Non-Fasting Hypertriglyceridemia Burden as a Residual Risk of the Progression of Carotid Artery Stenosis
Abstract
:1. Introduction
2. Results
2.1. Comparison of Baseline Clinical Characteristics between the Progression and Non-Progression Groups
2.2. Non-Fasting TG during the Follow-Up Period
2.3. Multivariate Analyses to Determine Variables Related to Carotid Stenosis Progression
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Clinical Data Collection
4.3. Analyses of Non-Fasting TG Values during the Follow-Up Period
4.4. Progression of Carotid Artery Stenosis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | area under the curve |
CAS | carotid artery stenting |
CEA | carotid endarterectomy |
CIs | confidence intervals |
DSA | digital subtraction angiography |
EAS | European Atherosclerosis Society |
HDL-C | high-density lipoprotein cholesterol |
IMT | intima-media thickness |
LDL-C | low-density lipoprotein cholesterol |
NASCET | North American Symptomatic Carotid Endarterectomy Trial |
ORs | odds ratios |
ROC | receiver operating characteristic |
SD | standard deviation |
SIR | signal intensity ratio |
TG | Triglyceride |
VLDL | very low-density lipoprotein |
References
- Iso, H.; Naito, Y.; Sato, S.; Kitamura, A.; Okamura, T.; Sankai, T.; Shimamoto, T.; Iida, M.; Komachi, Y. Serum Triglycerides and Risk of Coronary Heart Disease among Japanese Men and Women. Am. J. Epidemiol. 2001, 153, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Elevated Lipoprotein(a) and Risk of Aortic Valve Stenosis in the General Population. J. Am. Coll. Cardiol. 2013, 63, 470–477. [Google Scholar] [CrossRef]
- Hirata, A.; Okamura, T.; Hirata, T.; Sugiyama, D.; Ohkubo, T.; Okuda, N.; Kita, Y.; Hayakawa, T.; Kadota, A.; Kondo, K.; et al. Relationship Between Non-fasting Triglycerides and Cardiovascular Disease Mortality in a 20-year Follow-up Study of a Japanese General Population: NIPPON DATA90. J. Epidemiol. 2022, 32, 303–313. [Google Scholar] [CrossRef] [PubMed]
- White, K.T.; Moorthy, M.V.; Akinkuolie, A.O.; Demler, O.; Ridker, P.M.; Cook, N.R.; Mora, S. Identifying an Optimal Cutpoint for the Diagnosis of Hypertriglyceridemia in the Nonfasting State. Clin. Chem. 2015, 61, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Langsted, A.; Freiberg, J.J. Nonfasting hyperlipidemia and cardiovascular disease. Curr. Drug Targets 2009, 10, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Suzuki, Y.; Kanamaru, H.; Shiba, M.; Yasuda, R.; Toma, N.; Suzuki, H. Higher Non-fasting Serum Triglyceride Preceding the Carotid Stenosis Progression. Neurol. Med. Chir. 2021, 61, 422–432. [Google Scholar] [CrossRef]
- Sertedaki, E.; Veroutis, D.; Zagouri, F.; Galyfos, G.; Filis, K.; Papalambros, A.; Aggeli, K.; Tsioli, P.; Charalambous, G.; Zografos, G.; et al. Carotid Disease and Ageing: A Literature Review on the Pathogenesis of Vascular Senescence in Older Subjects. Curr. Gerontol. Geriatr. Res. 2020, 2020, 8601762. [Google Scholar] [CrossRef]
- Rinkūnienė, E.; Dženkevičiūtė, V.; Petrulionienė, Ž.; Majauskienė, E.; Ryliškytė, L.; Puronaitė, R.; Badarienė, J.; Navickas, R.; Laucevičius, A. Hypertriglyceridemia impact on arterial parameters in patients with metabolic syndrome. BMC Cardiovasc. Disord. 2021, 21, 393. [Google Scholar] [CrossRef]
- Leon-Acuña, A.; Torres-Peña, J.D.; Alcala-Diaz, J.F.; Vals-Delgado, C.; Roncero-Ramos, I.; Yubero-Serrano, E.; Tinahones, F.J.; Castro-Clerico, M.; Delgado-Lista, J.; Ordovas, J.M.; et al. Lifestyle factors modulate postprandial hypertriglyceridemia: From the CORDIOPREV study. Atherosclerosis 2019, 290, 118–124. [Google Scholar] [CrossRef]
- Kamtchum-Tatuene, J.; Saba, L.; Heldner, M.R.; Poorthuis, M.H.; de Borst, G.J.; Rundek, T.; Kakkos, S.K.; Chaturvedi, S.; Topakian, R.; Polak, J.F.; et al. Interleukin-6 Predicts Carotid Plaque Severity, Vulnerability, and Progression. Circ. Res. 2022, 131, e22–e33. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langsted, A.; Mora, S.; Kolovou, G.; Baum, H.; Bruckert, E.; Watts, G.F.; Sypniewska, G.; Wiklund, O.; Borén, J.; et al. Fasting Is Not Routinely Required for Determination of a Lipid Profile: Clinical and Laboratory Implications Including Flagging at Desirable Concentration Cutpoints—A Joint Consensus Statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin. Chem. 2016, 62, 930–946. [Google Scholar] [CrossRef] [PubMed]
- White, B.A. Hormonal regulation of energy metabolism. In Berne and Levy Physiology, 6th ed.; Koeppen, B.M., Stanton, B.A., Eds.; Mosby/Elsevier: Philadelphia, PA, USA, 2008; pp. 668–675. [Google Scholar]
- Rosenson, R.S.; Davidson, M.H.; Hirsh, B.J.; Kathiresan, S.; Gaudet, D. Genetics and Causality of Triglyceride-Rich Lipoproteins in Atherosclerotic Cardiovascular Disease. J. Am. Coll. Cardiol. 2014, 64, 2525–2540. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. American Heart association Clinical Lipidology, Thrombosis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease. Triglycerides and Cardiovascular Disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef] [PubMed]
- Kolovou, G.D.; Mikhailidis, D.P.; Kovar, J.; Lairon, D.; Nordestgaard, B.G.; Ooi, T.C.; Martínez, P.P.; Bilianou, H.; Anagnostopoulou, K.; Panotopoulos, G. Assessment and Clinical Relevance of Non-Fasting and Postprandial Triglycerides: An Expert Panel Statement. Curr. Vasc. Pharmacol. 2011, 9, 258–270. [Google Scholar] [CrossRef]
- Mori, Y.; Itoh, Y.; Komiya, H.; Tajima, N.; Kon, M.; Horiuchi, Y.; Ueno, T.; Miyake, K.; Satoh, N.; Yoshii, H.; et al. Association Between Postprandial Remnant-like Particle Triglyceride (RLP-TG) Levels and Carotid Intima-Media Thickness (IMT) in Japanese Patients with Type 2 Diabetes: Assessment by Meal Tolerance Tests (MTT). Endocrine 2005, 28, 157–164. [Google Scholar] [CrossRef]
- Teno, S.; Uto, Y.; Nagashima, H.; Endoh, Y.; Iwamoto, Y.; Omori, Y.; Takizawa, T. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care 2000, 23, 1401–1406. [Google Scholar] [CrossRef]
- Idei, M.; Hirayama, S.; Miyake, N.; Kon, M.; Horiuchi, Y.; Ueno, T.; Miyake, K.; Satoh, N.; Yoshii, H.; Yamashiro, K.; et al. Mean postprandial triglyceride concentration is an independent risk factor for carotid atherosclerosis in patients with type 2 diabetes. Clin. Chim. Acta 2014, 430, 134–139. [Google Scholar] [CrossRef]
- Karpe, F. Postprandial lipoprotein metabolism and atherosclerosis. J. Intern. Med. 1991, 246, 341–355. [Google Scholar] [CrossRef]
- Miura, Y.; Suzuki, H. Dyslipidemia and atherosclerotic carotid artery stenosis. Vessel Plus 2019, 3, 1. [Google Scholar] [CrossRef]
- Fruchart, J.-C.; Santos, R.D.; Aguilar-Salinas, C.; Aikawa, M.; Al Rasadi, K.; Amarenco, P.; Barter, P.J.; Ceska, R.; Corsini, A.; Després, J.-P.; et al. The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: Conceptual framework and therapeutic potential: A consensus statement from the International Ath-erosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation. Cardiovasc. Diabetol. 2019, 18, 1–20. [Google Scholar] [CrossRef]
- Peng, J.; Luo, F.; Ruan, G.; Peng, R.; Li, X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis. 2017, 16, 233. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.-R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia 2003, 46, 733–749. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Illingworth, D. Postprandial dyslipidemia: An atherogenic disorder common in patients with diabetes mellitus. Am. J. Cardiol. 2001, 88, 9–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Yang, S.; Liu, G.; Pan, L.; Gu, C.; Wang, Y.; Li, D.; Zhao, R.; Wu, M. Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Front. Cardiovasc. Med. 2021, 8, 636947. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Antiga, L.; Spence, J.D.; Steinman, D.A. Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow. Stroke 2008, 39, 2341–2347. [Google Scholar] [CrossRef]
- Markl, M.; Wegent, F.; Zech, T.; Bauer, S.; Strecker, C.; Schumacher, M.; Weiller, C.; Hennig, J.; Harloff, A. In Vivo Wall Shear Stress Distribution in the Carotid Artery. Circ. Cardiovasc. Imaging 2010, 3, 647–655. [Google Scholar] [CrossRef]
- Miura, Y.; Kanamaru, H.; Yasuda, R.; Toma, N.; Suzuki, H. Nonfasting Triglyceride as an Independent Predictor of Carotid Restenosis After Carotid Endarterectomy or Carotid Artery Stenting. World Neurosurg. 2021, 156, e415–e425. [Google Scholar] [CrossRef]
- Tanemura, H.; Maeda, M.; Ichikawa, N.; Miura, Y.; Umeda, Y.; Hatazaki, S.; Toma, N.; Asakura, F.; Suzuki, H.; Sakaida, H.; et al. High-Risk Plaque for Carotid Artery Stenting Evaluated With 3-Dimensional T1-Weighted Gradient Echo Sequence. Stroke 2013, 44, 105–110. [Google Scholar] [CrossRef]
- Kitagami, M.; Yasuda, R.; Toma, N.; Shiba, M.; Nampei, M.; Yamamoto, Y.; Nakatsuka, Y.; Sakaida, H.; Suzuki, H. Impact of Hypertriglyceridemia on Carotid Stenosis Progression under Normal Low-Density Lipoprotein Cholesterol Levels. J. Stroke Cerebrovasc. Dis. 2017, 26, 1793–1800. [Google Scholar] [CrossRef]
Variable | Progression (n = 22) | Non-Progression (n = 89) | p Value | Odds Ratio |
---|---|---|---|---|
Age (y) | 66.6 ± 10.5 | 71.6 ± 6.7 | 0.044 a | |
Male | 21 | 85 | 1 c | 1.012 |
Body mass index (kg/m2) | 23.3 ± 3.5 | 22.7 ± 3.4 | 0.426 a | |
Smoking | 18 | 72 | 0.921 c | 1.063 |
Alcohol consumption | 12 | 47 | 0.884 b | 1.072 |
Carotid stenosis | ||||
Symptomatic | 9 | 9 | <0.001 b | 6.154 |
Degree of stenosis (%) | 32.6 ± 28.4 | 20.5 ± 31.2 | 0.088 a | |
Signal intensity ratio | 1.49 ± 0.39 | 1.43 ± 0.58 | 0.264 a | |
Radiation induced | 3 | 3 | 0.091 c | 4.526 |
Past medical history | ||||
Hypertension | 18 | 68 | 0.777 c | 1.390 |
Diabetes mellitus | 17 | 54 | 0.146 b | 2.204 |
Hyperlipidemia | 11 | 47 | 0.813 b | 0.894 |
Chronic kidney disease | 4 | 11 | 0.492 c | 1.576 |
Other atherosclerotic stenosis | ||||
Intracranial artery | 3 | 10 | 0.719 c | 1.247 |
Subclavian artery | 1 | 3 | 1 c | 1.365 |
Coronal artery | 9 | 43 | 0.533 b | 0.741 |
Artery of lower extremities | 2 | 10 | 1 c | 0.790 |
Medication | ||||
Aspirin | 10 | 49 | 0.361 b | 0.646 |
Clopidogrel | 17 | 53 | 0.153 b | 2.181 |
Cilostazol | 11 | 41 | 0.809 b | 1.122 |
Prasugrel | 0 | 8 | 0.355 c | 0 |
Warfarin | 1 | 2 | 0.495 c | 2.024 |
Direct oral anticoagulant | 2 | 5 | 0.627 c | 1.640 |
Angiotensin receptor blocker | 7 | 16 | 0.168 b | 2.071 |
Calcium channel blocker | 5 | 37 | 0.088 b | 0.397 |
Statin | 16 | 57 | 0.521 b | 1.404 |
Fibrate | 0 | 1 | 1 c | 0 |
Eicosapentaenoic acid | 0 | 3 | 1 c | 0 |
Non-fasting laboratory data | ||||
Total cholesterol (mg/dL) | 182.3 ± 43.9 | 171.6 ± 35.9 | 0.238 a | |
HDL-C (mg/dL) | 46.7 ± 11.2 | 53.4 ± 15.0 | 0.081 a | |
Non-HDL-C (mg/dL) | 137.9 ± 44.8 | 121.4 ± 37.1 | 0.093 a | |
LDL-C (mg/dL) | 104.8 ± 39.4 | 98.4 ± 29.1 | 0.409 a | |
TG (mg/dL) | 230.1 ± 118.1 | 151.7 ± 82.4 | <0.001 a | |
Hypertriglyceridemia | 14 | 28 | 0.005 b | 3.810 |
Glucose (mg/dL) | 157.3 ± 69.4 | 132.7 ± 55.2 | 0.087 a | |
Hemoglobin A1C (%) | 6.99 ± 1.16 | 6.73 ± 1.15 | 0.370 a | |
Follow-up period (days) | 1315.6 ± 988.6 | 1153.0 ± 679.3 | 0.472 a |
Variable | Progression (n = 22) | Non-Progression (n = 89) | p Value | Odds Ratio |
---|---|---|---|---|
Maximum TG (mg/dL) | 330.2 ± 370.6 | 213.8 ± 206.9 | 0.050 a | |
Maximum TG ≥ 175 mg/dL | 17 | 46 | 0.030 c | 3.18 |
Minimum TG (mg/dL) | 116.5 ± 47.8 | 97.0 ± 46.9 | 0.085 a | |
Minimum TG ≥ 175 mg/dL | 2 | 6 | 0.657 d | 1.38 |
Mean TG (mg/dL) | 206.5 ± 135.1 | 146.9 ± 88.9 | 0.013 a | |
Mean TG ≥ 175 mg/dL | 10 | 21 | 0.041 c | 2.69 |
Area [TG ≥ 175] (year-mg/dL) | 27.7 (2.6−411.6) | 0 (0−28.0) | 0.004 b | |
Area [TG ≥ 175] ≥ 6.35 year-mg/dL | 15 | 30 | 0.003 c | 4.21 |
Variable | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Symptomatic case | 7.167 | 2.168–23.700 | 0.001 |
Area [TG ≥ 175] ≥ 6.35 year-mg/dL | 4.827 | 1.626–14.329 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, Y.; Yasuda, R.; Toma, N.; Suzuki, H. Non-Fasting Hypertriglyceridemia Burden as a Residual Risk of the Progression of Carotid Artery Stenosis. Int. J. Mol. Sci. 2022, 23, 9197. https://doi.org/10.3390/ijms23169197
Miura Y, Yasuda R, Toma N, Suzuki H. Non-Fasting Hypertriglyceridemia Burden as a Residual Risk of the Progression of Carotid Artery Stenosis. International Journal of Molecular Sciences. 2022; 23(16):9197. https://doi.org/10.3390/ijms23169197
Chicago/Turabian StyleMiura, Yoichi, Ryuta Yasuda, Naoki Toma, and Hidenori Suzuki. 2022. "Non-Fasting Hypertriglyceridemia Burden as a Residual Risk of the Progression of Carotid Artery Stenosis" International Journal of Molecular Sciences 23, no. 16: 9197. https://doi.org/10.3390/ijms23169197
APA StyleMiura, Y., Yasuda, R., Toma, N., & Suzuki, H. (2022). Non-Fasting Hypertriglyceridemia Burden as a Residual Risk of the Progression of Carotid Artery Stenosis. International Journal of Molecular Sciences, 23(16), 9197. https://doi.org/10.3390/ijms23169197