Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma
Abstract
:1. Introduction
2. Post-Transcriptional Modifications
2.1. N6-Methyladenosine (m6A)
2.1.1. Writers
2.1.2. Erasers
2.1.3. Readers and Other m6A-Related Proteins
2.2. Other RNA Modifications
2.2.1. Editing of Adenosine (A) to Inosine (I)
2.2.2. N1-Methyladenosine (m1A) RNA Modification
2.2.3. 5-Methylcytosine RNA Modification
2.2.4. 7-Methylguanosine (m7G) RNA Modification
3. Non-Coding RNA and Apoptosis
3.1. Effects of Long Non-Coding RNA on Apoptosis
3.2. Effects of Small Nucleolar RNA on Oncogenesis
3.3. Effects of Post-Transcriptional Modifications of microRNAs on the Oncogenesis
4. The Main Regulators of Apoptosis in Glioblastoma Cells
5. The Relationship between RNA Modifications and the Regulation of Apoptosis
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Boccaletto, P.; Stefaniak, F.; Ray, A.; Cappannini, A.; Mukherjee, S.; Purta, E.; Kurkowska, M.; Shirvanizadeh, N.; Destefanis, E.; Groza, P.; et al. MODOMICS: A Database of RNA Modification Pathways. 2021 Update. Nucleic Acids Res. 2022, 50, D231–D235. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.-J.; Sun, W.-J.; Lin, P.-H.; Zhou, K.-R.; Liu, S.; Zheng, L.-L.; Qu, L.-H.; Yang, J.-H. RMBase v2.0: Deciphering the Map of RNA Modifications from Epitranscriptome Sequencing Data. Nucleic Acids Res. 2018, 46, D327–D334. [Google Scholar] [CrossRef] [PubMed]
- Yoshihama, M.; Nakao, A.; Kenmochi, N. SnOPY: A Small Nucleolar RNA Orthological Gene Database. BMC Res. Notes 2013, 6, 426. [Google Scholar] [CrossRef]
- Liu, N.; Pan, T. RNA Epigenetics. Transl. Res. 2015, 165, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-M.; Huo, F.-C.; Pei, D.-S. Function and Evolution of RNA N6-Methyladenosine Modification. Int. J. Biol. Sci. 2020, 16, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Decoding the Genome: A Modified View|Nucleic Acids Research|Oxford Academic. Available online: https://academic.oup.com/nar/article/32/1/223/1194895?login=false (accessed on 28 June 2022).
- Grosjean, H. (Ed.) Modification and Editing of RNA: Historical Overview and Important Facts to Remember. In Fine-Tuning of RNA Functions by Modification and Editing; Topics in Current Genetics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–22. ISBN 978-3-540-31454-7. [Google Scholar]
- Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; et al. N6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature 2014, 505, 117–120. [Google Scholar] [CrossRef]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.; Simjee, S. Glioblastoma Multiforme: A Review of Its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. APJCP 2017, 18, 3–9. [Google Scholar] [CrossRef]
- Dong, Z.; Cui, H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers 2020, 12, 736. [Google Scholar] [CrossRef]
- Huang, A.Z.; Delaidelli, A.; Sorensen, P.H. RNA Modifications in Brain Tumorigenesis. Acta Neuropathol. Commun. 2020, 8, 64. [Google Scholar] [CrossRef]
- Li, P.; Richard, H.T.; Zhu, K.; Li, L.; Huang, S. The Roles and Regulation of m6 A Modification in Glioblastoma Stem Cells and Tumorigenesis. Biomedicines 2022, 10, 969. [Google Scholar] [CrossRef]
- Kazimierczyk, M.; Wrzesinski, J. Long Non-Coding RNA Epigenetics. Int. J. Mol. Sci. 2021, 22, 6166. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Du, Y.; Wen, J.; Lu, B.; Zhao, Y. SnoRNAs: Functions and Mechanisms in Biological Processes, and Roles in Tumor Pathophysiology. Cell Death Discov. 2022, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Jiang, H.; Fang, Y.; Han, D.; Guo, Y.; Wang, X.; Gong, X.; Hong, W.; Tu, J.; Wei, W. The Essential Role of Long Non-Coding RNA GAS5 in Glioma: Interaction with MicroRNAs, Chemosensitivity and Potential as a Biomarker. J. Cancer 2021, 12, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; et al. Topology of the Human and Mouse m6 A RNA Methylomes Revealed by m6 A-Seq. Nature 2012, 485, 201–206. [Google Scholar] [CrossRef]
- Tao, M.; Li, X.; He, L.; Rong, X.; Wang, H.; Pan, J.; Lu, Z.; Zhang, X.; Peng, Y. Decreased RNA m6 A Methylation Enhances the Process of the Epithelial Mesenchymal Transition and Vasculogenic Mimicry in Glioblastoma. Am. J. Cancer Res. 2022, 12, 893–906. [Google Scholar]
- Visvanathan, A.; Patil, V.; Arora, A.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Somasundaram, K. Essential Role of METTL3-Mediated m6 A Modification in Glioma Stem-like Cells Maintenance and Radioresistance. Oncogene 2018, 37, 522–533. [Google Scholar] [CrossRef]
- Li, F.; Chen, S.; Yu, J.; Gao, Z.; Sun, Z.; Yi, Y.; Long, T.; Zhang, C.; Li, Y.; Pan, Y.; et al. Interplay of m6 A and Histone Modifications Contributes to Temozolomide Resistance in Glioblastoma. Clin. Transl. Med. 2021, 11, e553. [Google Scholar] [CrossRef]
- Mauer, J.; Luo, X.; Blanjoie, A.; Jiao, X.; Grozhik, A.V.; Patil, D.P.; Linder, B.; Pickering, B.F.; Vasseur, J.-J.; Chen, Q.; et al. Reversible Methylation of m6 Am in the 5′ Cap Controls MRNA Stability. Nature 2017, 541, 371–375. [Google Scholar] [CrossRef]
- Cui, Q.; Shi, H.; Ye, P.; Li, L.; Qu, Q.; Sun, G.; Sun, G.; Lu, Z.; Huang, Y.; Yang, C.-G.; et al. M 6 A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017, 18, 2622–2634. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, H.; Wang, Q.; Zhang, L.; Liu, Y.; Yu, H. MicroRNA 10a Induces Glioma Tumorigenesis by Targeting Myotubularin-Related Protein 3 and Regulating the Wnt/β-Catenin Signaling Pathway. FEBS J. 2019, 286, 2577–2592. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, S.; Qi, Y.; Li, B.; Wang, H.; Pan, Z.; Xue, H.; Jin, C.; Qiu, W.; Chen, Z.; et al. SPI1-Induced Downregulation of FTO Promotes GBM Progression by Regulating Pri-MiR-10a Processing in an m6 A-Dependent Manner. Mol. Ther. Nucleic Acids 2022, 27, 699–717. [Google Scholar] [CrossRef]
- Du, B.; Gao, W.; Qin, Y.; Zhong, J.; Zhang, Z. Study on the Role of Transcription Factor SPI1 in the Development of Glioma. Chin. Neurosurg. J. 2022, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, X.; Mu, Z.; Zhou, J.; Zhou, P.; Xie, C.; Jiang, S. FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-MiR-155/23a Cluster-MXI1 Feedback Circuit in Glioma. Cancer Res. 2020, 80, 3945–3958. [Google Scholar] [CrossRef]
- Annibali, D.; Whitfield, J.R.; Favuzzi, E.; Jauset, T.; Serrano, E.; Cuartas, I.; Redondo-Campos, S.; Folch, G.; Gonzàlez-Juncà, A.; Sodir, N.M.; et al. Myc Inhibition Is Effective against Glioma and Reveals a Role for Myc in Proficient Mitosis. Nat. Commun. 2014, 5, 4632. [Google Scholar] [CrossRef] [PubMed]
- Zervos, A.S.; Gyuris, J.; Brent, R. Mxi1, a Protein That Specifically Interacts with Max to Bind Myc-Max Recognition Sites. Cell 1993, 72, 223–232. [Google Scholar] [CrossRef]
- Manni, I.; Tunici, P.; Cirenei, N.; Albarosa, R.; Colombo, B.M.; Roz, L.; Sacchi, A.; Piaggio, G.; Finocchiaro, G. Mxi1 Inhibits the Proliferation of U87 Glioma Cells through Down-Regulation of Cyclin B1 Gene Expression. Br. J. Cancer 2002, 86, 477–484. [Google Scholar] [CrossRef]
- Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.-M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.-L.; Song, S.-H.; et al. ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Mol. Cell 2013, 49, 18–29. [Google Scholar] [CrossRef]
- Zhang, W.; Qian, Y.; Jia, G. The Detection and Functions of RNA Modification m6 A Based on m6 A Writers and Erasers. J. Biol. Chem. 2021, 297, 100973. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, B.S.; Zhou, A.; Lin, K.; Zheng, S.; Lu, Z.; Chen, Y.; Sulman, E.P.; Xie, K.; Bögler, O.; et al. m6 A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell 2017, 31, 591–606.e6. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, P.; Lv, Y.; Shi, Z.; Shi, F. m6 A Regulatory Gene-Mediated Methylation Modification in Glioma Survival Prediction. Front. Genet. 2022, 13, 873764. [Google Scholar] [CrossRef]
- Dixit, D.; Prager, B.C.; Gimple, R.C.; Poh, H.X.; Wang, Y.; Wu, Q.; Qiu, Z.; Kidwell, R.L.; Kim, L.J.Y.; Xie, Q.; et al. The RNA m6 A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells. Cancer Discov. 2021, 11, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Cun, Y.; An, S.; Zheng, H.; Lan, J.; Chen, W.; Luo, W.; Yao, C.; Li, X.; Huang, X.; Sun, X.; et al. Specific Regulation of m6 A by SRSF7 Promotes the Progression of Glioblastoma. Genom. Proteom. Bioinform. 2021, S1672-0229(21)00252-7. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chen, Y.-T.; Chang, Y.-F.; Liu, H.; Kuo, Y.-P.; Shih, C.-T.; Liao, W.-C.; Chen, H.-W.; Tsai, W.-S.; Tan, B.C.-M. ADAR1-Mediated 3′ UTR Editing and Expression Control of Antiapoptosis Genes Fine-Tunes Cellular Apoptosis Response. Cell Death Dis. 2017, 8, e2833. [Google Scholar] [CrossRef] [PubMed]
- Formation and Activation of a Cyclin E-Cdk2 Complex During the G1 Phase of the Human Cell Cycle. Available online: https://www.science.org/doi/10.1126/science.1388288 (accessed on 27 June 2022).
- Wang, J.; Yang, T.; Xu, G.; Liu, H.; Ren, C.; Xie, W.; Wang, M. Cyclin-Dependent Kinase 2 Promotes Tumor Proliferation and Induces Radio Resistance in Glioblastoma. Transl. Oncol. 2016, 9, 548–556. [Google Scholar] [CrossRef]
- Tassinari, V.; Cesarini, V.; Tomaselli, S.; Ianniello, Z.; Silvestris, D.A.; Ginistrelli, L.C.; Martini, M.; De Angelis, B.; De Luca, G.; Vitiani, L.R.; et al. ADAR1 Is a New Target of METTL3 and Plays a Pro-Oncogenic Role in Glioblastoma by an Editing-Independent Mechanism. Genome Biol. 2021, 22, 51. [Google Scholar] [CrossRef]
- The M1A Landscape on Cytosolic and Mitochondrial MRNA at Single-Base Resolution|Nature. Available online: https://www.nature.com/articles/nature24456 (accessed on 27 June 2022).
- Ozanick, S.; Krecic, A.; Andersland, J.; Anderson, J.T. The Bipartite Structure of the TRNA M1A58 Methyltransferase from S. Cerevisiae Is Conserved in Humans. RNA 2005, 11, 1281–1290. [Google Scholar] [CrossRef]
- Waku, T.; Nakajima, Y.; Yokoyama, W.; Nomura, N.; Kako, K.; Kobayashi, A.; Shimizu, T.; Fukamizu, A. NML-Mediated RRNA Base Methylation Links Ribosomal Subunit Formation to Cell Proliferation in a P53-Dependent Manner. J. Cell Sci. 2016, 129, 2382–2393. [Google Scholar] [CrossRef]
- Sharma, S.; Hartmann, J.D.; Watzinger, P.; Klepper, A.; Peifer, C.; Kötter, P.; Lafontaine, D.L.J.; Entian, K.-D. A Single N1-Methyladenosine on the Large Ribosomal Subunit RRNA Impacts Locally Its Structure and the Translation of Key Metabolic Enzymes. Sci. Rep. 2018, 8, 11904. [Google Scholar] [CrossRef]
- Li, X.; Xiong, X.; Wang, K.; Wang, L.; Shu, X.; Ma, S.; Yi, C. Transcriptome-Wide Mapping Reveals Reversible and Dynamic N1-Methyladenosine Methylome. Nat. Chem. Biol. 2016, 12, 311–316. [Google Scholar] [CrossRef]
- Dominissini, D.; Nachtergaele, S.; Moshitch-Moshkovitz, S.; Peer, E.; Kol, N.; Ben-Haim, M.S.; Dai, Q.; Di Segni, A.; Salmon-Divon, M.; Clark, W.C.; et al. The Dynamic N1-Methyladenosine Methylome in Eukaryotic Messenger RNA. Nature 2016, 530, 441–446. [Google Scholar] [CrossRef]
- Xie, S.; Jin, H.; Yang, F.; Zheng, H.; Chang, Y.; Liao, Y.; Zhang, Y.; Zhou, T.; Li, Y. Programmable RNA N1-Methyladenosine Demethylation by a Cas13d-Directed Demethylase. Angew. Chem. Int. Ed. 2021, 60, 19592–19597. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Gan, H.; Yang, F.; Yao, Y.; Hao, F.; Hong, L.; Jin, L. Cytoplasmic M1A Reader YTHDF3 Inhibits Trophoblast Invasion by Downregulation of M1A-Methylated IGF1R. Cell Discov. 2020, 6, 12. [Google Scholar] [CrossRef]
- Dai, X.; Wang, T.; Gonzalez, G.; Wang, Y. Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA. Anal. Chem. 2018, 90, 6380–6384. [Google Scholar] [CrossRef]
- Wang, B.; Niu, L.; Wang, Z.; Zhao, Z. RNA M1A Methyltransferase TRMT6 Predicts Poorer Prognosis and Promotes Malignant Behavior in Glioma. Front. Mol. Biosci. 2021, 8, 692130. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.-C.; Wu, F.; Wang, Q.-X.; Zhang, S.; Zhang, K.-N.; Liu, Y.-Q.; Zhao, Z.; Jiang, T.; Wang, Y.-Z.; Kang, C.-S. m6 A RNA Methylation Regulators Contribute to Malignant Progression and Have Clinical Prognostic Impact in Gliomas. Aging 2019, 11, 1204–1225. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Yang, W.-L.; Zhao, Y.-L.; Yang, Y.-G. Dynamic Transcriptomic m5 C and Its Regulatory Role in RNA Processing. WIREs RNA 2021, 12, e1639. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, G.; Jabeena, C.A.; Sethumadhavan, D.V.; Rajaram, N.; Rajavelu, A. DNA Methyltransferase Homologue TRDMT1 in Plasmodium Falciparum Specifically Methylates Endogenous Aspartic Acid TRNA. Biochim. Biophys. Acta Gene. Regul. Mech. 2017, 1860, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Walbott, H.; Auxilien, S.; Grosjean, H.; Golinelli-Pimpaneau, B. The Carboxyl-Terminal Extension of Yeast TRNA M5C Methyltransferase Enhances the Catalytic Efficiency of the Amino-Terminal Domain. J. Biol. Chem. 2007, 282, 23663–23671. [Google Scholar] [CrossRef]
- Chen, X.; Li, A.; Sun, B.-F.; Yang, Y.; Han, Y.-N.; Yuan, X.; Chen, R.-X.; Wei, W.-S.; Liu, Y.; Gao, C.-C.; et al. 5-Methylcytosine Promotes Pathogenesis of Bladder Cancer through Stabilizing MRNAs. Nat. Cell Biol. 2019, 21, 978–990. [Google Scholar] [CrossRef]
- Zou, F.; Tu, R.; Duan, B.; Yang, Z.; Ping, Z.; Song, X.; Chen, S.; Price, A.; Li, H.; Scott, A.; et al. Drosophila YBX1 Homolog YPS Promotes Ovarian Germ Line Stem Cell Development by Preferentially Recognizing 5-Methylcytosine RNAs. Proc. Natl. Acad. Sci. USA 2020, 117, 3603–3609. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Xiang, Y.; Yadav, T.; Ouyang, J.; Phoon, L.; Zhu, X.; Shi, Y.; Zou, L.; Lan, L. FMRP Promotes Transcription-Coupled Homologous Recombination via Facilitating TET1-Mediated M5C RNA Modification Demethylation. Proc. Natl. Acad. Sci. USA 2022, 119, e2116251119. [Google Scholar] [CrossRef] [PubMed]
- Glioma CpG Island Methylator Phenotype (G-CIMP): Biological and Clinical Implications|Neuro-Oncology|Oxford Academic. Available online: https://academic.oup.com/neuro-oncology/article/20/5/608/4237726?login=false (accessed on 28 June 2022).
- Deaton, A.M.; Bird, A. CpG Islands and the Regulation of Transcription. Genes. Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Janin, M.; Ortiz-Barahona, V.; de Moura, M.C.; Martínez-Cardús, A.; Llinàs-Arias, P.; Soler, M.; Nachmani, D.; Pelletier, J.; Schumann, U.; Calleja-Cervantes, M.E.; et al. Epigenetic Loss of RNA-Methyltransferase NSUN5 in Glioma Targets Ribosomes to Drive a Stress Adaptive Translational Program. Acta Neuropathol. 2019, 138, 1053–1074. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, M.; Tu, Z.; Tao, C.; Hu, Q.; Li, K.; Zhu, X.; Huang, K. Identification of RNA: 5-Methylcytosine Methyltransferases-Related Signature for Predicting Prognosis in Glioma. Front. Oncol. 2020, 10, 1119. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, Q.; Lelyveld, V.S.; Choe, J.; Szostak, J.W.; Gregory, R.I. Mettl1/Wdr4-Mediated M7G TRNA Methylome Is Required for Normal MRNA Translation and Embryonic Stem Cell Self-Renewal and Differentiation. Mol. Cell 2018, 71, 244–255.e5. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, H.; Liao, J.; Huang, C.; Ren, X.; Zhu, W.; Zhu, S.; Peng, B.; Li, S.; Lai, J.; et al. N7-Methylguanosine TRNA Modification Enhances Oncogenic MRNA Translation and Promotes Intrahepatic Cholangiocarcinoma Progression. Mol. Cell 2021, 81, 3339–3355.e8. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Ding, W.; Zhang, J.; Tan, Z.; Mei, Y.; He, W.; Wang, X. Expression and Potential Biomarkers of Regulators for M7G RNA Modification in Gliomas. Front. Neurol. 2022, 13, 886246. [Google Scholar] [CrossRef]
- CYFIP2, a Direct P53 Target, Is Leptomycin-B Sensitive: Cell Cycle: Vol 6, No 1. Available online: https://www.tandfonline.com/doi/abs/10.4161/cc.6.1.3665 (accessed on 20 July 2022).
- Marchese, F.P.; Raimondi, I.; Huarte, M. The Multidimensional Mechanisms of Long Noncoding RNA Function. Genome Biol. 2017, 18, 206. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Rezaei, N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front. Oncol. 2021, 11, 712786. [Google Scholar] [CrossRef]
- DeSouza, P.A.; Qu, X.; Chen, H.; Patel, B.; Maher, C.A.; Kim, A.H. Long, Noncoding RNA Dysregulation in Glioblastoma. Cancers 2021, 13, 1604. [Google Scholar] [CrossRef]
- Stackhouse, C.T.; Gillespie, G.Y.; Willey, C.D. Exploring the Roles of LncRNAs in GBM Pathophysiology and Their Therapeutic Potential. Cells 2020, 9, 2369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, J.; Quan, J.; Liu, W.; Tan, H.; Li, W. LncRNAs as Potential Molecular Biomarkers for the Clinicopathology and Prognosis of Glioma: A Systematic Review and Meta-Analysis. Gene 2018, 668, 77–86. [Google Scholar] [CrossRef]
- Ma, X.; Chen, L.; Tan, L.; Yan, Y.; Shao, S.; Liu, J.; Liu, R.; Ma, H.; Hui, B.; Chai, L.; et al. A Meta-Analysis of the Prognostic Value of Abnormally Expressed LncRNAs and Correlation with Clinicopathological Characteristics in Glioma. EJMO 2021, 5, 144–156. [Google Scholar] [CrossRef]
- Long Noncoding RNA Just Proximal to X-inactive Specific Transcript Facilitates Aerobic Glycolysis and Temozolomide Chemoresistance by Promoting Stability of PDK1 MRNA in an m6 A-dependent Manner in Glioblastoma Multiforme Cells—Li—2021—Cancer Science—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/cas.15072 (accessed on 7 June 2022).
- Valdés-Rives, S.A.; Casique-Aguirre, D.; Germán-Castelán, L.; Velasco-Velázquez, M.A.; González-Arenas, A. Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. BioMed Res. Int. 2017, 2017, 7403747. [Google Scholar] [CrossRef] [PubMed]
- LncRNA SOX2OT Promotes Temozolomide Resistance by Elevating SOX2 Expression via ALKBH5-Mediated Epigenetic Regulation in Glioblastoma|Cell Death & Disease. Available online: https://www.nature.com/articles/s41419-020-2540-y (accessed on 27 June 2022).
- Zhang, W.; Yang, S.; Chen, D.; Yuwen, D.; Zhang, J.; Wei, X.; Han, X.; Guan, X. SOX2-OT Induced by PAI-1 Promotes Triple-Negative Breast Cancer Cells Metastasis by Sponging MiR-942-5p and Activating PI3K/Akt Signaling. Cell. Mol. Life Sci. 2022, 79, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, Q.; Tong, Y.; Li, S.; Chen, M.; Wang, B.; Li, H. LncRNA SOX2-OT Regulates MiR-192-5p/RAB2A Axis and ERK Pathway to Promote Glioblastoma Cell Growth. Cell Cycle 2021, 20, 2010–2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hjelmeland, A.B.; Nabors, L.B.; King, P.H. Anti-Cancer Effects of the HuR Inhibitor, MS-444, in Malignant Glioma Cells. Cancer Biol. Ther. 2019, 20, 979–988. [Google Scholar] [CrossRef]
- Guha, A.; Waris, S.; Nabors, L.B.; Filippova, N.; Gorospe, M.; Kwan, T.; King, P.H. The Versatile Role of HuR in Glioblastoma and Its Potential as a Therapeutic Target for a Multi-Pronged Attack. Adv. Drug Deliv. Rev. 2022, 181, 114082. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-Z.; Chai, R.-C.; Pang, B.; Chang, X.; An, S.Y.; Zhang, K.-N.; Jiang, T.; Wang, Y.-Z. METTL3 Enhances the Stability of MALAT1 with the Assistance of HuR via m6 A Modification and Activates NF-ΚB to Promote the Malignant Progression of IDH-Wildtype Glioma. Cancer Lett. 2021, 511, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Malatesta, M.; Lien, B.V.; Saha, P.; Thombare, S.S.; Hong, S.J.; Pedraza, L.; Koontz, M.; Seo, K.; Horlbeck, M.A.; et al. CRISPRi-Based Radiation Modifier Screen Identifies Long Non-Coding RNA Therapeutic Targets in Glioma. Genome Biol. 2020, 21, 83. [Google Scholar] [CrossRef]
- Gai, S.Y.; Yuan, Z.H. Long Non-Coding RNA SOX21-AS1 Promotes Cell Proliferation and Invasion through Upregulating PAK7 Expression by Sponging MiR-144-3p in Glioma Cells. Neoplasma 2020, 67, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Li, Y.; Wu, J.; Zhang, B.; Xie, S.; Zheng, X.; Jiang, Z. An M6A/M5C/M1A/M7G-Related Long Non-Coding RNA Signature to Predict Prognosis and Immune Features of Glioma. Front. Genet. 2022, 13, 903117. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wen, J.; Huang, Z.; Chen, X.; Zhang, B.; Chu, L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front. Oncol. 2019, 9, 587. [Google Scholar] [CrossRef]
- Xu, B.; Ye, M.-H.; Lv, S.-G.; Wang, Q.-X.; Wu, M.-J.; Xiao, B.; Kang, C.-S.; Zhu, X.-G. SNORD47, a Box C/D SnoRNA, Suppresses Tumorigenesis in Glioblastoma. Oncotarget 2017, 8, 43953–43966. [Google Scholar] [CrossRef]
- Miao, F.; Chu, K.; Chen, H.; Zhang, M.; Shi, P.; Bai, J.; You, Y. Increased DKC1 Expression in Glioma and Its Significance in Tumor Cell Proliferation, Migration and Invasion. Investig. New Drugs 2019, 37, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Mannoor, K.; Shen, J.; Liao, J.; Liu, Z.; Jiang, F. Small Nucleolar RNA Signatures of Lung Tumor-Initiating Cells. Mol. Cancer 2014, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Blenkiron, C.; Hurley, D.G.; Fitzgerald, S.; Print, C.G.; Lasham, A. Links between the Oncoprotein YB-1 and Small Non-Coding RNAs in Breast Cancer. PLoS ONE 2013, 8, e80171. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liu, Y.; Rohde, C.; Pauli, C.; Gerloff, D.; Köhn, M.; Misiak, D.; Bäumer, N.; Cui, C.; Göllner, S.; et al. AML1-ETO Requires Enhanced C/D Box SnoRNA/RNP Formation to Induce Self-Renewal and Leukaemia. Nat. Cell Biol. 2017, 19, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Martens-Uzunova, E.S.; Hoogstrate, Y.; Kalsbeek, A.; Pigmans, B.; Vredenbregt-van den Berg, M.; Dits, N.; Nielsen, S.J.; Baker, A.; Visakorpi, T.; Bangma, C.; et al. C/D-Box SnoRNA-Derived RNA Production Is Associated with Malignant Transformation and Metastatic Progression in Prostate Cancer. Oncotarget 2015, 6, 17430–17444. [Google Scholar] [CrossRef]
- Xia, X.-R.; Li, W.-C.; Yu, Z.-T.; Li, J.; Peng, C.-Y.; Jin, L.; Yuan, G.-L. Effects of Small Nucleolar RNA SNORD44 on the Proliferation, Apoptosis and Invasion of Glioma Cells. Histochem. Cell Biol. 2020, 153, 257–269. [Google Scholar] [CrossRef]
- Chen, L.; Han, L.; Wei, J.; Zhang, K.; Shi, Z.; Duan, R.; Li, S.; Zhou, X.; Pu, P.; Zhang, J.; et al. SNORD76, a Box C/D SnoRNA, Acts as a Tumor Suppressor in Glioblastoma. Sci. Rep. 2015, 5, 8588. [Google Scholar] [CrossRef] [PubMed]
- Appaiah, H.N.; Goswami, C.P.; Mina, L.A.; Badve, S.; Sledge, G.W.; Liu, Y.; Nakshatri, H. Persistent Upregulation of U6:SNORD44 Small RNA Ratio in the Serum of Breast Cancer Patients. Breast Cancer Res. 2011, 13, R86. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Wu, Y.; Wang, Y.; Chen, J.; Chu, L. An Oncolytic Adenovirus Expressing SNORD44 and GAS5 Exhibits Antitumor Effect in Colorectal Cancer Cells. Hum. Gene Ther. 2017, 28, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Gee, H.E.; Buffa, F.M.; Camps, C.; Ramachandran, A.; Leek, R.; Taylor, M.; Patil, M.; Sheldon, H.; Betts, G.; Homer, J.; et al. The Small-Nucleolar RNAs Commonly Used for MicroRNA Normalisation Correlate with Tumour Pathology and Prognosis. Br. J. Cancer 2011, 104, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ren, Y.; Zhang, J.; Zhang, C.; Zhang, K.; Han, L.; Kong, L.; Wei, J.; Chen, L.; Yang, J.; et al. HOTAIR Is a Therapeutic Target in Glioblastoma. Oncotarget 2015, 6, 8353–8365. [Google Scholar] [CrossRef]
- Pećina-Šlaus, N. Wnt Signal Transduction Pathway and Apoptosis: A Review. Cancer Cell Int. 2010, 10, 22. [Google Scholar] [CrossRef]
- Clevers, H. Wnt/Beta-Catenin Signaling in Development and Disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, J.; Gao, Y.; Cui, C.; Zhang, S.; Li, J.; Zhou, Y.; Cui, Q. HMDD v3.0: A Database for Experimentally Supported Human MicroRNA-Disease Associations. Nucleic Acids Res. 2019, 47, D1013–D1017. [Google Scholar] [CrossRef]
- Banelli, B.; Forlani, A.; Allemanni, G.; Morabito, A.; Pistillo, M.P.; Romani, M. MicroRNA in Glioblastoma: An Overview. Int. J. Genom. 2017, 2017, e7639084. [Google Scholar] [CrossRef]
- Wang, B.-C.; Ma, J. Role of MicroRNAs in Malignant Glioma. Chin. Med. J. 2015, 128, 1238–1244. [Google Scholar] [CrossRef]
- Luciano, D.J.; Mirsky, H.; Vendetti, N.J.; Maas, S. RNA Editing of a MiRNA Precursor. RNA 2004, 10, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, Q.; Fei, X.; Shen, L.; Jiang, D.; Dai, D. MiR-22 Inhibits the Proliferation, Motility, and Invasion of Human Glioblastoma Cells by Directly Targeting SIRT1. Tumor Biol. 2016, 37, 6761–6768. [Google Scholar] [CrossRef] [PubMed]
- De Paolis, V.; Lorefice, E.; Orecchini, E.; Carissimi, C.; Laudadio, I.; Fulci, V. Epitranscriptomics: A New Layer of MicroRNA Regulation in Cancer. Cancers 2021, 13, 3372. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.-Q.; Chen, W.; Zhou, J.; Shen, Q.; Sun, Y.; Li, T.; Wang, S.-C. N(6)-Adenosine-Methyltransferase-14 Promotes Glioma Tumorigenesis by Repressing Argininosuccinate Synthase 1 Expression in an m6 A-Dependent Manner. Bioengineered 2022, 13, 1858–1871. [Google Scholar] [CrossRef]
- Liu, X.; Du, Y.; Huang, Z.; Qin, H.; Chen, J.; Zhao, Y. Insights into Roles of METTL14 in Tumors. Cell Prolif. 2022, 55, e13168. [Google Scholar] [CrossRef]
- Deng, Y.-W.; Shu, Y.-G.; Sun, S.-L. MiR-376a Inhibits Glioma Proliferation and Angiogenesis by Regulating YAP1/VEGF Signalling via Targeting of SIRT1. Transl. Oncol. 2021, 15, 101270. [Google Scholar] [CrossRef]
- Yuan, M.; Da Silva, A.C.A.L.; Arnold, A.; Okeke, L.; Ames, H.; Correa-Cerro, L.S.; Vizcaino, M.A.; Ho, C.-Y.; Eberhart, C.G.; Rodriguez, F.J. MicroRNA (MiR) 125b Regulates Cell Growth and Invasion in Pediatric Low Grade Glioma. Sci. Rep. 2018, 8, 12506. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Shi, J.; Tuorto, F.; Li, X.; Liu, Y.; Liebers, R.; Zhang, L.; Qu, Y.; Qian, J.; et al. Dnmt2 Mediates Intergenerational Transmission of Paternally Acquired Metabolic Disorders through Sperm Small Non-Coding RNAs. Nat. Cell Biol. 2018, 20, 535–540. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Wang, Z.; Xu, C.; Huang, J.; Li, G. Prognostic Role of METTL1 in Glioma. Cancer Cell Int. 2021, 21, 633. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, W.; Zhu, S.; Sun, K.; Liao, J.; Liu, H.; Dai, Z.; Han, H.; Ren, X.; Yang, Q.; et al. METTL1 Promotes Hepatocarcinogenesis via M7G TRNA Modification-Dependent Translation Control. Clin. Transl. Med. 2021, 11, e661. [Google Scholar] [CrossRef]
- METTL1 Promotes Neuroblastoma Development through m 7 G TRNA Modification and Selective Oncogenic Gene Translation. Available online: https://www.researchsquare.com (accessed on 18 July 2022).
- Visvanathan, A.; Patil, V.; Abdulla, S.; Hoheisel, J.D.; Somasundaram, K. N6-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 Is Essential for the Expression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling. Genes 2019, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Letai, A. Apoptosis and Cancer. Annu. Rev. Cancer Biol. 2017, 1, 275–294. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in Cancer: From Pathogenesis to Treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef]
- Wongkularb, S.; Limboonreung, T.; Tuchinda, P.; Chongthammakun, S. Suppression of PI3K/Akt/MTOR Pathway in Chrysoeriol-Induced Apoptosis of Rat C6 Glioma Cells. Vitr. Cell. Dev. Biol. Anim. 2022, 58, 29–36. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Fu, J.; Liu, R.; Zhou, X. Cinnamaldehyde Downregulation of Sept9 Inhibits Glioma Progression through Suppressing Hif-1 α via the Pi3k/Akt Signaling Pathway. Dis. Markers 2022, 2022, 6530934. [Google Scholar] [CrossRef]
- Saggioro, F.P.; Neder, L.; Stávale, J.N.; Paixão-Becker, A.N.P.; Malheiros, S.M.F.; Soares, F.A.; Pittella, J.E.H.; Matias, C.C.M.S.; Colli, B.O.; Carlotti, C.G.; et al. Fas, FasL, and Cleaved Caspases 8 and 3 in Glioblastomas: A Tissue Microarray-Based Study. Pathol. Res. Pract. 2014, 210, 267–273. [Google Scholar] [CrossRef]
- Nagane, M.; Pan, G.; Weddle, J.J.; Dixit, V.M.; Cavenee, W.K.; Huang, S.J.S. Increased Death Receptor 5 Expression by Chemotherapeutic Agents in Human Gliomas Causes Synergistic Cytotoxicity with Tumor Necrosis Factor- Related Apoptosis-Inducing Ligand in Vitro and in vivo. Cancer Res. 2000, 60, 847–853. [Google Scholar]
- Zhou, X.; Lv, L.; Tan, Y.; Zhang, Z.; Wei, S.; Xiao, S. Tanshinone IIA Sensitizes TRAIL-Induced Apoptosis in Glioblastoma through Inducing the Expression of Death Receptors (and Suppressing STAT3 Activation). Brain Res. 2021, 1766, 147515. [Google Scholar] [CrossRef]
- Hashemi, M.; Abnous, K.; Balarastaghi, S.; Hedayati, N.; Salmasi, Z.; Yazdian-Robati, R. Mitoxantrone-Loaded PLGA Nanoparticles for Increased Sensitivity of Glioblastoma Cancer Cell to TRAIL-Induced Apoptosis. J. Pharm. Innov. 2022, 17, 207–214. [Google Scholar] [CrossRef]
- Westphal, D.; Kluck, R.M.; Dewson, G. Building Blocks of the Apoptotic Pore: How Bax and Bak Are Activated and Oligomerize during Apoptosis. Cell Death Differ. 2014, 21, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Park, J.H.; Kim, M.J.; Kim, W.J.; Ha, K.T.; Choi, B.T.; Lee, S.Y.; Shin, H.K. Isolinderalactone Regulates the BCL-2/Caspase-3/PARP Pathway and Suppresses Tumor Growth in a Human Glioblastoma Multiforme Xenograft Mouse Model. Cancer Lett. 2019, 443, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wybranska, I.; Polus, A.; Mikolajczyk, M.; Knapp, A.; Sliwa, A.; Zapala, B.; Staszel, T.; Dembinska-Kiec, A. Apoptosis-Related Gene Expression in Glioblastoma (LN-18) and Medulloblastoma (Daoy) Cell Lines. Hum. Cell 2013, 26, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Tirapelli, L.F.; Bolini, P.H.N.A.; Tirapelli, D.P.D.C.; Peria, F.M.; Becker, A.N.P.; Saggioro, F.P.; Carlotti Júnior, C.G. Caspase-3 and Bcl-2 Expression in Glioblastoma: An Immunohistochemical Study. Arq. Neuro-Psiquiatr. 2010, 68, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Murphy, Á.C.; Weyhenmeyer, B.; Schmid, J.; Kilbride, S.M.; Rehm, M.; Huber, H.J.; Senft, C.; Weissenberger, J.; Seifert, V.; Dunst, M.; et al. Activation of Executioner Caspases Is a Predictor of Progression-Free Survival in Glioblastoma Patients: A Systems Medicine Approach. Cell Death Dis. 2013, 4, e629. [Google Scholar] [CrossRef]
- Huang, W.; Chen, T.-Q.; Fang, K.; Zeng, Z.-C.; Ye, H.; Chen, Y.-Q. N6-Methyladenosine Methyltransferases: Functions, Regulation, and Clinical Potential. J. Hematol. Oncol. 2021, 14, 117. [Google Scholar] [CrossRef]
- Ziegler, D.S.; Keating, J.; Kesari, S.; Fast, E.M.; Zawel, L.; Ramakrishna, N.; Barnes, J.; Kieran, M.W.; Van Zanten, S.E.M.V.; Kung, A.L. A Small-Molecule IAP Inhibitor Overcomes Resistance to Cytotoxic Therapies in Malignant Gliomas in Vitro and in Vivo. Neuro-Oncol. 2011, 13, 820–829. [Google Scholar] [CrossRef]
- Costa, B.; Bendinelli, S.; Gabelloni, P.; Da Pozzo, E.; Daniele, S.; Scatena, F.; Vanacore, R.; Campiglia, P.; Bertamino, A.; Gomez-Monterrey, I.; et al. Human Glioblastoma Multiforme: P53 Reactivation by a Novel MDM2 Inhibitor. PLoS ONE 2013, 8, e72281. [Google Scholar] [CrossRef]
- Hinz, M.; Scheidereit, C. The IκB Kinase Complex in NF-ΚB Regulation and Beyond. EMBO Rep. 2014, 15, 46–61. [Google Scholar] [CrossRef]
- Zhou, F.; Shi, Q.; Fan, X.; Yu, R.; Wu, Z.; Wang, B.; Tian, W.; Yu, T.; Pan, M.; You, Y.; et al. Diverse Macrophages Constituted the Glioma Microenvironment and Influenced by PTEN Status. Front. Immunol. 2022, 13, 841404. [Google Scholar] [CrossRef]
- Zhang, P.; Meng, X.; Liu, L.; Li, S.; Li, Y.; Ali, S.; Li, S.; Xiong, J.; Liu, X.; Li, S.; et al. Identification of the Prognostic Signatures of Glioma With Different PTEN Status. Front. Oncol. 2021, 11, 633357. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Placzek, W.J. Post-Transcriptional Regulation of Anti-Apoptotic BCL2 Family Members. Int. J. Mol. Sci. 2018, 19, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Cao, W.; He, X.; Xing, Y.; Yang, N. Long Non-Coding RNAs in Retinal Ganglion Cell Apoptosis. Cell. Mol. Neurobiol. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ozyerli-Goknar, E.; Bagci-Onder, T. Epigenetic Deregulation of Apoptosis in Cancers. Cancers 2021, 13, 3210. [Google Scholar] [CrossRef]
- Seyrek, K.; Ivanisenko, N.V.; Richter, M.; Hillert, L.K.; König, C.; Lavrik, I.N. Controlling Cell Death through Post-Translational Modifications of DED Proteins. Trends Cell Biol. 2020, 30, 354–369. [Google Scholar] [CrossRef]
- Wang, H.; Xu, B.; Shi, J. N6-Methyladenosine METTL3 Promotes the Breast Cancer Progression via Targeting Bcl-2. Gene 2020, 722, 144076. [Google Scholar] [CrossRef]
- Vu, L.P.; Pickering, B.F.; Cheng, Y.; Zaccara, S.; Nguyen, D.; Minuesa, G.; Chou, T.; Chow, A.; Saletore, Y.; MacKay, M.; et al. The N6-Methyladenosine (m6 A)-Forming Enzyme METTL3 Controls Myeloid Differentiation of Normal Hematopoietic and Leukemia Cells. Nat. Med. 2017, 23, 1369–1376. [Google Scholar] [CrossRef]
- Wei, W.; Huo, B.; Shi, X. miR-600 Inhibits Lung Cancer via Downregulating the Expression of METTL3. Cancer Manag. Res. 2019, 11, 1177–1187. [Google Scholar] [CrossRef]
- Alqudah, M.A.Y.; Agarwal, S.; Al-Keilani, M.S.; Sibenaller, Z.A.; Ryken, T.C.; Assem, M. NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR. PLoS ONE 2013, 8, e77299. [Google Scholar] [CrossRef]
- Maimaiti, A.; Wang, X.; Hao, Y.; Jiang, L.; Shi, X.; Pei, Y.; Feng, Z.; Kasimu, M. Integrated Gene Expression and Methylation Analyses Identify DLL3 as a Biomarker for Prognosis of Malignant Glioma. J. Mol. Neurosci. 2021, 71, 1622–1635. [Google Scholar] [CrossRef]
- Cenciarelli, C.; Marei, H.E.; Zonfrillo, M.; Casalbore, P.; Felsani, A.; Giannetti, S.; Trevisi, G.; Althani, A.; Mangiola, A. The Interference of Notch1 Target Hes1 Affects Cell Growth, Differentiation and Invasiveness of Glioblastoma Stem Cells through Modulation of Multiple Oncogenic Targets. Oncotarget 2017, 8, 17873–17886. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.; Wu, T.; Huang, X.; Liang, H.; Gao, X.; Tian, L.; Li, W.; Chen, A.; Wan, H.; He, M.; et al. Identification of the Role and Clinical Prognostic Value of Target Genes of m6 A RNA Methylation Regulators in Glioma. Front. Cell Dev. Biol. 2021, 9, 709022. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yi, Y.; Miao, Y.; Long, W.; Long, T.; Chen, S.; Cheng, W.; Zou, C.; Zheng, Y.; Wu, X.; et al. N 6 -Methyladenosine Modulates Nonsense-Mediated MRNA Decay in Human Glioblastoma. Cancer Res. 2019, 79, 5785–5798. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, Y.; Wang, L.; Ji, S. ALKBH5 Promotes the Proliferation of Glioma Cells via Enhancing the MRNA Stability of G6PD. Neurochem. Res. 2021, 46, 3003–3011. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Y.; Tang, Q.; Lu, H.; Li, H.; Yang, Y.; Li, Z.; Tong, S. A New G6PD Knockdown Tumor-Cell Line with Reduced Proliferation and Increased Susceptibility to Oxidative Stress. Cancer Biother. Radiopharm. 2009, 24, 81–90. [Google Scholar] [CrossRef]
- Lefebvre, C.; Largeau, C.; Michelet, X.; Fourrage, C.; Maniere, X.; Matic, I.; Legouis, R.; Culetto, E. The ESCRT-II Proteins Are Involved in Shaping the Sarcoplasmic Reticulum in C. Elegans. J. Cell Sci. 2016, 129, 1490–1499. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, H.; Zhang, M.; Wu, X.; Jiang, L.; Liu, X.; Lv, K. YTHDC1-Mediated VPS25 Regulates Cell Cycle by Targeting JAK-STAT Signaling in Human Glioma Cells. Cancer Cell Int. 2021, 21, 645. [Google Scholar] [CrossRef]
- Zhao, R.; Li, B.; Zhang, S.; He, Z.; Pan, Z.; Li, X.; Guo, Q.; Qiu, W.; Qi, Y.; Zhao, S.; et al. The N6-Methyladenosine-Modified Pseudogene HSPA7 Correlates with the Tumor Microenvironment and Predicts the Response to Immune Checkpoint Therapy in Glioblastoma. Front. Immunol. 2021, 12, 653711. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA Targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Konermann, S.; Lotfy, P.; Brideau, N.J.; Oki, J.; Shokhirev, M.N.; Hsu, P.D. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018, 173, 665–676.e14. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, Y.; Li, X.; Wang, Y.; Huang, X.; Gao, J.; Hu, X. Developing PspCas13b-Based Enhanced RESCUE System, ERESCUE, with Efficient RNA Base Editing. Cell Commun. Signal. 2021, 19, 84. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Tang, M.; Ma, J.; Zhang, H.; Gimple, R.C.; Prager, B.C.; Tang, H.; Sun, C.; Liu, F.; Lin, P.; et al. Epitranscriptomic Editing of the RNA N6-Methyladenosine Modification by DCasRx Conjugated Methyltransferase and Demethylase. Nucleic Acids Res. 2021, 49, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
ncRNA Name | Function in Glioblastoma | References |
---|---|---|
SOX2OT | Inhibition of apoptosis, increasing proliferation and TMZ resistance | [72,73,74] |
FOXM1-AS | ALKBH5-mediated increasing of FOXM1 in GSCs | [31] |
28S rRNA | Unmethylated C3872 decreased general protein level | [58] |
JPX | Mediation of apoptosis by promoting FTO/PDK1 interaction | [70] |
MALAT1 | Activation of transcriptional factor NF-kB | [77] |
AL080276.2 | Unknown | [80] |
AC092111.1 | Unknown | [80] |
SOX21-AS1 | Promoting cell proliferation, apoptosis, migration and invasion | [79] |
DNAJC9-AS1 | Unknown | [80] |
AC025171.1 | Unknown | [80] |
AL356019.2 | Unknown | [80] |
AC017104.1 | Unknown | [80] |
AC099850.3 | Unknown | [80] |
UNC5B-AS1 | Unknown | [80] |
AC006064.2 | Unknown | [80] |
AC010319.4 | Unknown | [80] |
AC016822.1 | Unknown | [80] |
SNORD44 | Putative tumor suppressor | [88,90,91] |
SNORD47 | Inhibition of EMT by suppressing nuclear translocation and β-catenin activation, enhancing glioma temozolomide sensitivity | [82] |
SNORD76 | Regulation the levels of cyclin D1 and p21 protein. Retinoblastoma (Rb)-associated cell cycle arrest in S phase | [89] |
GAS5 | Putative tumor suppressor | [15,91] |
lncGRS-1 | Selectively inhibition of growth rate and increasing radiation sensitivity of tumor cells but not normal cells | [78] |
miR-22 * | Inhibits the proliferation, motility, and invasion of glioblastoma cells | [100] |
miR-376a-5p * | Inhibition of glioma proliferation and angiogenesis by regulating YAP1/VEGF signaling via targeting of SIRT1 | [104] |
miR-221/222 * | Promotes proliferation and migration of glioblastoma cells | [101] |
miR-21 * | Promotes proliferation and migration of glioblastoma cells | [101] |
miR-589-3p * | Promotes cell invasion | [101] |
miR-125b * | In pediatric low grade glioma mature miR-125b inhibits growth and invasion, induces apoptosis | [105] |
miR-1246 * | Reduction of PTEN or/and activating the PI3K/Akt/mTOR pathway | [71,101] |
miR-25-3p * | Reduction of PTEN or/and activating the PI3K/Akt/mTOR pathway | [71,101] |
miRNA-92 * | Reduction of PTEN or/and activating the PI3K/Akt/mTOR pathway | [71,101] |
miR-126-5p * | Reduction of PTEN or/and activating the PI3K/Akt/mTOR pathway | [71,101] |
miR-181a-5p * | Mature miR-181a-5p enhances apoptosis | [106] |
miRNA-15b | Induction of apoptosis and inhibition stem characteristics | [110] |
miRNA-29b | Induction of apoptosis and inhibition stem characteristics | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dome, A.; Dymova, M.; Richter, V.; Stepanov, G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 9272. https://doi.org/10.3390/ijms23169272
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. International Journal of Molecular Sciences. 2022; 23(16):9272. https://doi.org/10.3390/ijms23169272
Chicago/Turabian StyleDome, Anton, Maya Dymova, Vladimir Richter, and Grigory Stepanov. 2022. "Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma" International Journal of Molecular Sciences 23, no. 16: 9272. https://doi.org/10.3390/ijms23169272
APA StyleDome, A., Dymova, M., Richter, V., & Stepanov, G. (2022). Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. International Journal of Molecular Sciences, 23(16), 9272. https://doi.org/10.3390/ijms23169272