Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease
Abstract
:1. Introduction
2. Results
2.1. Cohort Characteristics
2.2. Fragments of Type I, III, IV, and VI Collagen and Serum Calprotectin Are Elevated at Baseline in Patients with Crohn’s Disease Who Discontinue the Use of Vedolizumab within 12 Months after the Start of Induction
2.3. Discriminative Accuracy of Serum Levels of Type I, III, IV, and VI Collagen Fragments Regarding Long-Term VEDO Treatment
2.4. The Proportion of Long-Term VEDO Users Decreases in a Concentration-Dependent Manner across Tertile Levels of Collagen Turnover and Neutrophil Activity
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Biomarker Assays
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Z.; Li, Y.Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.H.; Ainsworth, M.A. Tumor Necrosis Factor Inhibitors for Inflammatory Bowel Disease. N. Engl. J. Med. 2013, 369, 754–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, B.E.; Feagan, B.G.; Rutgeerts, P.; Colombel, J.F.; Sandborn, W.J.; Sy, R.; D’Haens, G.; Ben-Horin, S.; Xu, J.; Rosario, M.; et al. Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology 2014, 147, 618–627.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soendergaard, C.; Seidelin, J.B.; Steenholdt, C.; Nielsen, O.H. Putative biomarkers of vedolizumab resistance and underlying inflammatory pathways involved in IBD. BMJ Open Gastroenterol. 2018, 5, e000208. [Google Scholar] [CrossRef]
- Noor, N.M.; Verstockt, B.; Parkes, M.; Lee, J.C. Personalised medicine in Crohn’s disease. Lancet Gastroenterol. Hepatol. 2020, 5, 80–92. [Google Scholar] [CrossRef]
- Yanai, H.; Hanauer, S.B. Assessing response and loss of response to biological therapies in IBD. Am. J. Gastroenterol. 2011, 106, 685–698. [Google Scholar] [CrossRef]
- Mortensen, J.H.; Lindholm, M.; Langholm, L.L.; Kjeldsen, J.; Bay-Jensen, A.C.; Karsdal, M.A.; Manon-Jensen, T. The intestinal tissue homeostasis—The role of extracellular matrix remodeling in inflammatory bowel disease. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 977–993. [Google Scholar] [CrossRef]
- Shimshoni, E.; Yablecovitch, D.; Baram, L.; Dotan, I.; Sagi, I. ECM remodelling in IBD: Innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut 2015, 64, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Petrey, A.C.; de la Motte, C.A. The extracellular matrix in IBD. Curr. Opin. Gastroenterol. 2017, 33, 234–238. [Google Scholar] [CrossRef]
- Marônek, M.; Marafini, I.; Gardlík, R.; Link, R.; Troncone, E.; Monteleone, G. Metalloproteinases in inflammatory bowel diseases. J. Inflamm. Res. 2021, 14, 1029–1041. [Google Scholar] [CrossRef]
- Iacomino, G.; Aufiero, V.R.; Iannaccone, N.; Melina, R.; Giardullo, N.; De Chiara, G.; Venezia, A.; Taccone, F.S.; Iaquinto, G.; Mazzarella, G. IBD: Role of intestinal compartments in the mucosal immune response. Immunobiology 2020, 225, 151849. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.D.; Munoz, M.A.; Jain, R.; Tong, P.L.; Koskinen, A.; Regner, M.; Kleifeld, O.; Ho, B.; Olson, M.; Turner, S.J.; et al. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 2014, 41, 960–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Haaften, W.T.; Mortensen, J.H.; Karsdal, M.A.; Bay-Jensen, A.C.; Dijkstra, G.; Olinga, P. Misbalance in type III collagen formation/degradation as a novel serological biomarker for penetrating (Montreal B3) Crohn’s disease. Aliment. Pharmacol. Ther. 2017, 46, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; Alexdottir, M.S.; Otten, A.T.; Loveikyte, R.; Bay-Jensen, A.C.; Pehrsson, M.; van Dullemen, H.M.; Visschedijk, M.C.; Festen, E.A.M.; Weersma, R.K.; et al. Serological biomarkers of type I, III and IV collagen turnover are associated with the presence and future progression of stricturing and penetrating Crohn’s disease. Aliment. Pharmacol. Ther. 2022. [Google Scholar] [CrossRef]
- Holm Nielsen, S.; Mortensen, J.H.; Willumsen, N.; Rasmussen, D.G.K.; Mogensen, D.J.; Di Sabatino, A.; Mazza, G.; Jørgensen, L.N.; Giuffrida, P.; Pinzani, M.; et al. A Fragment of Collagen Type VI alpha-3 chain is Elevated in Serum from Patients with Gastrointestinal Disorders. Sci. Rep. 2020, 10, 5910. [Google Scholar] [CrossRef]
- Verstockt, B.; Mertens, E.; Dreesen, E.; Outtier, A.; Noman, M.; Tops, S.; Schops, G.; Van Assche, G.; Vermeire, S.; Gils, A.; et al. Influence of Drug Exposure on Vedolizumab-Induced Endoscopic Remission in Anti-Tumour Necrosis Factor [TNF] Naïve and Anti-TNF Exposed IBD Patients. J. Crohn’s Colitis 2020, 14, 332–341. [Google Scholar] [CrossRef]
- Collins, M.; Sarter, H.; Gower-Rousseau, C.; Koriche, D.; Libier, L.; Nachury, M.; Cortot, A.; Zerbib, P.; Blanc, P.; Desreumaux, P.; et al. Previous Exposure to Multiple Anti-TNF Is Associated with Decreased Efficiency in Preventing Postoperative Crohn’s Disease Recurrence. J. Crohns Colitis 2017, 11, 281–288. [Google Scholar] [CrossRef]
- de Bruyn, J.R.; Becker, M.A.; Steenkamer, J.; Wildenberg, M.E.; Meijer, S.L.; Buskens, C.J.; Bemelman, W.A.; Löwenberg, M.; Ponsioen, C.Y.; van den Brink, G.R.; et al. Intestinal fibrosis is associated with lack of response to infliximab therapy in Crohn’s disease. PLoS ONE 2018, 13, e0190999. [Google Scholar] [CrossRef]
- Karsdal, M.A. The Protein Fingerprint. Nord Bioscience n.d. Available online: https//www.nordicbioscience.com/technology/protein-fingerprint (accessed on 19 June 2022).
- Vaalamo, M.; Karjalainen-Lindsberg, M.L.; Puolakkainen, P.; Kere, J.; Saarialho-Kere, U. Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations. Am. J. Pathol. 1998, 152, 1005–1014. [Google Scholar]
- Salmela, M.T.; MacDonald, T.T.; Black, D.; Irvine, B.; Zhuma, T.; Saarialho-Kere, U.; Pender, S.L.F. Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: Analysis by gene array and in situ hybridisation. Gut 2002, 51, 540–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseya, A.M.; Hussein, W.M.; Elnely, D.A.; Adel, F.; Header, D.A. Serum matrix metalloproteinase-9 concentration as a marker of disease activity in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2021, 33, e803–e809. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, M.; Manon-Jensen, T.; Madsen, G.I.; Krag, A.; Karsdal, M.A.; Kjelsden, J.; Mortensen, J.H. Extracellular Matrix Fragments of the Basement Membrane and the Interstitial Matrix Are Serological Markers of Intestinal Tissue Remodeling and Disease Activity in Dextran Sulfate Sodium Colitis. Dig. Dis. Sci. 2019, 64, 3134–3142. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, M.; Godskesen, L.E.; Manon-Jensen, T.; Kjelsden, J.; Krag, A.; Karsdal, M.A.; Mortensen, J.H. Endotrophin and C6Ma3, serological biomarkers of type VI collagen remodelling, reflect endoscopic and clinical disease activity in IBD. Sci. Rep. 2021, 11, 14713. [Google Scholar] [CrossRef]
- Edgeworth, J.; Gorman, M.; Bennett, R.; Freemont, P.; Hogg, N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J. Biol. Chem. 1991, 266, 7706–7713. [Google Scholar] [CrossRef]
- Steinbakk, M.; Naess-Andresen, C.F.; Fagerhol, M.K.; Lingaas, E.; Dale, I.; Brandtzaeg, P. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 1990, 336, 763–765. [Google Scholar] [CrossRef]
- Egea Valenzuela, J.; Ródenas, G.A.; Sánchez Martínez, A. Use of biomarkers in inflammatory bowel disease. Med. Clínica 2019, 152, 310–316. [Google Scholar] [CrossRef]
- Drury, B.; Hardisty, G.; Gray, R.D.; Ho, G. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cmgh 2021, 12, 321–333. [Google Scholar] [CrossRef]
- Korkmaz, B.; Gauthier, F. Elastase-2/Leukocyte Elastase. Handb. Proteolytic Enzym 2013, 3, 2653–2661. [Google Scholar]
- Gouni-Berthold, I.; Baumeister, B.; Wegel, E.; Berthold, H.K.; Vetter, H.; Schmidt, C. Neutrophil-elastase in chronic inflammatory bowel disease: A marker of disease activity? Hepatogastroenterology 1999, 46, 2315–2320. [Google Scholar]
- Stallmach, A.; Langbein, C.; Atreya, R.; Bruns, T.; Dignass, A.; Ende, K.; Hampe, J.; Hartmann, F.; Neurath, M.F.; Maul, J.; et al. Vedolizumab provides clinical benefit over 1 year in patients with active inflammatory bowel disease—A prospective multicenter observational study. Aliment. Pharmacol. Ther. 2016, 44, 1199–1212. [Google Scholar] [CrossRef] [PubMed]
- Leeming, D.J.; He, Y.; Veidal, S.S.; Nguyen, Q.H.T.; Larsen, D.V.; Koizumi, M.; Segovia-Silvestre, T.; Zhang, C.; Zheng, Q.; Sun, S.; et al. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 2011, 16, 616–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barascuk, N.; Veidal, S.S.; Larsen, L.; Larsen, D.V.; Larsen, M.R.; Wang, J.; Zheng, Q.; Xing, R.; Cao, Y.; Rasmussen, L.M.; et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin. Biochem. 2010, 43, 899–904. [Google Scholar] [CrossRef]
- Nielsen, M.J.; Nedergaard, A.F.; Sun, S.; Veidal, S.S.; Larsen, L.; Zheng, Q.; Suetta, C.; Henriksen, K.; Christiansen, C.; Karsdal, M.A.; et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am. J. Transl. Res. 2013, 5, 303–315. [Google Scholar]
- Sand, J.M.; Larsen, L.; Hogaboam, C.; Martinez, F.; Han, M.; Røssel Larsen, M.; Nawrocki, A.; Zheng, Q.; Asser Karsdal, M.; Leeming, D.J. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis—Validation of two novel biomarker assays. PLoS ONE 2013, 8, e84934. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Sinkeviciute, D.; Madsen, D.H.; Önnerfjord, P.; Hansen, M.; Schmidt, H.; Karsdal, M.A.; Svane, I.M.; Willumsen, N. Granzyme B Degraded Type IV Collagen Products in Serum Identify Melanoma Patients Responding to Immune Checkpoint Blockade. Cancers 2020, 12, 2786. [Google Scholar] [CrossRef]
- Leeming, D.J.; Nielsen, M.J.; Dai, Y.; Veidal, S.S.; Vassiliadis, E.; Zhang, C.; He, Y.; Vainer, B.; Zheng, Q.; Karsdal, M.A. Enzyme-linked immunosorbent serum assay specific for the 7S domain of Collagen Type IV (P4NP 7S): A marker related to the extracellular matrix remodeling during liver fibrogenesis. Hepatol. Res. 2012, 42, 482–493. [Google Scholar] [CrossRef]
- Veidal, S.S.; Karsdal, M.A.; Vassiliadis, E.; Nawrocki, A.; Larsen, M.R.; Nguyen, Q.H.T.; Hägglund, P.; Luo, Y.; Zheng, Q.; Vainer, B.; et al. MMP mediated degradation of type VI collagen is highly associated with liver Fibrosis—Identification and validation of a novel biochemical marker assay. PLoS ONE 2011, 6, e24753. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, J.H.; Sinkeviciute, D.; Manon-Jensen, T.; Domislović, V.; McCall, K.; Thudium, C.S.; Brinar, M.; Önnerfjord, P.; Goodyear, C.S.; Krznarić, Ž.; et al. A specific calprotectin neo-epitope (CPa9-HNE) in serum from inflammatory bowel disease patients is associated with neutrophil activity and endoscopic severity. J. Crohns Colitis 2022. [Google Scholar] [CrossRef]
Continued Use (n = 17) | Discontinued Use (n = 15) | p | |
---|---|---|---|
Age (years) | 41 [35–60] | 42 [35–60] | >0.999 |
Gender | 0.444 | ||
Female | 6 (35%) | 3 (20%) | |
Male | 11 (65%) | 12 (80%) | |
BMI (kg/m2) | 22.6 [21.0–25.0] | 24.2 [20.9–26.9] | 0.509 |
Smoking | 0.134 | ||
No | 5 (29%) | 10 (67%) | |
Previous | 4 (24%) | 2 (13%) | |
Current | 8 (47%) | 3 (20%) | |
Montreal classification | |||
Montreal Age (A) | 0.886 | ||
A1 (≤16 years) | 2 (12%) | 3 (20%) | |
A2 (17–40 years) | 11 (65%) | 8 (53%) | |
A3 (>40 years) | 4 (24%) | 4 (27%) | |
Montreal Location (L) | 0.501 | ||
L1 (ileal disease) | 4 (24%) | 2 (13%) | |
L2 (colonic disease) | 1 (5.9%) | 3 (20%) | |
L3 (ileocolonic) | 12 (71%) | 10 (67%) | |
L4 (upper GI disease) | 0 (0%) | 0 (0%) | |
Montreal Behavior (B) | 0.553 | ||
B1 (non-stricturing, non-penetrating) | 5 (29%) | 5 (33%) | |
B2 (stricturing) | 8 (47%) | 4 (27%) | |
B3 (penetrating) | 4 (24%) | 6 (40%) | |
Montreal Perianal disease (p) | 5 (29%) | 4 (27%) | >0.999 |
Medication use, n (%) | |||
Aminosalicylates | 0 (0%) | 2 (13%) | 0.212 |
Steroids | 9 (53%) | 9 (60%) | 0.688 |
Immunosuppressives | 9 (53%) | 4 (27%) | 0.131 |
Prior anti-TNF-α | 15 (88%) | 15 (100%) | 0.486 |
Prior Vedolizumab | 0 (0%) | (0%) | NA |
Surgical history | |||
Colectomy | 0 (0%) | 1 (6.7%) | 0.469 |
Ileocecal resection | 11 (65%) | 9 (60%) | 0.784 |
Clinical disease activity | |||
Harvey-Bradshaw Index (HBI) | 0.866 | ||
Remission (<5) | 1 (7.1%) | 2 (17%) | |
Mild disease (5–7) | 6 (43%) | 4 (33%) | |
Moderate disease (8–16) | 7 (50%) | 6 (50%) | |
Severe disease (>16) | 0 (0%) | 0 (%) | |
Clinical parameters | |||
Hemoglobin (nmol/L) | 7.60 [7.00–8.20] | 7.50 [7.20–7.95] | 0.583 |
WBC (×109/L) | 7.3 [6.4–9.1] | 9.4 [5.0–12.3] | 0.821 |
Neutrophil count (×109/L) | 4.91 [3.96–5.83] | 5.54 [3.17–8.98] | 0.796 |
Eosinophil count (×109/L) | 0.16 [0.03–0.24] | 0.09 [0.05–0.17] | 0.404 |
CRP (mg/L) | 2 [1–6] | 14 [8–26] | 0.001 |
Creatinine (µmol/L) | 61 [49–71] | 67 [59–72] | 0.508 |
eGFR (mL/min/1.73 m2) | 108 [94–120] | 104 (82–122] | 0.664 |
Fecal calprotectin (µg/g) ^ | 982 [658–1455] | 1400 [852–1825] | 0.475 |
Biomarker | Continued Use n = 17 | Discontinued Use n = 15 | p-Value |
---|---|---|---|
C1M (ng/mL) | 36.1 [25.02–49.80] | 108.6 [57.47–148.45] | 0.001 |
C3M (ng/mL) | 10.5 [9.43–11.81] | 15.2 [13.07–16.44] | 0.006 |
PRO-C3 (ng/mL) | 6.4 [4.43–8.40] | 5.7 [5.34–6.49] | 0.610 |
C3M/PRO-C3 | 1.6 [1.42–1.80] | 2.6 [1.98–3.13] | 0.008 |
C4M (ng/mL) | 24.5 [22.36–28.16] | 36.5 [28.24–46.68] | 0.010 |
C4G (ng/mL) | 19.4 [15.19–30.24] | 18.0 [13.56–26.74] | 0.558 |
PRO-C4 (ng/mL) | 182.0 [170.48–203.68] | 266.8 [207.20–308.26] | 0.010 |
C4M/C4G | 1.4 [0.81–1.77] | 2.0 [1.40–2.44] | 0.020 |
PRO-C4/C4M | 7.2 [6.10–8.06] | 6.9 [6.51–7.75] | 0.925 |
PRO-C4/C4G | 8.4 [6.02–12.56] | 14.5 [9.66–17.12] | 0.033 |
C6Ma3 (ng/mL) | 0.6 [0.53–0.84] | 0.8 [0.68–1.02] | 0.015 |
CPa9-HNE (ng/mL) | 231.7 [195.32–302.60] | 401.2 [281.36–452.00] | 0.003 |
CPa9-HNE/C4G | 11.6 [6.46–16.43] | 18.5 [11.14–29.28] | 0.052 |
Biomarker | AUC [95% CI] | Sensitivity (%) | Specificity (%) | p-Value |
---|---|---|---|---|
Individual biomarkers | ||||
C1M | 0.85 [0.72–0.98] | 76 | 87 | <0.001 |
CPa9-HNE | 0.81 [0.66–0.96] | 100 | 53 | <0.001 |
C3M | 0.79 [0.62–0.95] | 71 | 87 | 0.001 |
C3M/PRO-C3 | 0.78 [0.60–0.95] | 76 | 80 | 0.002 |
C4M | 0.77 [0.60–0.93] | 76 | 73 | 0.002 |
PRO-C4 | 0.77 [0.59–0.94] | 71 | 80 | 0.003 |
C6Ma3 | 0.75 [0.58–0.92] | 53 | 93 | 0.004 |
C4M/C4G | 0.74 [0.56–0.92] | 88 | 60 | 0.009 |
PRO-C4/C4G | 0.72 [0.54–0.90] | 82 | 53 | 0.015 |
CPa9-HNE/C4G | 0.70 [0.52–0.89] | 100 | 40 | 0.034 |
PRO-C4/C4M | 0.49 [0.28–0.70] | 100 | 13 | 0.927 |
PRO-C3 | 0.45 [0.24–0.66] | 35 | 87 | 0.623 |
C4G | 0.44 [0.23–0.65] | 35 | 67 | 0.563 |
Combined biomarkers | ||||
[PRO-C4, C6Ma3] | 0.84 [0.70–0.98] | 65 | 93 | <0.001 |
[C3M, C6Ma3] | 0.83 [0.69–0.97] | 71 | 87 | <0.001 |
[PRO-C4, C3M/PRO-C3] | 0.81 [0.65–0.97] | 100 | 53 | <0.001 |
Biomarker | OR [95% CI] | p-Value |
---|---|---|
C1M | 14.08 [2.35–59.09] | 0.002 |
C3M | 15.60 [2.79–80.36] | 0.002 |
PRO-C3 | 3.56 [0.61–19.27] | 0.229 |
C3M/PRO-C3 a | 13.00 [2.12–54.97] | 0.004 |
C4M | 8.93 [1.62–42.45] | 0.012 |
C4G | 1.09 [0.2677–4.960] | >0.999 |
PRO-C4 | 9.60 [1.67–39.52] | 0.006 |
C4M/C4G a | 11.25 [2.08–58.41] | 0.008 |
PRO-C4/C4M a | 5.33 [1.19–21.94] | 0.062 |
PRO-C4/C4G a | 2.62 [0.27–39.81] | 0.579 |
C6Ma3 | 15.75 [2.01–182.70] | 0.007 |
CPa9-HNE | 19.43 [2.36–255.20] | 0.004 |
CPa9-HNE/C4G a | 11.33 [1.25–136.10] | 0.030 |
Protein | Biomarker of Degradation | Biomarker of Formation | Implication | References |
---|---|---|---|---|
Type I collagen | C1M: Neo-epitope of MMP-2, -9, -13 mediated degradation of type I collagen | - | IM degradation | [33] |
Type III collagen | C3M: Neo-epitope of MMP-9 mediated degradation of type III collagen | PRO-C3: Released N-terminal pro-peptide of type III collagen | IM turnover | [34,35] |
Type IV collagen | C4M: Neo-epitope of MMP-2, -9, -12 mediated degradation of type IV collagen alpha-1 chain C4G: Neo-epitope generated by T-cell granzyme-B-mediated degradation of type IV collagen | PRO-C4: Internal epitope in 7s domain of type IV collagen | BM turnover | [36,37,38] |
Type VI collagen | C6Ma3: MMP-2 and -9 degraded type VI collagen | - | BM/IM degradation | [39] |
Calprotectin | CPa9-HNE: Neo-epitope of human neutrophil elastase (HNE) mediated degradation of calprotectin | - | Neutrophil activity | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexdottir, M.S.; Bourgonje, A.R.; Karsdal, M.A.; Pehrsson, M.; Loveikyte, R.; van Dullemen, H.M.; Visschedijk, M.C.; Festen, E.A.M.; Weersma, R.K.; Faber, K.N.; et al. Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease. Int. J. Mol. Sci. 2022, 23, 8137. https://doi.org/10.3390/ijms23158137
Alexdottir MS, Bourgonje AR, Karsdal MA, Pehrsson M, Loveikyte R, van Dullemen HM, Visschedijk MC, Festen EAM, Weersma RK, Faber KN, et al. Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease. International Journal of Molecular Sciences. 2022; 23(15):8137. https://doi.org/10.3390/ijms23158137
Chicago/Turabian StyleAlexdottir, Marta S., Arno R. Bourgonje, Morten A. Karsdal, Martin Pehrsson, Roberta Loveikyte, Hendrik M. van Dullemen, Marijn C. Visschedijk, Eleonora A. M. Festen, Rinse K. Weersma, Klaas Nico Faber, and et al. 2022. "Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease" International Journal of Molecular Sciences 23, no. 15: 8137. https://doi.org/10.3390/ijms23158137
APA StyleAlexdottir, M. S., Bourgonje, A. R., Karsdal, M. A., Pehrsson, M., Loveikyte, R., van Dullemen, H. M., Visschedijk, M. C., Festen, E. A. M., Weersma, R. K., Faber, K. N., Dijkstra, G., & Mortensen, J. H. (2022). Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease. International Journal of Molecular Sciences, 23(15), 8137. https://doi.org/10.3390/ijms23158137