Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: The same functional effect mediated by different cellular mechanisms. J. Cell. Physiol. 2018, 233, 3230–3243. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.L. Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2006, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, H. Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal. 2009, 5, 273–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, R.; Ninomiya, Y. New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. Int. Rev. Cell Mol. Biol. 2010, 279, 101–134. [Google Scholar] [CrossRef] [PubMed]
- Finger, T.E.; Danilova, V.; Barrows, J.; Bartel, D.L.; Vigers, A.J.; Stone, L.; Hellekant, G.; Kinnamon, S.C. ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves. Science 2005, 310, 1495–1499. [Google Scholar] [CrossRef]
- Iwatsuki, K.; Ichikawa, R.; Hiasa, M.; Moriyama, Y.; Torii, K.; Uneyama, H. Identification of the vesicular nucleotide transporter (VNUT) in taste cells. Biochem. Biophys. Res. Commun. 2009, 388, 1–5. [Google Scholar] [CrossRef]
- Moriyama, Y.; Hiasa, M.; Sakamoto, S.; Omote, H.; Nomura, M. Vesicular nucleotide transporter (VNUT): Appearance of an actress on the stage of purinergic signaling. Purinergic Signal. 2017, 13, 387–404. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.L.; Sullivan, S.L.; Lavoie, E.G.; Sévigny, J.; Finger, T.E. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J. Comp. Neurol. 2006, 497, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vandenbeuch, A.; Anderson, C.B.; Parnes, J.; Enjyoji, K.; Robson, S.C.; Finger, T.E.; Kinnamon, S.C. Role of the ectonucleotidase NTPDase2 in taste bud function. Proc. Natl. Acad. Sci. USA 2013, 110, 14789–14794. [Google Scholar] [CrossRef] [Green Version]
- Taruno, A.; Nomura, K.; Kusakizako, T.; Ma, Z.; Nureki, O.; Foskett, J.K. Taste transduction and channel synapses in taste buds. Pflügers Arch. Eur. J. Physiol. 2021, 473, 3–13. [Google Scholar] [CrossRef]
- Nishida, K.; Dohi, Y.; Yamanaka, Y.; Miyata, A.; Tsukamoto, K.; Yabu, M.; Ohishi, A.; Nagasawa, K. Expression of adenosine A2b receptor in rat type II and III taste cells. Histochem. Cell Biol. 2014, 141, 499–506. [Google Scholar] [CrossRef]
- Choo, E.; Picket, B.; Dando, R. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste. J. Food Sci. 2017, 82, 2177–2182. [Google Scholar] [CrossRef]
- Henkin, R.I.; Knöppel, A.B.; Abdelmeguid, M.; Stateman, W.A.; Hosein, S. Theophylline increases saliva sonic hedgehog and improves taste dysfunction. Arch. Oral Biol. 2017, 82, 263–270. [Google Scholar] [CrossRef]
- Mistretta, C.M.; Kumari, A. Hedgehog Signaling Regulates Taste Organs and Oral Sensation: Distinctive Roles in the Epithelium, Stroma, and Innervation. Int. J. Mol. Sci. 2019, 20, 1341. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.P.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks. Molecules 2016, 21, 974. [Google Scholar] [CrossRef] [Green Version]
- Janitschke, D.; Lauer, A.A.; Bachmann, C.M.; Seyfried, M.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells. Int. J. Mol. Sci. 2020, 21, 9015. [Google Scholar] [CrossRef]
- Proctor, G.B. The physiology of salivary secretion. Periodontol. 2000 2016, 70, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Proctor, G.B.; Shaalan, A.M. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J. Dent. Res. 2021, 100, 1201–1209. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Bielas, M.; Zalewska, A.; Gerreth, K. Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. Oxid. Med. Cell. Longev. 2021, 2021, 5545330. [Google Scholar] [CrossRef]
- Langman, L.J. The Use of Oral Fluid for Therapeutic Drug Management: Clinical and Forensic Toxicology. Ann. N. Y. Acad. Sci. 2007, 1098, 145–166. [Google Scholar] [CrossRef]
- Gallez, F.; Fadel, M.; Scruel, O.; Cantraine, F.; Courtois, P. Salivary biomass assessed by bioluminescence ATP assay related to (bacterial and somatic) cell counts. Cell Biochem. Funct. 2000, 18, 103–108. [Google Scholar] [CrossRef]
- Turner, J.T.; Weisman, G.A.; Landon, L.A.; Park, M.; Camden, J.M. Salivary gland nucleotide receptors: Evidence for functional expression of both P2X and P2Y subtypes. Eur. J. Morphol. 1998, 36, 170–175. [Google Scholar] [PubMed]
- North, R.A. Molecular physiology of P2X receptors. Physiol. Rev. 2002, 82, 1013–1067. [Google Scholar] [CrossRef] [PubMed]
- Dehaye, J.P. ATP4− Increases the intracellular calcium concentration in rat submandibular glands. Gen. Pharmacol. 1993, 24, 1097–1100. [Google Scholar] [CrossRef]
- Hurley, T.W.; Shoemaker, D.D.; Ryan, M.P. Extracellular ATP prevents the release of stored Ca2+ by autonomic agonists in rat submandibular gland acini. Am. J. Physiol. 1993, 265, C1472–C1478. [Google Scholar] [CrossRef]
- Métioui, M.; Amsallem, H.; Alzola, E.; Chaib, N.; Elyamani, A.; Moran, A.; Marino, A.; Dehaye, J.P. Low affinity purinergic receptor modulates the response of rat submandibular glands to carbachol and substance P. J. Cell. Physiol. 1996, 168, 462–475. [Google Scholar] [CrossRef]
- Novak, I.; Jans, I.M.; Wohlfahrt, L. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J. Physiol. 2010, 588, 3615–3627. [Google Scholar] [CrossRef]
- Nakamoto, T.; Brown, D.A.; Catalán, M.A.; Gonzalez-Begne, M.; Romanenko, V.G.; Melvin, J.E. Purinergic P2X7 Receptors Mediate ATP-Induced Saliva Secretion by the Mouse Submandibular Gland. J. Biol. Chem. 2009, 284, 4815–4822. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Imbery, J.F.; Ampem, P.T.; Giovannucci, D.R. Crosstalk between purinergic receptors and canonical signaling pathways in the mouse salivary gland. Cell Calcium 2015, 58, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.A.; Bruce, J.I.E.; Straub, S.V.; Yule, D.I. cAMP Potentiates ATP-Evoked Calcium Signaling in Human Parotid Acinar Cells. J. Biol. Chem. 2004, 279, 39485–39494. [Google Scholar] [CrossRef] [Green Version]
- Baker, O.J.; Camden, J.M.; Ratchford, A.M.; Seye, C.I.; Erb, L.; Weisman, G.A. Differential coupling of the P2Y1 receptor to Gα14 and Gαq/11 proteins during the development of the rat salivary gland. Arch. Oral Biol. 2006, 51, 359–370. [Google Scholar] [CrossRef]
- Moriguchi-Mori, K.; Higashio, H.; Isobe, K.; Kumagai, M.; Sasaki, K.; Satoh, Y.-I.; Kuji, A.; Saino, T. P2Y purinoceptors mediate ATP-induced changes in intracellular calcium and amylase release in acinar cells of mouse parotid glands. Biomed. Res. 2016, 37, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Putney, J.W., Jr. Identification of Cellular Activation Mechanisms Associated with Salivary Secretion. Annu. Rev. Physiol. 1986, 48, 75–88. [Google Scholar] [CrossRef]
- Pereira, M.M.C.; Mills, C.L.; Dormer, R.L.; McPherson, M.A. Actions of adenosine A1 and A2 receptor antagonists on CFTR antibody-inhibited β-adrenergic mucin secretion response. Br. J. Pharmacol. 1998, 125, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Finkelberg, A.; Busch, L.; Reina, S.; Sterin-Borda, L.; Borda, E. Endogenous signalling system involved in parotid gland adenosine A(1) receptor-amylase release. Acta Physiol. 2006, 186, 29–36. [Google Scholar] [CrossRef]
- Ostuni, M.A.; Egido, P.; Peranzi, G.; Alonso, G.L.; Lacapere, J.-J.; Gonzalez, D.A. Characterization of a functional NTPDase in the endoplasmic reticulum of rat submandibular salivary gland. Physiol. Res. 2009, 58, 843–854. [Google Scholar] [CrossRef]
- González, D.A.; Egido, P.; Balcarcel, N.B.; Hattab, C.; van Haaster, M.M.B.; Pelletier, J.; Sévigny, J.; Ostuni, M.A. Rat submandibular glands secrete nanovesicles with NTPDase and 5′-nucleotidase activities. Purinergic Signal. 2015, 11, 107–116. [Google Scholar] [CrossRef] [Green Version]
- González, D.A.; van Haaster, M.M.B.; Villarruel, E.Q.; Hattab, C.; Ostuni, M.A.; Orman, B. Salivary extracellular vesicles can modulate purinergic signalling in oral tissues by combined ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase activities. Mol. Cell. Biochem. 2020, 463, 1–11. [Google Scholar] [CrossRef]
- Kittel, A.; Pelletier, J.; Bigonnesse, F.; Guckelberger, O.; Kordás, K.; Braun, N.; Robson, S.C.; Sévigny, J. Localization of Nucleoside Triphosphate Diphosphohydrolase-1 (NTPDase1) and NTPDase2 in Pancreas and Salivary Gland. J. Histochem. Cytochem. 2004, 52, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, E.G.; Gulbransen, B.D.; Martín-Satué, M.; Aliagas, E.; Sharkey, K.A.; Sévigny, J. Ectonucleotidases in the digestive system: Focus on NTPDase3 localization. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, 608–620. [Google Scholar] [CrossRef]
- Ishibashi, K.; Okamura, K.; Yamazaki, J. Involvement of apical P2Y2 receptor-regulated CFTR activity in muscarinic stimulation of Cl− reabsorption in rat submandibular gland. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1729–R1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.-X.; Wall, N.R.; Angelov, N.; Ririe, C.; Chen, J.W.; Boskovic, D.S.; Henkin, J.M. Changes in mRNA expression of adenosine receptors in human chronic periodontitis. Chin. J. Dent. Res. 2011, 14, 113–120. [Google Scholar] [PubMed]
- Yilmaz, Ö.; Yao, L.; Maeda, K.; Rose, T.M.; Lewis, E.L.; Duman, M.; Lamont, R.J.; Ojcius, D.M. ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell. Microbiol. 2008, 10, 863–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasova, K.R.; Yilmaz, Ö. Inflammasome Activation in Gingival Epithelial Cells. Methods Mol. Biol. 2022, 2459, 149–167. [Google Scholar] [CrossRef]
- Ito, M.; Arakawa, T.; Okayama, M.; Shitara, A.; Mizoguchi, I.; Takuma, T. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells. J. Investig. Clin. Dent. 2014, 5, 266–274. [Google Scholar] [CrossRef]
- Menéndez-Diaz, I.; Muriel, J.D.; García-Suárez, O.; Obaya, A.; Cal, S.; Cobo, J.; Vega, J.A.; Cobo, T. Periostin, dentin matrix protein 1 and P2rx7 ion channel in human teeth and periodontal ligament. Ann. Anat. 2018, 216, 103–111. [Google Scholar] [CrossRef]
- Ikeda, E.; Goto, T.; Gunjigake, K.; Kuroishi, K.; Ueda, M.; Kataoka, S.; Toyono, T.; Nakatomi, M.; Seta, Y.; Kitamura, C.; et al. Expression of Vesicular Nucleotide Transporter in Rat Odontoblasts. Acta Histochem. Cytochem. 2016, 49, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.M.; Jo, H.; Park, G.; Kim, Y.H.; Park, C.K.; Jung, S.J.; Chung, G.; Oh, S.B. Extracellular ATP Induces Calcium Signaling in Odontoblasts. J. Dent. Res. 2017, 96, 200–207. [Google Scholar] [CrossRef]
- Wang, W.; Yi, X.; Ren, Y.; Xie, Q. Effects of Adenosine Triphosphate on Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells. J. Endod. 2016, 42, 1483–1489. [Google Scholar] [CrossRef]
- Yi, X.; Wang, W.; Xie, Q. Adenosine receptors enhance the ATP-induced odontoblastic differentiation of human dental pulp cells. Biochem. Biophys. Res. Commun. 2018, 497, 850–856. [Google Scholar] [CrossRef]
- Yamagishi, H.; Shigematsu, K. Perspectives on Stem Cell-Based Regenerative Medicine with a Particular Emphasis on Mesenchymal Stem Cell Therapy. JMA J. 2022, 5, 36–43. [Google Scholar] [CrossRef]
- Smojver, I.; Katalinić, I.; Bjelica, R.; Gabrić, D.; Matišić, V.; Molnar, V.; Primorac, D. Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 1662. [Google Scholar] [CrossRef]
- Iwamoto, T.; Nakamura, T.; Ishikawa, M.; Yoshizaki, K.; Sugimoto, A.; Ida-Yonemochi, H.; Ohshima, H.; Saito, M.; Yamada, Y.; Fukumoto, S. Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities. PLoS ONE 2017, 12, e0177557. [Google Scholar] [CrossRef] [Green Version]
- Yamada, A.; Yoshizaki, K.; Ishikawa, M.; Saito, K.; Chiba, Y.; Fukumoto, E.; Hino, R.; Hoshikawa, S.; Chiba, M.; Nakamura, T.; et al. Connexin 43-Mediated Gap Junction Communication Regulates Ameloblast Differentiation via ERK1/2 Phosphorylation. Front. Physiol. 2021, 12, 748574. [Google Scholar] [CrossRef]
- Peng, B.; Xu, C.; Wang, S.; Zhang, Y.; Li, W. The Role of Connexin Hemichannels in Inflammatory Diseases. Biology 2022, 11, 237. [Google Scholar] [CrossRef]
- D’Alimonte, I.; Nargi, E.; Lannutti, A.; Marchisio, M.; Pierdomenico, L.; Costanzo, G.; Di Iorio, P.; Ballerini, P.; Giuliani, P.; Caciagli, F.; et al. Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling. Stem Cell Res. 2013, 11, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Sivasankar, V.; Ranganathan, K. Growth characteristics and expression of CD73 and CD146 in cells cultured from dental pulp. J. Investig. Clin. Dent. 2016, 7, 278–285. [Google Scholar] [CrossRef]
- Peng, H.; Hao, Y.; Mousawi, F.; Roger, S.; Li, J.; Sim, J.A.; Ponnambalam, S.; Yang, X.; Jiang, L.-H. Purinergic and Store-Operated Ca2+ Signaling Mechanisms in Mesenchymal Stem Cells and Their Roles in ATP-Induced Stimulation of Cell Migration. Stem Cells 2016, 34, 2102–2114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ye, D.; Ma, L.; Ren, Y.-F.; Dirksen, R.T.; Liu, X. Purinergic Signaling Modulates Survival/Proliferation of Human Dental Pulp Stem Cells. J. Dent. Res. 2019, 98, 242–249. [Google Scholar] [CrossRef]
- Gao, Q.; Cooper, P.R.; Walmsley, A.D.; Scheven, B.A. Role of Piezo Channels in Ultrasound-Stimulated Dental Stem Cells. J. Endod. 2017, 43, 1130–1136. [Google Scholar] [CrossRef] [Green Version]
- Mousawi, F.; Peng, H.; Li, J.; Ponnambalam, S.; Roger, S.; Zhao, H.; Yang, X.; Jiang, L.-H. Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells 2020, 38, 410–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.H. The orotrigeminal system. Handb. Clin. Neurol. 2019, 164, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Huang, M.; Yang, X.; Hou, J. Dental nerves: A neglected mediator of pulpitis. Int. Endod. J. 2021, 54, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Woods, L.T.; Camden, J.M.; Batek, J.M.; Petris, M.J.; Erb, L.; Weisman, G.A. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am. J. Physiol. Cell Physiol. 2012, 303, C790–C801. [Google Scholar] [CrossRef] [Green Version]
- Soare, A.Y.; Freeman, T.L.; Min, A.K.; Malik, H.S.; Osota, E.O.; Swartz, T.H. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol. Mol. Biol. Rev. 2021, 85, e00055-20. [Google Scholar] [CrossRef]
- Ramos-Junior, E.S.; Morandini, A.C.; Almeida-da-Silva, C.L.; Franco, E.J.; Potempa, J.; Nguyen, K.A.; Oliveira, A.C.; Zamboni, D.S.; Ojcius, D.M.; Scharfstein, J.; et al. A Dual Role for P2X7 Receptor during Porphyromonas gingivalis Infection. J. Dent. Res. 2015, 94, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Almeida-da-Silva, C.L.C.; Ramos-Junior, E.S.; Morandini, A.C.; Rocha, G.D.C.; Marinho, Y.; Tamura, A.S.; de Andrade, K.Q.; Bellio, M.; Savio, L.E.B.; Scharfstein, J.; et al. P2X7 receptor-mediated leukocyte recruitment and Porphyromonas gingivalis clearance requires IL-1β production and autocrine IL-1 receptor activation. Immunobiology 2019, 224, 50–59. [Google Scholar] [CrossRef]
- Spari, D.; Beldi, G. Extracellular ATP as an Inter-Kingdom Signaling Molecule: Release Mechanisms by Bacteria and Its Implication on the Host. Int. J. Mol. Sci. 2020, 21, 5590. [Google Scholar] [CrossRef]
- Binderman, I.; Gadban, N.; Yaffe, A. Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch. Oral Biol. 2017, 81, 131–135. [Google Scholar] [CrossRef]
- De Andrade, K.Q.; Almeida-da-Silva, C.L.C.; Ojcius, D.M.; Coutinho-Silva, R. Differential involvement of the canonical and noncanonical inflammasomes in the immune response against infection by the periodontal bacteria Porphyromonas gingivalis and Fusobacterium nucleatum. Curr. Res. Microb. Sci. 2021, 2, 100023. [Google Scholar] [CrossRef]
- Nathan, C.F.; Hibbs, J.B. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 1991, 3, 65–70. [Google Scholar] [CrossRef]
- Murakami, S.; Hashikawa, T.; Saho, T.; Takedachi, M.; Nozaki, T.; Shimabukuro, Y.; Okada, H. Adenosine regulates the IL-1β-induced cellular functions of human gingival fibroblasts. Int. Immunol. 2001, 13, 1533–1540. [Google Scholar] [CrossRef]
- Ramos-Junior, E.S.; Pedram, M.; Lee, R.E.; Exstrom, D.; Yilmaz, Ö.; Coutinho-Silva, R.; Ojcius, D.M.; Morandini, A.C. CD73-dependent adenosine dampens interleukin-1β-induced CXCL8 production in gingival fibroblasts: Association with heme oxygenase-1 and adenosine monophosphate-activated protein kinase. J. Periodontol. 2020, 91, 253–262. [Google Scholar] [CrossRef]
- Spooner, R.; DeGuzman, J.; Lee, K.L.; Yilmaz, Ö. Danger signal adenosine via adenosine 2a receptor stimulates growth of Porphyromonas gingivalis in primary gingival epithelial cells. Mol. Oral Microbiol. 2014, 29, 67–78. [Google Scholar] [CrossRef]
- Lee, J.S.; Yilmaz, Ö. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. Int. J. Mol. Sci. 2018, 19, 199. [Google Scholar] [CrossRef] [Green Version]
- Mörnstad, H.; Sundström, B. Adenosine triphosphate hydrolysis in rat dental tissues. A histochemical study to differentiate the enzymes involved. Histochem. Cell Biol. 1976, 47, 303–314. [Google Scholar] [CrossRef]
- González, D.A.; van Haaster, M.M.B.; Villarruel, E.Q.; Brandt, M.; Benítez, M.B.; Stranieri, G.M.; Orman, B. Histamine stimulates secretion of extracellular vesicles with nucleotidase activity in rat submandibular gland. Arch. Oral Biol. 2018, 85, 201–206. [Google Scholar] [CrossRef]
- Nemoto, E.; Gotoh, K.; Tsuchiya, M.; Sakisaka, Y.; Shimauchi, H. Extracellular ATP inhibits IL-1-induced MMP-1 expression through the action of CD39/nucleotidase triphosphate dephosphorylase-1 on human gingival fibroblasts. Int. Immunopharmacol. 2013, 17, 513–518. [Google Scholar] [CrossRef]
- Batista, E.L.B., Jr.; Deves, C.; Ayub, L.; da Silva, R.G.; Filho, L.C.C.; Basso, L.A.; Santos, D.S. Purine nucleoside phosphorylase activity and expression are upregulated in sites affected by periodontal disease. J. Periodontal Res. 2010, 45, 664–671. [Google Scholar] [CrossRef]
- Deves, C.; de Assunção, T.M.; Ducati, R.G.; Campos, M.M.; Basso, L.A.; Santos, D.S.; Batista, E.L., Jr. The transition state analog inhibitor of Purine Nucleoside Phosphorylase (PNP) Immucillin-H arrests bone loss in rat periodontal disease models. Bone 2013, 52, 167–175. [Google Scholar] [CrossRef]
- González-Ramírez, R.; Chen, Y.; Liedtke, W.B.; Morales-Lázaro, S.L. TRP Channels and Pain. In Neurobiology of TRP Channels; Emir, T.L.R., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; Chapter 8. [Google Scholar]
- Shibukawa, Y.; Sato, M.; Kimura, M.; Sobhan, U.; Shimada, M.; Nishiyama, A.; Kawaguchi, A.; Soya, M.; Kuroda, H.; Katakura, A.; et al. Odontoblasts as sensory receptors: Transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch. Eur. J. Physiol. 2015, 467, 843–863. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Yang, Y.; Ji, P.; Kong, J.; Wu, Q.; Si, H. Upregulation of the Purinergic Receptor Subtype P2X3 in the Trigeminal Ganglion Is Involved in Orofacial Pain Induced by Occlusal Interference in Rats. J. Oral Facial Pain Headache 2016, 30, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, A.; Sato, M.; Kimura, M.; Ichinohe, T.; Tazaki, M.; Shibukawa, Y. Expression and function of purinergic P2Y12 receptors in rat trigeminal ganglion neurons. Neurosci. Res. 2015, 98, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, S.; Okada, S.; Katagiri, A.; Saito, H.; Suzuki, T.; Komiya, H.; Kanno, K.; Ohara, K.; Iinuma, T.; Toyofuku, A.; et al. Interaction between calcitonin gene-related peptide-immunoreactive neurons and satellite cells via P2Y12 R in the trigeminal ganglion is involved in neuropathic tongue pain in rats. Eur. J. Oral Sci. 2017, 125, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Sowa, N.A.; Taylor-Blake, B.; Zylka, M.J. Ecto-5′-Nucleotidase (CD73) Inhibits Nociception by Hydrolyzing AMP to Adenosine in Nociceptive Circuits. J. Neurosci. 2010, 30, 2235–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawynok, J. Adenosine receptor targets for pain. Neuroscience 2015, 338, 1–18. [Google Scholar] [CrossRef]
- Ma, L.; Trinh, T.; Ren, Y.; Dirksen, R.T.; Liu, X. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway. PLoS ONE 2016, 11, e0164028. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Wang, Q.; Pelletier, J.; Fausther, M.; Sévigny, J.; Malmström, H.S.; Dirksen, R.T.; Ren, Y.-F. Expression of Ecto-ATPase NTPDase2 in Human Dental Pulp. J. Dent. Res. 2012, 91, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, L.; Zhang, S.; Ren, Y.-F.; Dirksen, R.T. CD73 Controls Extracellular Adenosine Generation in the Trigeminal Nociceptive Nerves. J. Dent. Res. 2017, 96, 671–677. [Google Scholar] [CrossRef]
- Ahn, J.S.; Camden, J.M.; Schrader, A.M.; Redman, R.S.; Turner, J.T. Reversible regulation of P2Y(2) nucleotide receptor expression in the duct-ligated rat submandibular gland. Am. J. Physiol. Cell Physiol. 2000, 279, C286–C294. [Google Scholar] [CrossRef]
- Hung, S.-C.; Choi, C.H.; Said-Sadier, N.; Johnson, L.; Atanasova, K.R.; Sellami, H.; Yilmaz, Ö.; Ojcius, D.M. P2X4 Assembles with P2X7 and Pannexin-1 in Gingival Epithelial Cells and Modulates ATP-Induced Reactive Oxygen Species Production and Inflammasome Activation. PLoS ONE 2013, 8, e70210. [Google Scholar] [CrossRef] [Green Version]
- Binderman, I.; Bahar, H.; Jacob-Hirsch, J.; Zeligson, S.; Amariglio, N.; Rechavi, G.; Shoham, S.; Yaffe, A. P2X4 Is Up-Regulated in Gingival Fibroblasts after Periodontal Surgery. J. Dent. Res. 2007, 86, 181–185. [Google Scholar] [CrossRef]
- Chew, J.R.J.; Chuah, S.J.; Teo, K.Y.W.; Zhang, S.; Lai, R.C.; Fu, J.H.; Lim, L.P.; Lim, S.K.; Toh, W.S. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019, 89, 252–264. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, Q.; Zhao, L.; Mao, J.; Huang, W.; Han, X.; Liu, Y. Periodontal Ligament Stem Cell-Derived Small Extracellular Vesicles Embedded in Matrigel Enhance Bone Repair through the Adenosine Receptor Signaling Pathway. Int. J. Nanomed. 2022, 17, 519–536. [Google Scholar] [CrossRef]
- Verma, N.K.; Kar, A.K.; Singh, A.; Jagdale, P.; Satija, N.K.; Ghosh, D.; Patnaik, S. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG-g-NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules 2021, 22, 3069–3083. [Google Scholar] [CrossRef]
- Emmerson, E.; May, A.J.; Berthoin, L.; Cruz-Pacheco, N.; Nathan, S.; Mattingly, A.J.; Chang, J.L.; Ryan, W.R.; Tward, A.D.; Knox, S.M. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol. Med. 2018, 10, e8051. [Google Scholar] [CrossRef]
- Yu, X.; Riemekasten, G.; Petersen, F. Autoantibodies against muscarinic acetylcholine receptor M3 in Sjogren’s syndrome and corresponding mouse models. Front. Biosci. 2018, 23, 2053–2064. [Google Scholar] [CrossRef]
- D’Agostino, C.; Elkashty, O.A.; Chivasso, C.; Perret, J.; Tran, S.D.; Delporte, C. Insight into Salivary Gland Aquaporins. Cells 2020, 9, 1547. [Google Scholar] [CrossRef]
- Jasmer, K.J.; Gilman, K.E.; Forti, K.M.; Weisman, G.A.; Limesand, K.H. Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J. Clin. Med. 2020, 9, 4095. [Google Scholar] [CrossRef]
- Khalafalla, M.G.; Woods, L.T.; Camden, J.M.; Khan, A.A.; Limesand, K.H.; Petris, M.J.; Erb, L.; Weisman, G.A. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J. Biol. Chem. 2017, 292, 16626–16637. [Google Scholar] [CrossRef] [Green Version]
- Gilman, K.E.; Camden, J.M.; Klein, R.R.; Zhang, Q.; Weisman, G.A.; Limesand, K.H. P2X7 receptor deletion suppresses γ-radiation-induced hyposalivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R687–R696. [Google Scholar] [CrossRef]
- Schrader, A.M.; Camden, J.M.; Weisman, G.A. P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjögren’s syndrome. Arch. Oral Biol. 2005, 50, 533–540. [Google Scholar] [CrossRef]
- Jasmer, K.J.; Woods, L.T.; Forti, K.M.; Martin, A.L.; Camden, J.M.; Colonna, M.; Weisman, G.A. P2Y2 receptor antagonism resolves sialadenitis and improves salivary flow in a Sjögren’s syndrome mouse model. Arch. Oral Biol. 2021, 124, 105067. [Google Scholar] [CrossRef]
- Woods, L.T.; Camden, J.M.; Khalafalla, M.G.; Petris, M.J.; Erb, L.; Ambrus, J.L., Jr.; Weisman, G.A. P2Y2 R deletion ameliorates sialadenitis in IL-14α-transgenic mice. Oral Dis. 2018, 24, 761–771. [Google Scholar] [CrossRef]
- Harris, T.H.; Wallace, M.R.; Huang, H.; Li, H.; Mohiuddeen, A.; Gong, Y.; Kompotiati, T.; Harrison, P.; Aukhil, I.; Shaddox, L.M. Association of P2RX7 functional variants with localized aggressive periodontitis. J. Periodontal Res. 2020, 55, 32–40. [Google Scholar] [CrossRef]
- Lester, S.; Stokes, L.; Skarratt, K.; Gu, B.J.; Sivils, K.L.; Lessard, C.J.; Wiley, J.S.; Rischmueller, M. Epistasis with HLA DR3 implicates the P2X7 receptor in the pathogenesis of primary Sjögren’s syndrome. Arthritis Res. Ther. 2013, 15, R71. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Lavado, N.; Nogueira, L.; Lopez, M.; Abreu, J.; Silva, H. Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption. Oral Dis. 2014, 20, 659–667. [Google Scholar] [CrossRef]
- Linhartova, P.B.; Cernochova, P.; Kastovsky, J.; Vrankova, Z.; Sirotkova, M.; Holla, L.I. Genetic determinants and post orthodontic external apical root resorption in Czech children. Oral Dis. 2017, 23, 29–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathological Condition | Involvement of the Purinergic System | Experimental Model | Activated Mechanisms | References |
---|---|---|---|---|
Inflammation | P2X7R | Mouse SMG cell aggregates | Membrane blebbing, increase of caspase activity, cleavage and release of α-fodrin (a supposed auto-antigen important in SS development) | [106] |
Inflammation in peridontal disease | P2X7R | In vitro and in vivo studies | Increased release of ATP by gingival fibroblasts and bacteria able to stimulate P2X7R. This event promotes leukocyte recruitment and the activation of a canonical pathway associated to NLRP3 inflammasome activation, followed by inflammatory cell secretion of cytokines, interleukin IL-1β, TNF and RANKL that further trigger alveolar bone resorption. These events have been observed mainly along periodontal infections due to P. gingivalis. | [107,108,109,110,111] |
Combined periodontal infection by P. gengivalis and F. nucleatum also activates P2X7R via ATP, additionally stimulating a non-canonical pathway coupled to the activity of caspase 11, which would also contribute to limit bacterial load. | [112] | |||
Inflammation | A1R and A2AR | HGFs | Stimulation of the two receptors by agonists synergistically increased IL-1β-induced IL-6 and IL-8 production and inhibited the adherence of IL-1β-stimulated HGF to activated lymphocytes, thus regulating the inflammatory responses. | [114] |
Inflammation | CD39, CD73 and adenosine receptors | HGFs | Stimulation of adenosine receptors with the nonselective agonist NECA inhibited, such as ATP, an IL-1β-induced CXCL8 secretion. This effect was mediated by activation of heme-oxygenase 1 (HO-1) and phosphorylated adeno-sine mono-phosphate–activated protein kinase (pAMPK). The inhibition of CD73 or adenosine receptors abrogated the ATP effect on CXCL8 secretion. | [115] |
The activity of CD39, metabolizing ATP and favoring adenosine format-ion, was implicated also in ATP-induced inhibition of MMP-1 expression in the same cells | [120] | |||
Inflammation | Ectonucleotidases | EVs from rat and human saliva | Enzyme secretion due to histamine stimulation in rats. | [119] |
Enzyme secretion due to periodontal disease in humans. | [80] | |||
Periodontal disease | PNP | Human gingival crevicular fluid | Presence of increased expression of the enzyme | [121] |
Rats | Enzyme inhibition in ligature-induced periodontal disease reduced bone loss | [122] | ||
Painful sensation | P2X3R | Odontoblasts | Dentinal pain upon receptor stimulation | [124] |
Hyperalgesia in temporomandibular joints | [125] | |||
Painful sensation | P2Y12R | Lingual nerve injury in rats | Involved in the neuropathic pain in the tongue | [126] |
Painful sensation | NTPDases 3 and CD73 | TG nociceptive neurons | All these enzymes are presumed to participate in the nociceptive modulation | [130,132] |
NTDPases 2 | Dental pulp odontoblasts | [131] | ||
Inflammation | P2Y2R | Duct-ligated rat SMG | Receptor upregulation caus-ed by increased ATP release that stimulated IL-1β and other cytokine release | [133] |
Experimental infection coupled to inflammation | P2X7R/P2X4R cooperation | P. gingivalis infection of hGECs | Activation of the two receptors by ATP stimulated ROS production, NLRP3 inflammasome activation and IL-1β release | [134] |
Periodontal surgery | P2X4R | Rat | Increased receptor express-ion consequent to surgical detachment of marginal gingiva. P2X4R stimulation by ATP released by damaged cells led to direct activation of osteoclasts on bone surface increasing bone loss | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuccarini, M.; Giuliani, P.; Ronci, M.; Caciagli, F.; Caruso, V.; Ciccarelli, R.; Di Iorio, P. Purinergic Signaling in Oral Tissues. Int. J. Mol. Sci. 2022, 23, 7790. https://doi.org/10.3390/ijms23147790
Zuccarini M, Giuliani P, Ronci M, Caciagli F, Caruso V, Ciccarelli R, Di Iorio P. Purinergic Signaling in Oral Tissues. International Journal of Molecular Sciences. 2022; 23(14):7790. https://doi.org/10.3390/ijms23147790
Chicago/Turabian StyleZuccarini, Mariachiara, Patricia Giuliani, Maurizio Ronci, Francesco Caciagli, Vanni Caruso, Renata Ciccarelli, and Patrizia Di Iorio. 2022. "Purinergic Signaling in Oral Tissues" International Journal of Molecular Sciences 23, no. 14: 7790. https://doi.org/10.3390/ijms23147790
APA StyleZuccarini, M., Giuliani, P., Ronci, M., Caciagli, F., Caruso, V., Ciccarelli, R., & Di Iorio, P. (2022). Purinergic Signaling in Oral Tissues. International Journal of Molecular Sciences, 23(14), 7790. https://doi.org/10.3390/ijms23147790