The Association of Erythropoietin and Age-Related Macular Degeneration in Hemodialysis Patients: A Nationwide Population-Based Cohort Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Sources
4.2. Study Subjects
4.3. Demographics, Comorbidity, EPO Exposure, and Outcome
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Age-Related Eye Disease Study Research Group. Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology 2000, 107, 2224–2232. [Google Scholar] [CrossRef]
- Krishnaiah, S.; Das, T.; Nirmalan, P.K.; Nutheti, R.; Shamanna, B.R.; Rao, G.N.; Thomas, R. Risk factors for age-related macular degeneration: Findings from the Andhra Pradesh eye disease study in South India. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Hyman, L.; Neborsky, R. Risk factors for age-related macular degeneration: An update. Curr. Opin. Ophthalmol. 2002, 13, 171–175. [Google Scholar] [CrossRef]
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef]
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, X.; Su, J. Network Pharmacology Analysis of Traditional Chinese Medicine Formula Shuang Di Shou Zhen Tablets Treating Nonexudative Age-Related Macular Degeneration. Evid.-Based Complement. Altern. Med. 2021, 2021, 6657521. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.; Fonollosa, A.; Garcia-Ramirez, M.; Higuera, M.; Catalan, R.; Miralles, A.; Garcia-Arumi, J.; Simo, R. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 2006, 29, 2028–2033. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, H.C.; Moon, J.W. Aqueous levels of erythropoietin in acute retinal vein occlusion with macular edema. Int. J. Ophthalmol. 2014, 7, 501–506. [Google Scholar] [CrossRef]
- Xu, G.; Kang, D.; Zhang, C.; Lou, H.; Sun, C.; Yang, Q.; Lu, L.; Xu, G.T.; Zhang, J.; Wang, F. Erythropoietin Protects Retinal Cells in Diabetic Rats through Upregulating ZnT8 via Activating ERK Pathway and Inhibiting HIF-1alpha Expression. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8166–8178. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, C.; Liu, D.; Yang, Q.; Tang, L.; Wang, T.; Tian, H.; Lu, L.; Xu, J.Y.; Gao, F.; et al. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia 2021, 64, 211–225. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, H.; Yang, Q.; Yang, Y.; Li, W.; Tian, H.; Lu, L.; Wang, F.; Xu, J.Y.; Gao, F.; et al. Erythropoietin protects outer blood-retinal barrier in experimental diabetic retinopathy by up-regulating ZO-1 and occludin. Clin. Exp. Ophthalmol. 2019, 47, 1182–1197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Y.; Jin, Y.; Ji, F.; Sinclair, S.H.; Luo, Y.; Xu, G.; Lu, L.; Dai, W.; Yanoff, M.; et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Investig. Ophthalmol. Vis. Sci. 2008, 49, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Bretz, C.A.; Ramshekar, A.; Kunz, E.; Wang, H.; Hartnett, M.E. Signaling Through the Erythropoietin Receptor Affects Angiogenesis in Retinovascular Disease. Investig. Ophthalmol. Vis. Sci. 2020, 61, 23. [Google Scholar] [CrossRef] [PubMed]
- Nekoui, A.; Blaise, G. Erythropoietin and Nonhematopoietic Effects. Am. J. Med. Sci. 2017, 353, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Samson, F.P.; He, W.; Sripathi, S.R.; Patrick, A.T.; Madu, J.; Chung, H.; Frost, M.C.; Jee, D.; Gutsaeva, D.R.; Jahng, W.J. Dual Switch Mechanism of Erythropoietin as an Antiapoptotic and Pro-Angiogenic Determinant in the Retina. ACS Omega 2020, 5, 21113–21126. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, S.H.; Hurley, K.; Parvus, B.; Presti, P. Intravitreal erythropoietin in eyes with geographic atrophy secondary to age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5890. [Google Scholar]
- Modarres, M.; Falavarjani, K.G.; Nazari, H.; Sanjari, M.S.; Aghamohammadi, F.; Homaii, M.; Samiy, N. Intravitreal erythropoietin injection for the treatment of non-arteritic anterior ischaemic optic neuropathy. Br. J. Ophthalmol. 2011, 95, 992–995. [Google Scholar] [CrossRef]
- Lagreze, W.A.; Feltgen, N.; Bach, M.; Jehle, T. Feasibility of intravitreal erythropoietin injections in humans. Br. J. Ophthalmol. 2009, 93, 1667–1671. [Google Scholar] [CrossRef]
- Li, W.; Sinclair, S.H.; Xu, G.T. Effects of intravitreal erythropoietin therapy for patients with chronic and progressive diabetic macular edema. Ophthalmic Surg. Lasers Imaging 2010, 41, 18–25. [Google Scholar] [CrossRef]
- Eschbach, J.W.; Egrie, J.C.; Downing, M.R.; Browne, J.K.; Adamson, J.W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N. Engl. J. Med. 1987, 316, 73–78. [Google Scholar] [CrossRef]
- Phrommintikul, A.; Haas, S.J.; Elsik, M.; Krum, H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: A meta-analysis. Lancet 2007, 369, 381–388. [Google Scholar] [CrossRef]
- Wang, I.K.; Lin, H.J.; Wan, L.; Lin, C.L.; Yen, T.H.; Sung, F.C. Risk of Age-Related Macular Degeneration in End-Stage Renal Disease Patients Receiving Long-Term Dialysis. Retina 2016, 36, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Moon, J.W.; Shin, H.J. Chronic kidney disease, early age-related macular degeneration, and peripheral retinal drusen. Ophthalmic Epidemiol. 2011, 18, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Lois, N. Erythropoietin in diabetic retinopathy. Vis. Res. 2017, 139, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Grimm, C.; Wenzel, A.; Groszer, M.; Mayser, H.; Seeliger, M.; Samardzija, M.; Bauer, C.; Gassmann, M.; Reme, C.E. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat. Med. 2002, 8, 718–724. [Google Scholar] [CrossRef]
- Ding, S.L.S.; Leow, S.N.; Munisvaradass, R.; Koh, E.H.; Bastion, M.L.; Then, K.Y.; Kumar, S.; Mok, P.L. Revisiting the role of erythropoietin for treatment of ocular disorders. Eye 2016, 30, 1293–1309. [Google Scholar] [CrossRef]
- Shah, S.S.; Tsang, S.H.; Mahajan, V.B. Erythropoetin receptor expression in the human diabetic retina. BMC Res. Notes 2009, 2, 234. [Google Scholar] [CrossRef]
- Entezari, M.; Esmaeili, M.; Yaseri, M. A pilot study of the effect of intravenous erythropoetin on improvement of visual function in patients with recent indirect traumatic optic neuropathy. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1309–1313. [Google Scholar] [CrossRef]
- Suk, K.K.; Dunbar, J.A.; Liu, A.; Daher, N.S.; Leng, C.K.; Leng, J.K.; Lim, P.; Weller, S.; Fayard, E. Human recombinant erythropoietin and the incidence of retinopathy of prematurity: A multiple regression model. J. AAPOS 2008, 12, 233–238. [Google Scholar] [CrossRef]
- Jaquet, K.; Krause, K.; Tawakol-Khodai, M.; Geidel, S.; Kuck, K.H. Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc. Res. 2002, 64, 326–333. [Google Scholar] [CrossRef]
- Maes, C.; Carmeliet, G.; Schipani, E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat. Rev. Rheumatol. 2012, 8, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Feng, J.; Shi, Y.; Luan, F.; Ma, F.; Wang, Y.; Yang, W.; Tao, Y. Reduced Expression of Erythropoietin After Intravitreal Ranibizumab in Proliferative Diabetic Retinopathy Patients-Retrospective Interventional Study. Front. Med. 2021, 8, 710079. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, F.; Cancarini, A.; Morescalchi, F.; Romano, M.R.; dell’Omo, R.; Ruggeri, G.; Agnifili, L.; Costagliola, C. Serum and intraocular concentrations of erythropoietin and vascular endothelial growth factor in patients with type 2 diabetes and proliferative retinopathy. Diabetes Metab. 2014, 40, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C.; Huang, T.S.; Fu, T.S.; Lee, C.Y.; Chen, B.Y.; Chen, F.P. Association of age-related macular degeneration on fracture risks among osteoporosis population: A nationwide population-based cohort study. BMJ Open 2020, 10, e037028. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.C.; Chen, S.J.; Huang, C.C.; Yuan, M.K.; Leu, H.B. Age-Related Macular Degeneration and Risk of Degenerative Dementia among the Elderly in Taiwan: A Population-Based Cohort Study. Ophthalmology 2015, 122, 2327–2335.e2322. [Google Scholar] [CrossRef]
- Wen, L.Y.; Wan, L.; Lai, J.N.; Chen, C.S.; Chen, J.J.; Wu, M.Y.; Hu, K.C.; Chiu, L.T.; Tien, P.T.; Lin, H.J. Increased risk of Alzheimer’s disease among patients with age-related macular degeneration: A nationwide population-based study. PLoS ONE 2021, 16, e0250440. [Google Scholar] [CrossRef]
- Yeh, C.C.; Wu, M.M.; Wu, C.M.; Sung, F.C.; Muo, C.H.; Te, A.; Su, F.H. Increased Risk of Age-Related Macular Degeneration with Chronic Hepatitis C Virus Infection: A Nationwide Population-Based Propensity Score-Matched Cohort Study in Taiwan. Viruses 2021, 13, 790. [Google Scholar] [CrossRef]
- Wu, C.M.; Su, F.H.; Wang, W.C.; Lin, C.P.; Kamiza, A.B.; Chang, S.N.; Yeh, C.C. Association of chronic hepatitis B virus infection with age-related macular degeneration. Acta Ophthalmol. 2019, 97, e713–e718. [Google Scholar] [CrossRef]
- Artunc, F.; Risler, T. Serum erythropoietin concentrations and responses to anaemia in patients with or without chronic kidney disease. Nephrol. Dial. Transplant. 2007, 22, 2900–2908. [Google Scholar] [CrossRef]
- Mercadal, L.; Metzger, M.; Casadevall, N.; Haymann, J.P.; Karras, A.; Boffa, J.J.; Flamant, M.; Vrtovsnik, F.; Stengel, B.; Froissart, M.; et al. Timing and determinants of erythropoietin deficiency in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 35–42. [Google Scholar] [CrossRef]
- Lipsic, E.; van der Meer, P.; Voors, A.A.; Westenbrink, B.D.; van den Heuvel, A.F.; de Boer, H.C.; van Zonneveld, A.J.; Schoemaker, R.G.; van Gilst, W.H.; Zijlstra, F.; et al. A single bolus of a long-acting erythropoietin analogue darbepoetin alfa in patients with acute myocardial infarction: A randomized feasibility and safety study. Cardiovasc. Drugs Ther. 2006, 20, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Chuang, Y.L.; Chen, Y.J.; Weng, W.S.; Liu, J.S.; Liang, K.Y. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J. Health Manag. 2006, 4, 1–22. [Google Scholar]
EPO Users | Non-EPO Users | ||||
---|---|---|---|---|---|
N = 15,992 | N = 15,992 | Standardized | |||
Variable | n | % | n | % | Difference |
Age (year) | |||||
18–40 | 295 | 1.84 | 336 | 2.10 | 0.018 |
41–50 | 928 | 5.80 | 995 | 6.22 | 0.018 |
51–60 | 2293 | 14.3 | 2115 | 13.2 | 0.032 |
61–70 | 3917 | 24.5 | 3742 | 23.4 | 0.026 |
≥71 | 8559 | 53.5 | 8804 | 55.1 | 0.031 |
Gender | |||||
Male | 8119 | 50.8 | 8069 | 50.5 | 0.006 |
Female | 7873 | 49.2 | 7923 | 49.5 | 0.006 |
Urbanization | |||||
Urban | 8459 | 52.9 | 8465 | 52.9 | 0.001 |
Suburban | 5211 | 32.6 | 5206 | 32.6 | 0.001 |
Rural | 2322 | 14.5 | 2321 | 14.5 | 0.000 |
Comorbidity | |||||
Coronary heart disease | 8457 | 52.9 | 8419 | 52.7 | 0.005 |
Hypertension | 14,711 | 92.0 | 14,719 | 92.0 | 0.002 |
Diabetes | 10,839 | 67.8 | 10,830 | 67.7 | 0.001 |
Atrial fibrillation | 1477 | 9.24 | 1435 | 8.97 | 0.009 |
Heart failure | 6796 | 42.5 | 6863 | 42.9 | 0.008 |
Hyperlipidemia | 6956 | 43.5 | 7007 | 43.8 | 0.006 |
Anemia | 9186 | 57.4 | 9230 | 57.7 | 0.006 |
Cataract | 5939 | 37.1 | 6031 | 37.7 | 0.012 |
Diabetic retinopathy | 3575 | 22.4 | 3587 | 22.4 | 0.002 |
Stroke | 6918 | 43.3 | 6900 | 43.2 | 0.002 |
Viral hepatitis | 1545 | 9.66 | 1580 | 9.88 | 0.007 |
DDDs/week, median (IQR) | 2974.7 | (9681.8) | |||
Follow-up years, mean (SD) | 3.97 | (3.61) | 1.02 | (2.10) | 1.000 |
EPO (DDDs/Week) | Event | PY | Rate * | cHR (95% CI) | p | aHR (95% CI) † | p |
---|---|---|---|---|---|---|---|
Non-EPO Users | 647 | 31,748 | 20.38 | Ref. | Ref. | ||
EPO users | 668 | 63,514 | 10.52 | 0.57 (0.51–0.64) | <0.0001 | 0.57 (0.51–0.64) | <0.0001 |
Q1 | 157 | 12,812 | 12.25 | 0.67 (0.56–0.80) | <0.0001 | 0.69 (0.57–0.82) | <0.0001 |
Q2 | 180 | 14,358 | 12.54 | 0.68 (0.57–0.80) | <0.0001 | 0.71 (0.60–0.84) | <0.0001 |
Q3 | 161 | 18,116 | 8.89 | 0.49 (0.41–0.58) | <0.0001 | 0.49 (0.41–0.58) | <0.0001 |
Q4 | 170 | 18,228 | 9.33 | 0.51 (0.43–0.60) | <0.0001 | 0.49 (0.41–0.58) | <0.0001 |
p for trend | <0.0001 | <0.0001 |
EPO (DDDs/Week) | Exudative AMD | p | Nonexudative AMD | p | ||||
---|---|---|---|---|---|---|---|---|
Event | Rate * | aHR (95% CI) † | Event | Rate * | aHR (95% CI) † | |||
Non-EPO users | 162 | 5.10 | Ref. | 485 | 15.3 | Ref. | ||
EPO users | 117 | 1.84 | 0.48 (0.40–0.61) | <0.0001 | 551 | 8.68 | 0.61 (0.53–0.69) | <0.0001 |
Q1 | 27 | 2.11 | 0.57 (0.38–0.87) | 0.008 | 130 | 10.15 | 0.72 (0.59–0.88) | 0.001 |
Q2 | 31 | 2.16 | 0.59 (0.40–0.87) | 0.008 | 149 | 10.4 | 0.74 (0.62–0.90) | 0.002 |
Q3 | 32 | 1.77 | 0.45 (0.31–0.66) | <0.0001 | 129 | 7.12 | 0.50 (0.41–0.61) | <0.0001 |
Q4 | 27 | 1.48 | 0.36 (0.24–0.54) | <0.0001 | 143 | 7.84 | 0.53 (0.44–0.64) | <0.0001 |
p for trend | <0.0001 | <0.0001 |
Follow-Up Year | Non-EPO Users | Rate * | EPO Users | Rate * | aHR (95% CI) † | ||
---|---|---|---|---|---|---|---|
Event | PY | Event | PY | ||||
<1.0 | 300 | 10,872 | 27.6 | 154 | 11,611 | 13.3 | 0.54 (0.44–0.66) |
1.0–1.9 | 125 | 6159 | 20.3 | 99 | 10,395 | 9.52 | 0.47 (0.36–0.62) |
2.0–2.9 | 81 | 4340 | 18.7 | 80 | 8863 | 9.03 | 0.48 (0.35–0.65) |
3.0–3.9 | 56 | 3021 | 18.5 | 70 | 7281 | 9.61 | 0.49 (0.34–0.70) |
4.0–4.9 | 31 | 2107 | 14.7 | 52 | 5900 | 8.81 | 0.58 (0.37–0.90) |
5.0+ | 54 | 5248 | 10.3 | 213 | 19,463 | 10.9 | 1.02 (0.63–1.71) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, E.-J.-C.; Sung, F.-C.; Hung, P.-H.; Muo, C.-H.; Wu, M.-M.; Yeh, C.-C. The Association of Erythropoietin and Age-Related Macular Degeneration in Hemodialysis Patients: A Nationwide Population-Based Cohort Study. Int. J. Mol. Sci. 2022, 23, 9634. https://doi.org/10.3390/ijms23179634
Huang E-J-C, Sung F-C, Hung P-H, Muo C-H, Wu M-M, Yeh C-C. The Association of Erythropoietin and Age-Related Macular Degeneration in Hemodialysis Patients: A Nationwide Population-Based Cohort Study. International Journal of Molecular Sciences. 2022; 23(17):9634. https://doi.org/10.3390/ijms23179634
Chicago/Turabian StyleHuang, Evelyn-Jou-Chen, Fung-Chang Sung, Peir-Haur Hung, Chih-Hsin Muo, Meei-Maan Wu, and Chih-Ching Yeh. 2022. "The Association of Erythropoietin and Age-Related Macular Degeneration in Hemodialysis Patients: A Nationwide Population-Based Cohort Study" International Journal of Molecular Sciences 23, no. 17: 9634. https://doi.org/10.3390/ijms23179634
APA StyleHuang, E.-J.-C., Sung, F.-C., Hung, P.-H., Muo, C.-H., Wu, M.-M., & Yeh, C.-C. (2022). The Association of Erythropoietin and Age-Related Macular Degeneration in Hemodialysis Patients: A Nationwide Population-Based Cohort Study. International Journal of Molecular Sciences, 23(17), 9634. https://doi.org/10.3390/ijms23179634