Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Phenolic Compounds
2.1.1. Phenolic Acids and Derivatives
2.1.2. Flavonols
2.1.3. Flavan-3-ols
2.1.4. Flavones
2.1.5. Stilbenes
2.2. Quantitative Analysis of Polyphenols
2.3. Characterization and Quantification of Triterpenoids
2.4. Antioxidant Activity
2.5. Antiproliferative Activity
3. Materials and Methods
3.1. Reagents and Standards
3.2. Plant Materiaµl
3.3. Extraction Procedure
3.4. UPLC-DAD-ESI/MS Analysis of Polyphenols
3.5. UPLC-DAD-ESI/MS Analysis of Triterpenoids
3.6. Determination of Antioxidant Activity
3.7. Determination of Antiproliferative Activity In Vitro
3.7.1. Cell Lines and Culture Conditions
3.7.2. Tested Compound
3.7.3. MTT Assay
3.7.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mielecka-Kubień, Z. Seasonal fluctuations of number of deaths for circulatory and respiratory system diseases in Poland in 2013–2015. UE Sci. J. Katow. 2018, 375, 84–101. (In Polish) [Google Scholar]
- Chen, Z.; Zhang, P.; Xu, Y.; Yan, J.; Liu, Z.; Lau, W.B.; Lau, B.; Li, Y.; Zhao, X.; Wei, Y.; et al. Surgical stress and cancer progression: The twisted tango. Mol. Cancer 2019, 18, 132. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, B. New therapeutic targets for cancer: The interplay between immune and metabolic checkpoints and gut microbiota. Clin. Transl. Med. 2019, 8, 23. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Li, Y.; Pan, Y.; Sun, Z.; Zhao, S.; Hou, Y. Ganoderma lucidum fruiting body extracts inhibit colorectal cancer by inducing apoptosis, autophagy, and G0/G1 phase cell cycle arrest in vitro and in vivo. Am. J. Transl. Res. 2020, 12, 2675–2684. [Google Scholar] [PubMed]
- Barbieri, A.; Quagliariello, V.; Del Vecchio, V.; Falco, M.; Luciano, A.; Amruthraj, N.J.; Nasti, G.; Ottaiano, A.; Berretta, M.; Iaffaioli, R.V.; et al. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 2017, 9, 210. [Google Scholar] [CrossRef]
- Dong, Q.; He, D.; Ni, X.; Zhou, H.; Yang, H. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. J. Food Meas. Charact. 2019, 13, 3198–3205. [Google Scholar] [CrossRef]
- Ćilerdzić, J.; Sofrenić, I.V.; Tesević, V.V.; Brceski, I.D.; Duletić-Lausević, S.N.; Vukojević, J.B.; Stajić, M.M. Neuroprotective potential and chemical profile of alternatively cultivated Ganoderma lucidum basidiocarps. Chem. Biodiv. 2018, 15, e1800036. [Google Scholar] [CrossRef]
- Yahia, E.M.; Gutiérrez-Orozco, F.; Moreno-Pérez, M.A. Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chem. 2017, 226, 14–22. [Google Scholar] [CrossRef]
- Taofiq, O.; Barros, L.; Prieto, M.A.; Heleno, S.A.; Barreiro, M.A.; Ferreira, I.C.F.R. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: Optimization study using the response surface methodology. Food Funct. 2018, 9, 209–226. [Google Scholar] [CrossRef]
- Zhao, X.R.; Zhang, B.J.; Deng, S.; Zhang, H.L.; Huang, S.S.; Huo, X.K.; Wang, C.; Liu, F.; Ma, X.C. Isolation and identification of oxygenated lanostane-type triterpenoids from the fungus Ganoderma lucidum. Phytochem. Lett. 2016, 16, 87–91. [Google Scholar] [CrossRef]
- Zhong, L.; Yan, P.; Lam, W.C.; Yao, L.; Bian, Z. Coriolus versicolor and Ganoderma lucidum related natural products as an adjunct therapy for cancers: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Suprasert, P.; Apichartpiyakul, C.; Sakonwasun, C.; Nitisuwanraksa, P.; Phuackchantuck, R. Clinical characteristics of gynecologic cancer patients who respond to salvage treatment with Lingzhi. Asian Pac. J. Cancer. Prev. 2014, 15, 4193–4196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, Q.; Zhao, L.; Huang, X.; Wang, J.; Kang, X. Spore powder of Ganoderma lucidum improves cancer-related fatigue in breast cancer patients undergoing endocrine therapy: A pilot clinical trial. Evid. Based Complement. Alternat. Med. 2012, 2012, 809614. [Google Scholar] [CrossRef]
- Wasser, S.P.; Weis, A.L. Medicinal properties of substances occurring in higher basidiomycetes mushrooms. Int. J. Med. Mushrooms 1999, 1, 31–62. [Google Scholar] [CrossRef]
- Jong, S.C.; Donovick, R. Antitumor and antiviral substance from fungi. Adv. Appl. Microbiol. 1989, 34, 183–261. [Google Scholar] [CrossRef]
- Martinez-Montemayor, M.M.; Acevedo, R.R.; Otero-Franqui, E.; Cubano, L.A.; Dharmawardhane, S.F. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer. Nutr. Cancer 2011, 63, 1085–1094. [Google Scholar] [CrossRef]
- Suarez-Arroyo, I.J.; Rosario-Acevedo, R.; Aguilar-Perez, A.; Clemente, P.L.; Cubano, L.A.; Serrano, J.; Schneider, R.J.; Martinez-Montemayor, M.M. Anti-tumor effects of Ganoderma lucidum (reishi) in inflammatory breast cancer in in vivo and in vitro models. PLoS ONE 2013, 8, e57431. [Google Scholar] [CrossRef]
- Suarez-Arroyo, I.J.; Rios-Fuller, T.J.; Feliz-Mosquea, Y.R.; Lacourt-Ventura, M.; Leal-Alviarez, D.J.; Maldonado-Martinez, G.; Cubano, L.A.; Martinez-Montemayor, M.M. Ganoderma lucidum combined with the EGFR tyrosine kinase inhibitor, erlotinib synergize to reduce inflammatory breast cancer progression. J. Cancer 2016, 7, 500–551. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Seguin, P.; Ahn, J.-K.; Kim, J.-J.; Chun, S.-C.; Kim, E.; Seo, S.; Kang, E.; Kim, S.; Park, Y.; et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem. 2008, 56, 7265–7270. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Vyas, D.; Ganaie, M.A.; Dehariya, K.; Singh, V. HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms. Int. J. Pharm. Pharm. Sci. 2014, 6, 679–684. [Google Scholar]
- Benayad, Z.; Gómez-Cordoves, C.; Es-Safi, N.E. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC–DAD–ESI/MS analysis. Int. J. Mol. Sci. 2014, 15, 20668–20685. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J.; Oszmiański, J. Characterization of phenolic compounds in different anatomical pear (Pyrus communis L.) parts by ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight mass spectrometry (UPLC-PDA-Q/TOF-MS). Int. J. Mass Spectr. 2015, 392, 154–163. [Google Scholar] [CrossRef]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Beuelga, C.; Ferreira, I.C.F.R. Phenolic profiles of cultivated, in-vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Yang, M.; Jiang, B.H.; Huang, H.L.; Chen, G.T.; Lu, Z.Q.; Bi, K.S.; Guo, D.A. Analysis of major chemical constituents in Luan-Pao-Prescription using liquid chromatography coupled with electrospray ionization mass spectrometry. Nat. Prod. Commun. 2008, 3, 697–704. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Mardones, C.; Saéz, V.; Riquelme, S.; von Baer, D.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Pilot-plant scale extraction of phenolic compounds from grape canes: Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. Food Res. Int. 2021, 143, 110265. [Google Scholar] [CrossRef]
- Lin, M.S.; Yu, Z.R.; Wang, B.J.; Wang, C.C.; Weng, Y.M.; Koo, M. Bioactive constituent characterization and antioxidant activity of Ganoderma lucidum extract fractionated by supercritical carbon dioxide. Sains Mal. 2015, 44, 1685–1691. [Google Scholar]
- Abate, M.; Pepe, G.; Randino, R.; Pisanti, S.; Basilicata, M.G.; Covelli, V.; Bifulco, M.; Cabri, W.; D’Ursi, A.M.; Campiglia, P.; et al. Ganoderma lucidum ethanol extracts enhance reepithelialization and prevent keratinocytes from free-radical injury. Pharmaceuticals 2020, 13, 224. [Google Scholar] [CrossRef]
- González-Burgos, E.; Gómez-Serranillos, M.P. Effect of phenolic compounds on human health. Nutrients 2021, 13, 3922. [Google Scholar] [CrossRef]
- Martinez-Montemayor, M.M.; Ling, T.; Suárez-Arroyo, I.J.; Ortiz-Soto, G.; Santiago-Negrón, C.L.; Lacourt-Ventura, M.Y.; Valentín-Acevedo, A.; Lang, W.H.; Rivas, F. Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anticancer activities in vitro. Front. Pharmacol. 2018, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Bidegain, M.A.; Postemsky, P.D.; Pieroni, O.; Cubitto, M.A. Analysis of the influence of substrate formulations on the bioactive chemical profile of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes) by conventional and chemometrics methods. Int. J. Med. Mushrooms 2019, 21, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lou, B.; Zhang, Y.; Zhang, C. Ganoderic ccid A exerts the cytoprotection against hypoxia-triggered impairment in PC12 cells via elevating microRNA-153. Phytother. Res. 2020, 34, 640–648. [Google Scholar] [CrossRef]
- Wu, Y.L.; Han, F.; Luan, S.S.; Ai, R.; Zhang, P.; Li, H.; Chen, L.X. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J. Agric. Food Chem. 2019, 67, 5147–5158. [Google Scholar] [CrossRef] [PubMed]
- Cuong, V.T.; Chen, W.; Shi, J.; Zhang, M.; Yang, H.; Wang, N.; Yang, S.; Li, J.; Yang, P.; Fei, J. The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans. Exp. Gerontol. 2019, 117, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, A.; Kucharska, A.Z.; Sokół-Łetowska, A.; Fecka, I. Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chem. 2019, 270, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Saltarelli, R.; Ceccaroli, P.; Buffalini, M.; Vallorani, L.; Casadei, L.; Zambonelli, A.; Stocchi, V. Biochemical characterization and antioxidant and antiproliferative activities of different Ganoderma collections. J. Mol. Microbiol. Biotech. 2015, 25, 16–25. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Qiao, A.; Wang, Y.; Xiang, L.; Zhang, Z.; He, X. Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity. Fitoter 2014, 98, 137–142. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Meth. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Okić-Djordjević, I.; Trivanović, D.; Krstić, J.; Jauković, A.; Mojsilović, S.; Santibanez, J.F.; Terzic, M.; Vesović, D.; Bugarski, D. GE132+Natural: Novel promising dietetic supplement with antiproliferative influence on prostate, colon, and breast cancer cells. J. BUON 2013, 18, 504–510. [Google Scholar] [PubMed]
- Stojkovic, D.S.; Barros, L.; Calhelha, R.C.; Glamočlija, J.; Ćirić, A.; Van Griensven, L.J.; Soković, M.; Ferreira, I.C. A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. Int. J. Food Sci. Nutr. 2014, 65, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Veljović, S.; Veljović, M.; Nikićević, N.; Despotović, S.; Radulović, S.; Nikšić, M.; Filipović, L. Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. J. Food Sci. Technol. 2017, 54, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Moreira, H.; Szyjka, A.; Grzesik, J.; Pelc, K.; Żuk, M.; Kulma, A.; Emhemmed, F.; Muller, C.D.; Gąsiorowski, K.; Barg, E. Celastrol and resveratrol modulate SIRT genes expression and exert anticancer activity in colon cancer cells and cancer stem-like cells. Cancers 2022, 14, 1372. [Google Scholar] [CrossRef]
- Raj, V.P.; Dhanaraj, S.A.; Ali, S.A.; Kuan, T.H.; Mathiyalagan, S.; Raman, S. Anti-proliferative effect of Ganoderma lucidum polysaccharide and triterpenoid fractions against cancer cells. Manipal J. Pharma. Sci. 2015, 1, 32–37. [Google Scholar]
- Bryant, J.M.; Bouchard, M.; Haque, A. Anticancer activity of Ganoderic acid DM: Current status and future perspective. J. Clinic. Cell. Immunol. 2017, 8, 535. [Google Scholar] [CrossRef]
- Pan, P.; Huang, Y.W.; Oshima, K.; Yearsley, M.; Zhang, J.; Arnold, M.; Yu, J.; Wang, L.S. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Critic. Rev. Food Sci. Nutr. 2019, 59, 992–1007. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, X.; Liu, S.; Huang, L.; Gu, J. Ganoderma: A cancer immunotherapy review. Front. Pharmacol. 2018, 9, 1217. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef]
- Yen, G.-C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, S0891–S5849. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE 2010, 5, e10202. [Google Scholar] [CrossRef] [PubMed]
No. | Tentative Identification | Rt (min) | UV-Vis (nm) | MS [H−M]− (m/z) | MS/MS Fragments (m/z) | Quantity (mg/100 g DW of Extract) 2 |
---|---|---|---|---|---|---|
Phenolic acids | ||||||
1. | Tricaffeoyl-glucosyl-glucoside | 1.60 | 321 | 827.0046 | 665/383/341/221/179 | 13.54 ± 0.23 f |
2. | Tricaffeoyl-glucosyl | 1.70 | 320 | 665.0901 | 383/341/221/128 | 23.79 ± 0.24 e |
3. | Caffeoyl trihexoside | 2.01 | 325 | 665.0853 | 503/341/179/135 | 38.02 ± 0.30 d |
4. | Protocatechuic acid hexoside | 3.02 | 259 | 315.1666 | 153 | 19.09 ± 0.15 f |
5. | 1-Caffeoylquinic acid 1 | 3.73 | 327 | 353.1640 | 191/179 | 505.89 ± 3.21 a |
8. | trans-5-p-Coumaroylquinic acid | 4.55 | 309 | 337.1764 | 191/163 | 0.46 ± 0.00 h |
10. | 5-Caffeoylquinic acid 1 | 4.70 | 324 | 353.1638 | 191 | 95.01 ± 0.92 c |
20. | Caffeoyl-2-hydroxyethane-1.1.2-tricarboxylic acid | 8.13 | 326 | 339.1338 | 295/251 | 213.89 ± 1.52 b |
22. | Yunnaneic acid F | 8.91 | 275 | 597.1167 | 359/295/179 | 1.29 ± 0.00 g |
25. | Salvianolic acid B | 9.88 | 254/287/308 | 716.9802 | 519/321/295 | 1.39 ± 0.00 g |
Sum | 912.38 ± 20.14 D | |||||
Flavonols | ||||||
6. | Isorhamnetin-galactoside | 4.00 | 350 | 447.1734 | 315 | 18.23 ± 0.65 f |
11. | Quercetin hexoside 1 | 5.17 | 355 | 463.1020 | 301 | 30.41 ± 1.51 e |
17. | Quercetin derivative | 7.18 | 354 | 389.1766 | 301 | 818.29 ± 4.17 a |
18. | Isorhamnetin 3-O-rutinoside | 7.64 | 351 | 623.1027 | 315 | 110.50 ± 1.00 cd |
21. | Kaempferol derivative | 8.77 | 346 | 796.8967 | 519/285 | 278.53 ± 1.21 b |
23. | Kaempferol derivative | 9.28 | 350 | 796.8611 | 519/285 | 281.38 ± 2.01 b |
26. | Quercetin | 10.41 | 340 | 301.1369 | - | 133.13 ± 1.99 c |
Sum | 1670.46 ± 35.15 C | |||||
Flavan-3-ols | ||||||
7. | Procyanidin dimer 1 | 4.46 | 279 | 577.0848 | 425/289 | 151.10 ± 1.11 cd |
12. | Procyanidin dimer 1 | 5.63 | 280 | 577.0640 | 289 | 175.71 ± 2.08 c |
13. | (-)-epicatechin 1 | 5.70 | 280 | 289.1787 | 245 | 64.20 ± 1.03 e |
14. | B-type procyanidin trimer | 6.05 | 281 | 864.9185 | 575/285 | 447.72 ± 2.22 b |
15. | B-type procyanidin tetramer | 6.29 | 279 | 1153.7496 | 577/407/289 | 141.48 ± 1.44 d |
16. | A-type procyanidin dimer 1 | 6.63 | 277 | 575.0462 | 289 | 699.84 ± 3.65 a |
Sum | 1680.05 ± 34.77 C | |||||
Flavones | ||||||
9. | Diosmetin-pentoxide | 4.65 | 342 | 431.1876 | 299 | 83.21 ± 1.57 c |
19. | Chrysin-6-C-arabinoside-8-C-glucoside | 7.80 | 341 | 547.0973 | 457/367/337 | 35.37 ± 1.02 d |
27. | Apigenin derivative | 12.12 | 340 | 313.1686 | 269 | 414.85 ± 2.98 b |
28. | Apigenin | 12.62 | 340 | 269.1629 | - | 4039.08 ± 35.12 a |
Sum | 4572.51 ± 45.69 B | |||||
Stilbenes | ||||||
24. | Resveratrol | 9.38 | 305 | 227.2041 | 185/183/159/157/143 | 5155.70 ± 41.87 A |
TOTAL | 13,991.10 ± 98.24 |
No. | Rt (min) | UV-vis (nm) | MS [H−M]− (m/z) | MS/MS Fragments (m/z) | Tentative Identification | Quantity 2 (mg/g DW of Extract) |
---|---|---|---|---|---|---|
1. | 5.61 | 266 | 517.3228 | 499 | Ganoderic acid C2 | 47.0 ± 0.1 e |
2. | 5.99 | 257 | 529.2790 | 511 | Ganoderic acid C6 | 71.5 ± 0.2 d |
3. | 6.55 | 259 | 459.2761 | 441 | Lucidenic acid N | 24.4 ± 0.1 g |
4. | 7.47 | 256 | 531.2991 | 513/469 | Ganoderic acid G | 16.7 ± 0.0 h |
5. | 8.09 | 248 | 513.2840 | 495 | Ganoderenic acid B | 145.6 ± 0.6 b |
6. | 8.69 | 250 | 515.2980 | 497 | Ganoderic acid B | 28.4 ± 0.0 fg |
7. | 8.99 | 256 | 529.2063 | 511 | Ganoderic acid derivative | 162.4 ± 0.6 a |
8. | 9.95 | 259 | 457.2499 | 441 | Lucidenic acid A | 12.4 ± 0.1 i |
9. | 10.62 | 255 | 571.2933 | 553 | Ganoderenic acid K | 107.7 ± 0.5 c |
10. | 11.23 | 261 | 513.2844 | 495/451/433/247 | Ganoderic acid AM1 | 10.6 ± 0.0 i |
11. | 11.98 | 254 | 573.3075 | 555 | Ganoderic acid K | 11.9 ± 0.0 i |
12. | 12.79 | 254 | 569.2740 | 551 | Ganoderic acid F | 31.2 ± 0.1 f |
13. | 13.25 | 254 | 515.3001 | 497 | Gandoneric acid A 1 | 99.2 ± 0.3 c |
TOTAL | 769.1 ± 1.2 |
DPPH | ABTS | FRAP | |
---|---|---|---|
(µMol TE/g) | (µMol TE/g) | (µMol TE/g) | |
Ganoderma lucidum | 51.3 ± 1.04 | 81.26 ± 1.10 | 49.87 ± 1.58 |
Resveratrol | 444.54 ± 23.07 | 954.24 ± 3.87 | 1598.45 ± 5.09 |
Apigenin | 69.76 ± 7.19 | 91.19 ± 5.10 | 56.50 ± 1.77 |
Ascorbic acid | 648.45 ± 18.92 | 480.37 ± 8.60 | 533.79 ± 12.83 |
IC50 (µg/mL) | |
---|---|
Extract of Ganoderma lucidum | |
MDA-MB-231 | 25.38 ± 0.24 |
MCF7 | 209.6 ± 0.24 |
MCF7/DX | 235.4 ± 0.26 |
SW 620 | 47.90 ± 2.60 |
LOVO | 188.4 ± 0.76 |
LOVO/DX | 314.9 ± 35.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolniak-Ostek, J.; Oszmiański, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. Int. J. Mol. Sci. 2022, 23, 9359. https://doi.org/10.3390/ijms23169359
Kolniak-Ostek J, Oszmiański J, Szyjka A, Moreira H, Barg E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. International Journal of Molecular Sciences. 2022; 23(16):9359. https://doi.org/10.3390/ijms23169359
Chicago/Turabian StyleKolniak-Ostek, Joanna, Jan Oszmiański, Anna Szyjka, Helena Moreira, and Ewa Barg. 2022. "Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds" International Journal of Molecular Sciences 23, no. 16: 9359. https://doi.org/10.3390/ijms23169359
APA StyleKolniak-Ostek, J., Oszmiański, J., Szyjka, A., Moreira, H., & Barg, E. (2022). Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. International Journal of Molecular Sciences, 23(16), 9359. https://doi.org/10.3390/ijms23169359