Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxic Studies of the Library of β-Phosphonate Derivatives 1–14
2.3. Analysis of R2–R4 E. coli Strains Modified with β-Phosphonate Derivatives
2.4. R2–R4 E. coli Strains with Tested β-Phosphonate Derivatives
3. Materials and Methods
3.1. Microorganisms and Media
3.2. Chemicals
3.3. General Procedure for the Synthesis of β-Phosphonate Derivatives (1–12)
3.4. General Procedure for the Synthesis of β-Phosphonate Derivatives (13,14)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-Q.; Chae, H.-S.; Kang, O.-H.; Kwon, D.-Y. Synergistic Antibacterial Activity with Conventional Antibiotics and Mechanism of Action of Shikonin against Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 47551. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 13 July 2022). [CrossRef] [Green Version]
- Allen, M.C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J.M. Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J. Med. Chem. 1989, 32, 1652–1661. [Google Scholar] [CrossRef]
- Kafarski, P.; Lejczak, B. Biological activity of aminophosponic acids. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215. [Google Scholar] [CrossRef]
- Dreneau, A.; Krebs, F.S.; Munier, M.; Ngov, C.; Tritsch, D.; Lièvremont, D.; Rohmer, M.; Grosdemange-Billiard, C. α,α-Difluorophosphonohydroxamic Acid Derivatives among the Best Antibacterial Fosmidomycin Analogues. Molecules 2021, 23, 5111. [Google Scholar] [CrossRef] [PubMed]
- Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018, 23, 1493. [Google Scholar] [CrossRef] [Green Version]
- Fleming, F.F.; Yao, L.; Ravikumar, P.C.; Funk, L.; Shook, B.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore. J. Med. Chem. 2010, 53, 7902–7917. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Gurusiddaiah, S.; Whalen, J.W. Treponemycin, a nitrile antibiotic active against Treponema hyodysenteriae. Antimicrob. Agents Chemother. 1985, 27, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.T.; Case, H.L.; Ellsworth, E.; Hagen, S.; Huband, M.; Joannides, T.; Limberkis, C.; Marotti, K.R.; Ottolini, A.M.; Rauckhorst, M.; et al. The synthesis and biological evaluation of novel series of nitrile-containing fluoroquinolones as antibacterial agents. Bioorg. Med. Chem. Lett. 2007, 17, 2150–2155. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Rao, K.U.M.; Sundar, C.S.; Reddy, N.B.; Nayak, S.K.; Reddy, C.S. Green Synthesis and Bioactivity of 2-Amino-4H-chromen-4-ylphosphonates. Chem. Pharm. Bull. 2012, 60, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Kour, P.; Kumar, A.; Sharma, R.; Chib, R.; Khan, I.A.; Rai, V.K. Synthesis of 2-amino-4H-chromen-4-ylphosphonates and b-phosphonomalonates via tandem Knoevenagel–Phospha-Michael reaction and antimicrobial evaluation of newly synthesized β-phosphonomalonates. Res. Chem. Intermed. 2017, 43, 7319–7329. [Google Scholar] [CrossRef]
- Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Synthesis and in vitro Antimicrobial Activity of New Ethyl 2-(Ethoxyphosphono)-1-cyano-2-(substituted tetrazolo-[1,5-a]quinolin-4-yl)ethanoate Derivatives. Chin. J. Chem. 2010, 28, 243–249. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Jang, W.; Kim, D.M.; Nagai, M.; Nagai, S. Establishment of Biomimetic Soft Tissue Integration with the Surface of Zirconia Fused with Platelet-Activating Peptide. Materials 2022, 15, 4597. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, J.; Wollenberg, A.; Tsushima, S.; Schmeide, K.; Acker, M. 2-Phosphonobutane-1,2,4,-Tricarboxylic Acid (PBTC): pH-Dependent Behavior Studied by Means of Multinuclear NMR Spectroscopy. Molecules 2022, 27, 4067. [Google Scholar] [CrossRef] [PubMed]
- Iolascon, G.; Moretti, A. The Rationale for Using Neridronate in Musculoskeletal Disorders: From Metabolic Bone Diseases to Musculoskeletal Pain. Int. J. Mol. Sci. 2022, 23, 36921. [Google Scholar] [CrossRef]
- Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. [Google Scholar] [CrossRef]
- Keglevich, G.; Sipos, M.; Takacs, D.; Ludanyi, K. Phospha-michael reactions involving p-heterocyclic nucleophiles. Heteroat. Chem. 2008, 19, 288–292. [Google Scholar] [CrossRef]
- Enders, D.; Tedeschi, L.; Bats, J.W. Asymmetric Synthesis of α -Substituted β -Nitrophosphonic Acids by Phospha-Analogous Michael Addition to Aromatic Nitroalkenes. Angew. Chem. Int. Ed. 2000, 39, 4605–4607. [Google Scholar] [CrossRef]
- Enders, D.; Saint-Dizier, A.; Lannou, M.I.; Lenzen, A. The Phospha-Michael Addition in Organic Synthesis. Eur. J. Org. Chem. 2006, 2006, 29–49. [Google Scholar] [CrossRef]
- Miller, R.C.; Bradley, J.S.; Hamilton, L.A. Disubstituted Phosphine Oxides. III. Addition to α,β-Unsaturated Nitriles and Carbonyl Compounds. J. Am. Chem. Soc. 1956, 78, 5299–5303. [Google Scholar] [CrossRef]
- Sobhani, S.; Bazrafshan, M.; Delluei, A.A.; Parizi, Z.P. Phospha-Michael addition of diethyl phosphite to α,β-unsaturated malonates catalyzed by nano γ-Fe2O3-pyridine based catalyst as a new magnetically recyclable heterogeneous organic base. Appl. Catal. A General 2013, 454, 145–151. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. P–C Bond formation via direct and three-component conjugate addition catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). Tetrahedron Lett. 2007, 48, 51–54. [Google Scholar] [CrossRef]
- Wani, A.A.; Chourasiya, S.S.; Kathuria, D.; Bharatam, P.V. 1,1-Diaminoazines as organocatalysts in phospha-Michael addition reactions. Chem. Commun. 2021, 57, 11717–11720. [Google Scholar] [CrossRef] [PubMed]
- Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M.M. Iron-doped single walled carbon nanotubes as an efficient and reusable heterogeneous catalyst for the synthesis of organophosphorus compounds under solvent-free conditions. Tetrahedron 2013, 69, 4708–4724. [Google Scholar] [CrossRef]
- Kulkarni, M.A.; Pandurangi, V.R.; Desai, U.V.; Wadgaonkar, P.P. A practical and highly efficient protocol for multicomponent synthesis of β-phosphonomalononitriles and 2-amino-4H-chromen-4-yl phosphonates using diethylamine as a novel organocatalyst. C. R. Chimie 2012, 15, 745–752. [Google Scholar] [CrossRef]
- Kalla, R.M.N.; Kim, I. Tris(hydroxymethyl)aminomethane as an efficient organobase catalyst for the synthesis of β-phosphonomalonates. Tetrahedron Lett. 2017, 58, 410–414. [Google Scholar] [CrossRef]
- Kalla, R.M.N.; Park, H.; Lee, H.R.; Suh, H.; Kim, I. Efficient, Solvent-Free, Multicomponent Method for Organic-Base- Catalyzed Synthesis of β Phosphonomalonates. ACS Comb. Sci. 2015, 17, 691–697. [Google Scholar] [CrossRef]
- Sobhani, S.; Jahanshahi, R. One-Pot Synthesis of β-Phosphonomalonates Catalyzed by Molecular Iodine. Synth. Commun. 2013, 43, 3247–3257. [Google Scholar] [CrossRef]
- Tessema, E.; Elakkat, V.; Chiu, C.-F.; Zheng, J.-H.; Chan, K.L.; Shen, C.-R.; Zhang, P.; Lu, N. Recoverable Phospha-Michael Additions Catalyzed by a 4-N,N-Dimethylaminopyridinium Saccharinate Salt or a Fluorous Long-Chained Pyridine: Two Types of Reusable Base Catalysts. Molecules 2021, 26, 41159. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, E.R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef]
- Naveen, P.; Dhananjai, R.; Shraddha, S.S.; Umesh, M. Lipases: Sources, Production, Purification, and Applications. Recent Pat. on Biotechnol. 2019, 13, 45–56. [Google Scholar] [CrossRef]
- Faber, K. Biotransformations in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Dwivedee, B.P.; Soni, S.; Sharma, M.; Bhaumik, J.; Laha, J.K.; Banerjee, U.C. Promiscuity of Lipase-Catalyzed Reactions for Organic Synthesis: A Recent Update. ChemistrySelect 2018, 3, 2441–2466. [Google Scholar] [CrossRef]
- Yu, Y.; Li, F.; Li, J.; Zheng, X.; Tian, H.; Mahmut, Z.; Du, Y.; Dai, Y.; Wang, L. Lipase-catalyzed hydrazine insertion for the synthesis of N′-alkyl benzohydrazides. Biotechnol. Appl. Biochem. 2022. [Google Scholar] [CrossRef]
- Patti, A.; Sanfilippo, C. Stereoselective Promiscuous Reactions Catalyzed by Lipases. Int. J. Mol. Sci. 2022, 23, 25675. [Google Scholar] [CrossRef]
- Verma, S.; Choudhary, R.N.; Kanadje, A.P.; Banerjee, U.C. Diversifying Arena of Drug Synthesis: In the Realm of Lipase Mediated Waves of Biocatalysis. Catalysts 2021, 11, 1328. [Google Scholar] [CrossRef]
- Patel, M.P.; Green, N.T.; Burch, J.K.; Kew, K.A.; Hughes, R.M. Screening of Biocatalysts for Synthesis of the Wieland–Miescher Ketone. Catalysts 2020, 10, 1063. [Google Scholar] [CrossRef]
- Koszelewski, D.; Kowalczyk, P.; Śmigielski, P.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Ostaszewski, R. Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnik− Fields Reaction. Materials 2022, 15, 3846. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Koszelewski, D.; Gawdzik, B.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. Materials 2022, 15, 1975. [Google Scholar] [CrossRef]
- Koszelewski, D.; Ostaszewski, R. The studies on chemoselective promiscuous activity of hydrolases on acylals transformations. Bioorg. Chem. 2019, 93, 102825. [Google Scholar] [CrossRef]
- Wilk, M.; Trzepizur, D.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Synthesis of (E)-α, β-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorg. Chem. 2019, 93, 102816. [Google Scholar] [CrossRef]
- Koszelewski, D.; Ostaszewski, R. Enzyme promiscuity as a remedy for the common problems with Knoevenagel condensation. Chem. Eur. J. 2019, 25, 10156–10164. [Google Scholar] [CrossRef]
- Torre, O.; Alfonso, I.; Gotor, V. Lipase catalysed Michael addition of secondary amines to acrylonitrile. Chem. Commun. 2004, 15, 1724–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedendahl, M.; Jovanović, B.; Fransson, L.; Berglund, P. Suppressed Native Hydrolytic Activity of a Lipase to Reveal Promiscuous Michael Addition Activity in Water. ChemCatChem 2009, 1, 252–258. [Google Scholar] [CrossRef]
- Li, F.; Wang, C.; Xu, Y.; Gao, X.; Xu, Y.; Xie, H.; Chen, P.; Wang, L. Lipase-Catalyzed Synthesis of Anthrone Functionalized Benzylic Amines via a Multicomponent Reaction in Supercritical Carbon Dioxide. ChemistrySelect 2022, 7, e202104517. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; He, J.-R.; Yao, Q.-X.; Li, L.-L.; Liang, Z.-H.; Li, X. Enzymes-Catalyzed Knoevenagel Condensation Promoted by Ionic Liquid and Deep Eutectic Solvent. Catal. Lett. 2022, 152, 1215–1223. [Google Scholar] [CrossRef]
- Albanese, D.C.M.; Gaggero, N. Albumin as a promiscuous biocatalyst in organic synthesis. RSC Adv. 2015, 5, 10588–10598. [Google Scholar] [CrossRef] [Green Version]
- Dalal, K.S.; Tayade, Y.A.; Wagh, Y.B.; Trivedi, D.R.; Dalal, D.S.; Chaudhari, B.L. Bovine serum albumin catalyzed one-pot, three-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives in aqueous ethanol. RSC Adv. 2016, 6, 14868–14879. [Google Scholar] [CrossRef]
- Schneider, E.M.; Zeltner, M.; Kränzlin, N.; Grass, R.N.; Stark, W.J. Base-free Knoevenagel condensation catalyzed by copper metal surfaces. Chem. Commun. 2015, 51, 10695–10698. [Google Scholar] [CrossRef] [Green Version]
- Ganwir, P.; Kale, I.; Chaturbhuj, G. Wet copper-slag: A new and eco-friendly catalyst for Knoevenagel condensation. Sustain. Chem. Pharm. 2022, 25, 100614. [Google Scholar] [CrossRef]
- Dutt, S.; Goel, V.; Garg, N.; Choudhury, D.; Mallick, D.; Tyagi, V. Biocatalytic Aza-Michael Addition of Aromatic Amines to Enone Using α-Amylase in Water. Adv. Synth. Catal. 2020, 362, 858–866. [Google Scholar] [CrossRef]
- Zare, A.; Hasaninejad, A.; Zare, A.R.M.; Parhami, A.; Sharghi, H.; Khalafi-Nezhad, A. Zinc oxide as a new, highly efficient, green, and reusable catalyst for microwave-assisted Michael addition of sulfonamides to α,β-unsaturated esters in ionic liquids. Can. J. Chem. 2007, 85, 438–444. [Google Scholar] [CrossRef]
- Salihu, A.; Alam, M.Z. Solvent tolerant lipases: A review. Process Biochem. 2015, 50, 86–96. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X.; Li, F.; Wang, Z.; Wang, L. Chemoenzymatic Synthesis of α-Cyano Epoxides by a Tandem-Knoevenagel–Epoxidation Reaction. Eur. J. Org. Chem. 2016, 2016, 1251–1254. [Google Scholar] [CrossRef]
- Fonvielle, M.; Mariano, S.; Therisod, M. New inhibitors of rabbit muscle triose-phosphate isomerase. Bioorg. Med. Chem. Lett. 2005, 15, 2906–2909. [Google Scholar] [CrossRef]
- Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem. 2007, 22, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Kowalkowska, A.; Chojnacki, K.; Multan, M.; Maurin, J.K.; Łukowska-Chojnacka, E.; Wińska, P. N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022, 27, 4349. [Google Scholar] [CrossRef]
- Jałbrzykowska, K.; Chrzanowska, A.; Roszkowski, P.; Struga, M. The New Face of a Well-Known Antibiotic: A Review of the Anticancer Activity of Enoxacin and Its Derivatives. Cancers 2022, 14, 3056. [Google Scholar] [CrossRef]
- Mabkhot, Y.N.; Kaal, N.A.; Alterary, S.; Al-Showiman, S.S.; Farghaly, T.A.; Mubarak, M.S. Antimicrobial activity of thiophene derivatives derived from ethyl (E)-5-(3-(dimethylamino)acryloyl)-4-methyl-2-(phenylamino)thiophene-3-carboxylate. Chem. Cent. J. 2017, 11, 75. [Google Scholar] [CrossRef]
- Kovács, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and their biological activity. Phytochemistry 2008, 69, 1084–1110. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Madej, A.; Paprocki, D.; Szymczak, M.; Ostaszewski, R. Coumarin Derivatives as New Toxic Compounds to Selected K12, R1–R4 E. coli Strains. Materials 2020, 13, 2499. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Madej, A.; Szymczak, M.; Ostaszewski, R. α-Amidoamids as New Replacements of Antibiotics—Research on the Chosen K12, R2–R4 E. coli Strains. Materials 2020, 13, 5169. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Szymczak, M.; Maciejewska, M.; Laskowski, Ł.; Laskowska, M.; Ostaszewski, R.; Skiba, G.; Franiak-Pietryga, I. All That Glitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int. J. Mol. Sci. 2021, 22, 20854. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Kramkowski, K.; Ostaszewski, R. 1,2-Diarylethanols—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 1025. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Gawdzik, B.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Raj, S.; Kramkowski, K.; Lizut, R.; Ostaszewski, R. δ-Lactones—A New Class of Compounds That Are Toxic to E. coli K12 and R2–R4 Strains. Materials 2021, 14, 2956. [Google Scholar] [CrossRef]
- Koszelewski, D.; Ostaszewski, R.; Śmigielski, P.; Hrunyk, A.; Kramkowski, K.; Laskowski, Ł.; Laskowska, M.; Lizut, R.; Szymczak, M.; Michalski, J.; et al. Pyridine Derivatives—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 5401. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Wilk, M.; Parul, P.; Szymczak, M.; Kramkowski, K.; Raj, S.; Skiba, G.; Sulejczak, D.; Kleczkowska, P.; Ostaszewski, R. The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 5725. [Google Scholar] [CrossRef]
- Samsonowicz-Górski, J.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Szymczak, M.; Kramkowski, K.; Ostaszewski, R. The Synthesis and Evaluation of Amidoximes as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 7577. [Google Scholar] [CrossRef]
- Gawdzik, B.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Masternak, J.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes 2022, 12, 238. [Google Scholar] [CrossRef]
- Sahrawat, P.; Kowalczyk, P.; Koszelewski, D.; Szymczak, M.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules 2022, 27, 3633. [Google Scholar] [CrossRef]
- Borkowski, A.P.; Kowalczyk, G.; Czerwonka, J.; Cieśla, T.; Cłapa, A.; Misiewicz, M.; Szala, M.D. Interaction of quaternary ammonium ionic liquids with bacterial membranes—Studies with Escherichia coli R1–R4-type lipopolysaccharides. J. Mol. Liq. 2017, 246, 282–289. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Borkowski, A.; Czerwonka, G.; Cłapa, T.; Cieśla, J.; Misiewicz, A.; Borowiec, M.; Szala, M. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J. Mol. Liq. 2018, 266, 540–547. [Google Scholar] [CrossRef]
- Maciejewska, A.; Kaszowska, M.; Jachymek, W.; Lugowski, C.; Lukasiewicz, J. Lipopolysaccharide-linked Enterobacterial Common Antigen (ECALPS) Occurs in Rough Strains of Escherichia coli R1, R2, and R4. Int. J. Mol. Sci. 2020, 21, 76038. [Google Scholar] [CrossRef]
- Prost, M.E.; Prost, R. Basic parameters of evaluation of the effectiveness of antibiotic therapy. Posttherapy 2017, 4, 233–236. [Google Scholar] [CrossRef]
- Connors, W.M.; Pihil, A.; Dounce, A.L.; Stotz, E.I. Purification of liver esterase. Biol. Chem. 1950, 184, 29–36. [Google Scholar] [CrossRef]
- Kublicki, M.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Wheat germ lipase: Isolation, purification and applications. Crit. Rev. Biotechnol. 2022, 42, 184–200. [Google Scholar] [CrossRef]
- Abdou, W.M.; Khidre, M.D.; Mahran, M.R. Organophosphorus chemistry. 16. The Reaction of Furfurylidenemalonitrile with Alkyl Phosphites. J. Prakt. Chem. 1990, 332, 1029–1034. [Google Scholar] [CrossRef]
- Huang, T.-Z.; Chen, T.; Saga, Y.; Han, L.-B. Me3P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electron-deficient alkenes: 1 to 1 vs 1 to 2 adducts. Tetrahedron 2017, 73, 7085–7093. [Google Scholar] [CrossRef]
Entry | Catalyst | T (°C) | Solvent | Yield [%] f |
---|---|---|---|---|
1 | None | 20 | TBME | <5 |
2 | Candida cylindracea lipase (CcL) | 20 | TBME | 75 |
3 | Candida cylindracea lipase (CcL) | 20 | Toluene | 52 |
4 | Candida cylindracea lipase (CcL) | 20 | EtOAc | 19 |
5 | Candida cylindracea lipase (CcL) | 20 | THF | 57 |
6 | Candida cylindracea lipase (CcL) | 20 | 2-Me THF | 59 |
7 | Candida cylindracea lipase (CcL) | 20 | 1,4-dioxane | 49 |
8 | Candida cylindracea lipase (CcL) | 20 | MeCN | 36 |
9 | Candida cylindracea lipase (CcL) | MeOH | 25 | |
10 | Candida cylindracea lipase (CcL) | 20 | water | 42 |
11 | Candida cylindracea lipase (CcL) | 20 | neat | 63 |
12 | Candida cylindracea lipase (CcL) | 30 | TBME | 83 |
13 | Candida cylindracea lipase (CcL) | 40 | TBME | 75 |
14 | Candida cylindracea lipase (CcL) b | 30 | TBME | 85 |
15 | Wheat germ lipase c | 20 | TBME | 19 |
16 | Pseudomonas cepacia lipase (PfL) | 20 | TBME | 14 |
17 | Porcine pancreas lipase (PpL) | 20 | TBME | 31 |
18 | Candida rugosa lipase (CrL) | 20 | TBME | 44 |
19 | Novozym 435 | 20 | TBME | 8 |
20 | Bovine liver acetone powder (BLAP) c | 20 | TBME | 15 |
21 | Goose liver acetone powder (GLAP) c | 20 | TBME | 11 |
22 | Chicken liver acetone powder (CLAP) c | 20 | TBME | 16 |
23 | Wild hog liver acetone powder (WGLAP) c | 20 | TBME | 27 |
24 | Deer liver acetone powder (DLAP) c | 20 | TBME | 33 |
25 | Bovine serum albumin (BSA) | 30 | TBME | 8 |
26 | Denatured CcL d | 30 | TBME | 7 |
27 | Cu(OAc)2 e | 20 | TBME | 18 |
28 | ZnO e | 20 | TBME | 23 |
29 | Pd(OAc)2 | 20 | TBME | <5 |
No. of Samples | 5 | 6 | 7,12 | Type of Test |
---|---|---|---|---|
K12 | ** | ** | ** | MIC |
R2 | ** | ** | ** | MIC |
R3 | ** | ** | ** | MIC |
R4 | ** | ** | ** | MIC |
K12 | ** | ** | *** | MBC |
R2 | ** | ** | *** | MBC |
R3 | ** | ** | *** | MBC |
R4 | ** | ** | *** | MBC |
K12 | *** | *** | * | MBC/MIC |
R2 | *** | *** | * | MBC/MIC |
R3 | *** | *** | * | MBC/MIC |
R4 | *** | *** | * | MBC/MIC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samsonowicz-Górski, J.; Koszelewski, D.; Kowalczyk, P.; Śmigielski, P.; Hrunyk, A.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates. Int. J. Mol. Sci. 2022, 23, 8819. https://doi.org/10.3390/ijms23158819
Samsonowicz-Górski J, Koszelewski D, Kowalczyk P, Śmigielski P, Hrunyk A, Kramkowski K, Wypych A, Szymczak M, Lizut R, Ostaszewski R. Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates. International Journal of Molecular Sciences. 2022; 23(15):8819. https://doi.org/10.3390/ijms23158819
Chicago/Turabian StyleSamsonowicz-Górski, Jan, Dominik Koszelewski, Paweł Kowalczyk, Paweł Śmigielski, Anastasiia Hrunyk, Karol Kramkowski, Aleksandra Wypych, Mateusz Szymczak, Rafał Lizut, and Ryszard Ostaszewski. 2022. "Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates" International Journal of Molecular Sciences 23, no. 15: 8819. https://doi.org/10.3390/ijms23158819
APA StyleSamsonowicz-Górski, J., Koszelewski, D., Kowalczyk, P., Śmigielski, P., Hrunyk, A., Kramkowski, K., Wypych, A., Szymczak, M., Lizut, R., & Ostaszewski, R. (2022). Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates. International Journal of Molecular Sciences, 23(15), 8819. https://doi.org/10.3390/ijms23158819