Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy
Abstract
:1. Introduction
2. Results
2.1. Phenotype in Three Families
Family | Member | Laterality of SO Palsy | Abnormal Head Posture | Deviation at 5 m (Δ) | Bagolini Striated Glasses Test | TNO Test | Surgical Procedure | |
---|---|---|---|---|---|---|---|---|
at 5 m | at 0.3 m | |||||||
1 | Father | Right | Head tilt to Left | 30ΔRHT | Fusion | Diplopia | Absent | Left IR recession |
10 degrees | 6ΔX | 4 mm | ||||||
Daughter | Right | Head tilt to Left | 25ΔRHT | Fusion | Fusion | 60 s | Right IO recession | |
5–10 degrees | 10ΔX | |||||||
2 | Mother | Left | Head tilt to Right | 20ΔLHT | Left eye | Left eye | Absent | No surgery |
10 degrees | 6ΔX | suppression | suppression | |||||
Daughter | Left | Head tilt to Right | 25ΔLHT | * unknown | * unknown | Absent | Left IO recession | |
20 degrees | 12ΔET | |||||||
3 | Mother | Right | Head tilt to Left | 14ΔRHT | Right eye | Fusion | 60 s | Right IO recession |
5–10 degrees | 10ΔX | suppression | ||||||
Daughter | Left | Head tilt to Right | 12ΔLHT | Right eye | Fusion | 240 s | No surgery | |
5 degrees | 16ΔXT | suppression |
2.2. Parametric Linkage Analysis with SNVs
2.3. SNVs/InDels
2.4. CNVs and SVs
2.5. Targeted Polymerase Chain Reaction (PCR) and Direct Sequencing
2.6. Testing Strategy for Different Ways of Sorting
3. Discussion
4. Materials and Methods
4.1. The Participants
4.2. Whole Genome Sequencing
4.3. Software in Bioinformatics
4.4. Polymerase Chain Reaction and Direct Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aoba, K.; Matsuo, T.; Hamasaki, I.; Hasebe, K. Clinical factors underlying a single surgery or repetitive surgeries to treat superior oblique muscle palsy. SpringerPlus 2015, 4, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engle, E.C. Genetic basis of congenital strabismus. Arch. Ophthalmol. 2007, 125, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graeber, C.P.; Hunter, D.G.; Engle, E.C. The genetic basis of incomitant strabismus: Consolidation of the current knowledge of the genetic foundations of disease. Semin. Ophthalmol. 2013, 28, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Ohtsuki, H.; Sogabe, Y.; Konishi, H.; Takenawa, K.; Watanabe, Y. Vertical abnormal retinal correspondence in three patients with congenital absence of the superior oblique muscle. Am. J. Ophthalmol. 1988, 106, 341–345. [Google Scholar] [CrossRef]
- Uchiyama, E.; Matsuo, T.; Imai, S.; Itoshima, E. Paretic side/normal side ratios of cross-sectional areas of the superior oblique muscle vary largely in idiopathic superior oblique palsy. Am. J. Ophthalmol. 2010, 149, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Matsuo, T.; Fujiwara, H.; Hasebe, S.; Ohtsuki, H.; Yasuda, T. ARIX gene polymorphisms in patients with congenital superior oblique muscle palsy. Br. J. Ophthalmol. 2004, 88, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Matsuo, T.; Fujiwara, H.; Hasebe, S.; Ohtsuki, H.; Yasuda, T. ARIX and PHOX2B polymorphisms in patients with congenital superior oblique muscle palsy. Acta Med. Okayama 2005, 59, 55–62. [Google Scholar]
- Ohkubo, S.I.; Matsuo, T.; Hasebe, K.; Shira, Y.H.; Itoshima, E.; Ohtsuki, H. Phenotype-phenotype and genotype-phenotype correlations in patients with idiopathic superior oblique muscle palsy. J. Hum. Genet. 2012, 57, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Matsuo, T.; Itoshima, E.; Ohtsuki, H. Clinical features, ARIX and PHOX2B nucleotide changes in three families with congenital superior oblique muscle palsy. Acta Med. Okayama 2008, 62, 45–53. [Google Scholar] [PubMed]
- Matsuo, T.; Matsuo, C. The prevalence of strabismus and amblyopia in Japanese elementary school children. Ophthalmic. Epidemiol. 2005, 12, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Matsuo, C. Comparison of prevalence rates of strabismus and amblyopia in Japanese elementary school children between the years 2003 and 2005. Acta Med. Okayama 2007, 61, 329–334. [Google Scholar]
- Maconachie, G.D.E.; Gottlob, I.; McLean, R.J. Risk factors and genetics in common comitant strabismus: A systematic review of the literature. JAMA Ophthalmol. 2013, 131, 1179–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, T.; Yamane, T.; Ohtsuki, H. Heredity versus abnormalities in pregnancy and delivery as risk factors for different types of comitant strabismus. J. Pediatr. Ophthalmol. Strabismus 2001, 38, 78–82. [Google Scholar] [CrossRef]
- Taira, Y.; Matsuo, T.; Yamane, T.; Hasebe, S.; Ohtsuki, H. Clinical features of comitant strabismus related to family history of strabismus or abnormalities in pregnancy and delivery. Jpn J. Ophthalmol. 2003, 47, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Hayashi, M.; Fujiwara, H.; Yamane, T.; Ohtsuki, H. Concordance of strabismic phenotypes in monozygotic versus multizygotic twins and other multiple births. Jpn J. Ophthalmol. 2002, 46, 59–64. [Google Scholar] [CrossRef]
- Parikh, V.; Shugart, Y.Y.; Doheny, K.F.; Zhang, J.; Li, L.; Williams, J.; Hayden, D.; Craig, B.; Capo, H.; Chamblee, D.; et al. A strabismus susceptibility locus on chromosome 7p. Proc. Natl. Acad. Sci. USA 2003, 100, 12283–12288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, A.; Nsengimana, J.; Simmons, I.G.; Toomes, C.; Hoole, J.; Willoughby, C.E.; Cassidy, F.; Williams, G.A.; George, N.D.; Sheridan, E.; et al. Replication of the recessive STBMS1 locus but with dominant inheritance. Invest. Ophthalmol. Vis. Sci. 2009, 50, 3210–3217. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; Matsuo, T.; Fujiwara, H.; Itoshima, E.; Furuse, T.; Hasebe, S.; Zhang, Q.; Ott, J.; Ohtsuki, H. Chromosomes 4q28.3 and 7q31.2 as new susceptibility loci for comitant strabismus. Invest. Ophthalmol. Vis. Sci. 2009, 50, 654–661. [Google Scholar] [CrossRef]
- Shaaban, S.; Matsuo, T.; Strauch, K.; Ohtsuki, H. Investigation of parent-of-origin effect in comitant strabismus using MOD score analysis. Mol. Vis. 2009, 15, 1351–1358. [Google Scholar]
- Zhang, J.; Matsuo, T. MGST2 and WNT2 are candidate genes for comitant strabismus susceptibility in Japanese patients. PeerJ 2017, 5, ee3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Matsuo, T.; Hamasaki, I.; Sato, K. Whole exome-sequencing of pooled genomic DNA samples to detect quantitative trait loci in esotropia and exotropia of strabismus in Japanese. Life 2022, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.; MacKinnon, S.; Andrews, C.; Staffieri, S.E.; Maconachie, G.D.E.; Chan, W.M.; Whitman, M.C.; Morton, S.U.; Yazar, S.; MacGregor, S.; et al. Genome-wide association study identifies a susceptibility locus for comitant esotropia and suggests a parent-of-origin effect. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4054–4064. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, D.; Shah, R.L.; Rodrigues, J.N.; Cumberland, P.M.; Rahi, J.S.; Hysi, P.G.; Atan, D.; Williams, C.; Guggenheim, J.A.; UK Biobank Eye and Vision Consortium. A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus. Hum. Genet. 2019, 138, 723–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, X.; Felsenfeld, G. Insulin promotor in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, E4633–E4641. [Google Scholar] [CrossRef] [Green Version]
- Ramnarine, V.R.; Alshalalfa, M.; Mo, F.; Nabavi, N.; Erho, N.; Takhar, M.; Shukin, R.; Brahmbhatt, S.; Gawronski, A.; Kobelev, M.; et al. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. GigaScience 2018, 7, giy050. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zou, J.; Wu, L.; Lu, W. Transcriptome analysis uncovers the diagnostic value of miR-192-5p/HNF1A-AS1/VIL1 panel in cervical adenocarcinoma. Sci. Rep. 2020, 10, 16584. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Shan, F.; Wen, J.; Wang, Y. SSTR5-AS1 functions as a ceRNA to regulate CA2 by sponging miR-15b-5p for the development and prognosis of HBV-related hepatocellular carcinoma. Mol. Med. Rep. 2019, 20, 5021–5031. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhao, L.; Chi, W.; Cao, H.; Cui, W.; Meng, W. Aberrant methylation-mediated downregulation of lncRNA SSTR5-AS1 promotes progression and metastasis of laryngeal squamous cell carcinoma. Epigenet. Chromatin. 2019, 12, 35. [Google Scholar] [CrossRef]
- Cheng, Y.; Di, J.; Wu, J.; Shi, H.T.; Zou, B.C.; Zhang, Y.; Xie, D.H. Diagnostic and prognostic significance of long noncoding RNA SSTR5-AS1 in patients with gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5385–5390. [Google Scholar] [PubMed]
- Xue, Z.; Yang, B.; Xu, Q.; Zhu, X.; Qin, G. Long non-coding RNA SSTR5-AS1 facilitates gemcitabine resistance via stabilizing NONO in gallbladder carcinoma. Biochem. Biophys. Res. Commun. 2020, 522, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abecasis, G.R.; Cherny, S.S.; Cookson, W.O.; Cardon, L.R. Merlin: Rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 2002, 30, 97–101. [Google Scholar] [CrossRef]
- Jaganathan, K.; Panagiotopoulou, S.K.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting splicing from primary sequence with deep learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B. CNVkit: Genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef] [PubMed]
- Jeffares, D.C.; Jolly, C.; Hoti, M.; Speed, D.; Shaw, L.; Rallis, C.; Balloux, F.; Dessimoz, C.; Bahler, J.; Sedlazeck, F.J. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017, 8, 14061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Kallberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variations and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef]
- Cameron, D.L.; Schroder, J.; Penington, J.S.; Do, H.; Molania, R.; Dobrovic, A.; Speed, T.P.; Papenfuss, A.T. GRIDSS: Sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 2017, 27, 2050–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. dbNSFP v4: A comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Phenotype | Whole Genome Sequencing | Polymerase Chain Reaction (PCR) | Direct Sequencing of PCR Products |
---|---|---|---|---|
Sample 1 | Family 1, Father, affected | Heterozygote | Heterozygote | Heterozygote |
Sample 2 | Family 1, Daughter, affected | Heterozygote | Heterozygote | Unreadable |
Sample 3 | Family 1, Mother, normal | Wild type | Wild type | Wild type |
Sample 4 | Family 1, Daughter, normal | Wild type | Wild type | Wild type |
Sample 5 | Family 1, Daughter, normal | Wild type | Wild type | Wild type |
Sample 6 | Family 2, Mother, affected | Homozygote | Homozygote | Homozygote |
Sample 7 | Family 2, Daughter, affected | Heterozygote | Heterozygote | Unreadable |
Sample 8 | Family 3, Mother, affected | Heterozygote | Hetero/Homozygote * | Homozygote |
Sample 9 | Family 3, Daughter, affected | Heterozygote | Heterozygote | Unreadable |
Genotype | Phenotype | ||||
---|---|---|---|---|---|
SSTR5-AS1 13-Nucleotide Deletion | Idiopathic Superior Oblique Muscle Palsy (SO) (n = 104) | Esotropia (ET) (n = 117) | Exotropia (XT) (n = 116) | Esotropia or Exotropia (ET+XT) (n = 233) | Chi-Square p-Value SO versus ET + XT |
Wild type | 28 (26.9%) | 23 | 18 | 41 (17.6%) | |
Heterozygote | 54 (8 *) (51.9%) | 82 (27 *) | 84 (22 *) | 166 (49 *) (71.2%) | |
Homozygote | 22 (21.2%) | 12 | 14 | 26 (11.2%) | 0.0022 (0.1462 **) |
Allele frequency | |||||
Wild type/deletion | 110/98 | 128/106 | 120/112 | 248/218 | 1 |
Genes | Location | Full Name | Function | Diseases in Association |
---|---|---|---|---|
MIIP | 1p36.22 | Migration and invasion inhibitory protein | regulation of mitotic progression | cancer (tumor suppressor) |
ADRB2 | 5q32 | Adrenoceptor beta 2 | G protein-coupled receptor | nocturnal asthma, obesity, type 2 diabetes, cardiovascular disease |
ABLIM3 | 5q32 | Actin binding LIM protein family member 3 | interaction with actin filaments | pain sensitivity |
NOD1 | 7p14.3 | Nucleotide binding oligomerization domain containing 1 | role in innate immunity | asthma, inflammatory bowel disease, Behcet disease, sarcoidosis |
MSR1 | 8p22 | Macrophage scavenger receptor 1 | macrophage-associated physiological and pathological processes | |
OR4L1 | 14q11.2 | Olfactory receptor family 4 subfamily L member 1 | G-protein-coupled receptor | |
SSTR5-AS1 | 16p13.3 | SSTR5 antisense RNA 1 | biased expression in cancer | |
RNF43 | 17q22 | Ring finger protein 43 | RING-type E3 ubiquitin ligase | mutations in colorectal and endometrial cancers |
C17orf58 | 17q24.2 | Chromosome 17 open reading frame 58 | part of collagen-containing extracellular matrix | |
ZACN | 17q25.1 | Zinc activated ion channel | zinc-activated ligand-gated ion channel | |
CYBC1 | 17q25.3 | Cytochrome b-245 chaperone 1 | innate immune response | chronic granulomatous disease |
NARF-AS2 | 17q25.3 | NARF antisense RNA 2 | ||
SYNJ1 | 21q22.11 | Synaptojanin 1 | phosphoinositide phosphatase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuo, T.; Chaomulige; Miyaji, M.; Hosoya, O.; Saito, A.; Nakazono, K. Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy. Int. J. Mol. Sci. 2022, 23, 8626. https://doi.org/10.3390/ijms23158626
Matsuo T, Chaomulige, Miyaji M, Hosoya O, Saito A, Nakazono K. Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy. International Journal of Molecular Sciences. 2022; 23(15):8626. https://doi.org/10.3390/ijms23158626
Chicago/Turabian StyleMatsuo, Toshihiko, Chaomulige, Mary Miyaji, Osamu Hosoya, Akira Saito, and Kazuyuki Nakazono. 2022. "Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy" International Journal of Molecular Sciences 23, no. 15: 8626. https://doi.org/10.3390/ijms23158626
APA StyleMatsuo, T., Chaomulige, Miyaji, M., Hosoya, O., Saito, A., & Nakazono, K. (2022). Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy. International Journal of Molecular Sciences, 23(15), 8626. https://doi.org/10.3390/ijms23158626