MicroRNAs in Medicinal Plants
Abstract
:1. Introduction
2. Biosynthetic Pathways of Medicinal Plant miRNAs
2.1. Characteristics of the Canonical Pathway
2.2. Discovery of the rRNA-Derived Non-Canonical Pathway
3. Functional Research Progress of Medicinal Plant miRNAs
3.1. Cross-Kingdom Regulation
3.1.1. Exceptional Stability
3.1.2. Targeting Genes Associated with Major Diseases
3.2. Intra-Kingdom Regulation
3.2.1. Secondary Metabolism
3.2.2. Growth and Development
3.2.3. Environmental Stress Response
3.2.4. Other Fields
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akindele, A.J.; Sowemimo, A.; Agunbiade, F.O.; Sofidiya, M.O.; Awodele, O.; Ade–Ademilua, O.; Orabueze, I.; Ishola, I.O.; Ayolabi, C.I.; Salu, O.B. Bioprospecting for Anti–COVID–19 Interventions from African Medicinal Plants: A Review. Nat. Prod. Commun. 2022, 17, 1934578X221096968. [Google Scholar] [CrossRef]
- Michel, J.; Abd Rani, N.Z.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef]
- Liu, J.; Manheimer, E.; Shi, Y.; Gluud, C. Chinese herbal medicine for severe acute respiratory syndrome: A systematic review and meta–analysis. J. Altern. Complem. Med. 2004, 10, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. SARS: Clinical Trials on Treatment using a Combination of Traditional Chinese Medicine and Western Medicine; WHO: Geneva, Switzerland, 2004; Report of the WHO International Expert Meeting to review and analyse clinical reports on combination treatment for SARS, Beijing, China, 8–10 October 2003. [Google Scholar]
- Xu, J.; Zhang, Y. Traditional Chinese medicine treatment of COVID–19. Complement. Ther. Clin. 2020, 39, 101165. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Niu, J.; Cao, X. Heterologous expression of Salvia miltiorrhiza microRNA408 enhances tolerance to salt stress in Nicotiana benthamiana. Int. J. Mol. Sci. 2018, 19, 3985. [Google Scholar] [CrossRef] [PubMed]
- Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136, 669–687. [Google Scholar] [CrossRef]
- Zhao, Y.; Kuang, Z.; Wang, Y.; Li, L.; Yang, X. MicroRNA annotation in plants: Current status and challenges. Brief. Bioinform. 2021, 22, bbab075. [Google Scholar] [CrossRef]
- Puzey, J.R.; Kramer, E.M. Identification of conserved Aquilegia coerulea microRNAs and their targets. Gene 2009, 448, 46–56. [Google Scholar] [CrossRef]
- Li, D.; Yang, J.; Yang, Y.; Liu, J.; Li, H.; Li, R.; Cao, C.; Shi, L.; Wu, W.; He, K. A timely review of cross–kingdom regulation of plant–derived microRNAs. Front. Genet. 2021, 12, 613197. [Google Scholar] [CrossRef]
- Patel, M.; Patel, S.; Mangukia, N.; Patel, S.; Mankad, A.; Pandya, H.; Rawal, R. Ocimum basilicum miRNOME revisited: A cross kingdom approach. Genomics 2019, 111, 772–785. [Google Scholar] [CrossRef]
- Avsar, B.; Zhao, Y.; Li, W.; Lukiw, W.J. Atropa belladonna expresses a microRNA (aba–miRNA–9497) highly homologous to Homo sapiens miRNA–378 (hsa–miRNA–378); both miRNAs target the 3′–Untranslated region (3′–UTR) of the mRNA encoding the neurologically relevant, zinc–finger transcription factor ZNF–691. Cell. Mol. Neurobiol. 2020, 40, 179–188. [Google Scholar] [PubMed]
- Gadhavi, H.; Patel, M.; Mangukia, N.; Shah, K.; Bhadresha, K.; Patel, S.K.; Rawal, R.M.; Pandya, H.A. Transcriptome–wide miRNA identification of Bacopa monnieri: A cross–kingdom approach. Plant Signal. Behav. 2020, 15, 1699265. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, I.; Mishra, P.; Pal, T.; Chanumolu, S.; Singh, T.R.; Chauhan, R.S. Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 2015, 241, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Duraisamy, G.S.; Matoušek, J.; Radisek, S.; Javornik, B.; Jakse, J. Identification and characterization of microRNAs in Humulus lupulus using high–throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genom. 2016, 17, 919. [Google Scholar] [CrossRef]
- Yang, J.-S.; Lai, E.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 2011, 43, 892–903. [Google Scholar] [CrossRef]
- Ha, M.J.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Bio. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Davoodi Mastakani, F.; Pagheh, G.; Rashidi Monfared, S.; Shams–Bakhsh, M. Identification and expression analysis of a microRNA cluster derived from pre–ribosomal RNA in Papaver somniferum L. and Papaver bracteatum L. PLoS ONE 2018, 13, e0199673. [Google Scholar]
- Lafontaine, D.L. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat. Struct. Mol. Biol. 2015, 22, 11–19. [Google Scholar] [CrossRef]
- Saraiya, A.A.; Wang, C.C. SnoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 2008, 4, e1000224. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Miyoshi, T.; Hartig, J.V.; Siomi, H.; Siomi, M.C. Molecular mechanisms that funnel RNA precursors into endogenous small–interfering RNA and microRNA biogenesis pathways in Drosophila. RNA 2010, 16, 506–515. [Google Scholar] [CrossRef]
- Bogerd, H.P.; Karnowski, H.W.; Cai, X.; Shin, J.; Pohlers, M.; Cullen, B.R. A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs. Mol. Cell 2010, 37, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Li, X.; Liu, J.; Dong, L.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qi, X.; Hou, D. Honeysuckle–encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015, 25, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, M.W.; Reinhart, B.J.; Lim, L.P.; Burge, C.B.; Bartel, B.; Bartel, D.P. Prediction of plant microRNA targets. Cell 2002, 110, 513–520. [Google Scholar] [CrossRef]
- Kurihara, Y.; Watanabe, Y. Arabidopsis micro–RNA biogenesis through Dicer–like 1 protein functions. Proc. Natl. Acad. Sci. USA 2004, 101, 12753–12758. [Google Scholar] [CrossRef]
- Park, M.Y.; Wu, G.; Gonzalez–Sulser, A.; Vaucheret, H.; Poethig, R.S. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2005, 102, 3691–3696. [Google Scholar] [CrossRef]
- Fang, Y.; Spector, D.L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 2007, 17, 818–823. [Google Scholar] [CrossRef]
- Song, L.; Han, M.-H.; Lesicka, J.; Fedoroff, N. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc. Natl. Acad. Sci. USA 2007, 104, 5437–5442. [Google Scholar] [CrossRef]
- Axtell, M.J.; Westholm, J.O.; Lai, E.C. Vive la différence: Biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 2011, 12, 221. [Google Scholar] [CrossRef]
- Yu, B.; Yang, Z.; Li, J.; Minakhina, S.; Yang, M.; Padgett, R.W.; Steward, R.; Chen, X. Methylation as a crucial step in plant microRNA biogenesis. Science 2005, 307, 932–935. [Google Scholar]
- Li, J.; Yang, Z.; Yu, B.; Liu, J.; Chen, X. Methylation protects miRNAs and siRNAs from a 3′–end uridylation activity in Arabidopsis. Curr. Biol. 2005, 15, 1501–1507. [Google Scholar] [CrossRef]
- Baumberger, N.; Baulcombe, D. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 2005, 102, 11928–11933. [Google Scholar] [PubMed]
- Qi, Y.; Denli, A.M.; Hannon, G.J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 2005, 19, 421–428. [Google Scholar]
- Brodersen, P.; Sakvarelidze–Achard, L.; Bruun–Rasmussen, M.; Dunoyer, P.; Yamamoto, Y.Y.; Sieburth, L.; Voinnet, O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320, 1185–1190. [Google Scholar] [CrossRef]
- Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 2004, 303, 2022–2025. [Google Scholar] [PubMed]
- Gandikota, M.; Birkenbihl, R.P.; Höhmann, S.; Cardon, G.H.; Saedler, H.; Huijser, P. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007, 49, 683–693. [Google Scholar] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [PubMed]
- Schultz, J.; Wolf, M. ITS2 sequence–structure analysis in phylogenetics: A how–to manual for molecular systematics. Mol. Phylogenet. Evol. 2009, 52, 520–523. [Google Scholar] [PubMed]
- Son, D.J.; Kumar, S.; Takabe, W.; Woo Kim, C.; Ni, C.-W.; Alberts-Grill, N.; Jang, I.-H.; Kim, S.; Kim, W.; Won Kang, S. The atypical mechanosensitive microRNA–712 derived from pre–ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun. 2013, 4, 3000. [Google Scholar] [PubMed]
- Qiu, D.; Pan, X.; Wilson, I.W.; Li, F.; Liu, M.; Teng, W.; Zhang, B. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene 2009, 436, 37–44. [Google Scholar] [PubMed]
- Xie, F.; Frazier, T.P.; Zhang, B. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 2010, 232, 417–434. [Google Scholar]
- Lai, E.C.; Tomancak, P.; Williams, R.W.; Rubin, G.M. Computational identification of Drosophila microRNA genes. Genome Biol. 2003, 4, R42. [Google Scholar] [PubMed]
- Tanzer, A.; Amemiya, C.T.; Kim, C.B.; Stadler, P.F. Evolution of microRNAs located within Hox gene clusters. J. Exp. Zool. Part B 2005, 304, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Kameswaran, V.; Bramswig, N.C.; McKenna, L.B.; Penn, M.; Schug, J.; Hand, N.J.; Chen, Y.; Choi, I.; Vourekas, A.; Won, K.-J. Epigenetic regulation of the DLK1–MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014, 19, 135–145. [Google Scholar] [PubMed]
- Sluijter, J.P.; Van Rooij, E. Exosomal microRNA clusters are important for the therapeutic effect of cardiac progenitor cells. Circ. Res. 2015, 116, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhou, Z.; Jiang, X.; Zheng, Y.; Chen, X.; Fu, Z.; Xiao, G.; Zhang, C.; Zhang, L.; Yi, Y. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS–CoV–2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020, 6, 1–4. [Google Scholar]
- Kumar, D.; Kumar, S.; Ayachit, G.; Bhairappanavar, S.B.; Ansari, A.; Sharma, P.; Soni, S.; Das, J. Cross–kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: A systems biology approach. Int. J. Mol. Sci. 2017, 18, 1191. [Google Scholar]
- Xia, C.; Zhou, H.; Xu, X.; Jiang, T.; Li, S.; Wang, D.; Nie, Z.; Sheng, Q. Identification and investigation of miRNAs from Gastrodia elata blume and their potential function. Front. Pharmacol. 2020, 11, 542405. [Google Scholar]
- Liu, C.; Xu, M.; Yan, L.; Wang, Y.; Zhou, Z.; Wang, S.; Sun, Y.; Zhang, J.; Dong, L. Honeysuckle–derived microRNA2911 inhibits tumor growth by targeting TGF–β1. Chin. Med. 2021, 16, 54. [Google Scholar]
- Wang, Y.; Peng, M.; Chen, Y.; Wang, W.; He, Z.; Yang, Z.; Lin, Z.; Gong, M.; Yin, Y.; Zeng, Y. Analysis of Panax ginseng miRNAs and their target prediction based on high–throughput sequencing. Planta Med. 2019, 85, 1168–1176. [Google Scholar]
- Xie, W.; Adolf, J.; Melzig, M.F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 2017, 12, e0187776. [Google Scholar]
- Patel, M.; Mangukia, N.; Jha, N.; Gadhavi, H.; Shah, K.; Patel, S.; Mankad, A.; Pandya, H.; Rawal, R. Computational identification of miRNA and their cross kingdom targets from expressed sequence tags of Ocimum basilicum. Mol. Biol. Rep. 2019, 46, 2979–2995. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, Z.; Du, J.; Wang, Z.; Mei, S.; Li, Z.; Zhao, Y.; Zhao, D.; Ma, Y.; Ye, J. Herbal decoctosome is a novel form of medicine. Sci. China Life Sci. 2019, 62, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Du, J.; Liang, Z.; Xu, Z.; Xu, J.; Zhao, Y.; Lin, Y.; Mei, S.; He, Q.; Zhu, J. Large–scale analysis of small RNAs derived from traditional Chinese herbs in human tissues. Sci. China Life Sci. 2019, 62, 321–332. [Google Scholar] [PubMed]
- Xie, W.; Melzig, M.F. The stability of medicinal plant microRNAs in the herb preparation process. Molecules 2018, 23, 919. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, L.; Zhao, B.; Shan, C.; Zhang, Y.; Chen, D.; Chen, X. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156–targeted SPL transcription factors. Mol. Plant 2015, 8, 98–110. [Google Scholar]
- Boke, H.; Ozhuner, E.; Turktas, M.; Parmaksiz, I.; Ozcan, S.; Unver, T. Regulation of the alkaloid biosynthesis by miRNA in Opium poppy. Plant Biotechnol. J. 2015, 13, 409–420. [Google Scholar] [CrossRef]
- Pani, A.; Mahapatra, R.K.; Behera, N.; Naik, P.K. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. Genom. Proteom. Bioinf. 2011, 9, 200–210. [Google Scholar] [CrossRef]
- Li, P.; Tian, Z.; Zhang, Q.; Zhang, Y.; Wang, M.; Fang, X.; Shi, W.; Cai, X. MicroRNAome profile of Euphorbia kansui in response to Methyl Jasmonate. Int. J. Mol. Sci. 2019, 20, 1267. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Xie, Z.; Xu, J.; Wu, B.; Wang, W. Integrated analysis of mRNA and microRNA elucidates the regulation of glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis Fisch. Int. J. Mol. Sci. 2020, 21, 3101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, H.; Hou, Z.; Xu, L.; Jin, W.; Liang, Z. Overexpression of Ath–MIR160b increased the biomass while reduced the content of tanshinones in Salvia miltiorrhiza hairy roots by targeting ARFs genes. Plant Cell Tiss. Org. 2020, 142, 327–338. [Google Scholar] [CrossRef]
- Zou, H.; Guo, X.; Yang, R.; Wang, S.; Li, L.; Niu, J.; Wang, D.; Cao, X. MiR408–SmLAC3 module participates in salvianolic acid b synthesis in Salvia miltiorrhiza. Int. J. Mol. Sci. 2021, 22, 7541. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Bhattacharyya, D.; Chattopadhyay, S. Methyl jasmonate regulates podophyllotoxin accumulation in Podophyllum hexandrum by altering the ROS–responsive podophyllotoxin pathway gene expression additionally through the down regulation of few interfering miRNAs. Front. Plant Sci. 2017, 8, 164. [Google Scholar] [PubMed]
- Zhang, M.; Dong, Y.; Nie, L.; Lu, M.; Fu, C.; Yu, L. High–throughput sequencing reveals miRNA effects on the primary and secondary production properties in long–term subcultured Taxus cells. Front. Plant Sci. 2015, 6, 604. [Google Scholar] [PubMed]
- Ye, J.; Zhang, X.; Tan, J.; Xu, F.; Cheng, S.; Chen, Z.; Zhang, W.; Liao, Y. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high–throughput sequencing and degradome analysis. Ind. Crop. Prod. 2020, 148, 112289. [Google Scholar]
- Wang, Z.; Gong, H.; Xu, X.; Wei, X.; Wang, Y.; Zeng, S. Transcriptome and small RNAome facilitate to study schaftoside in Desmodium styracifolium Merr. Ind. Crop. Prod. 2020, 149, 112352. [Google Scholar]
- Zhao, L.; Chen, C.; Wang, Y.; Shen, J.; Ding, Z. Conserved microRNA act boldly during sprout development and quality formation in Pingyang Tezaocha (Camellia sinensis). Front. Genet. 2019, 10, 237. [Google Scholar] [PubMed]
- Zheng, X.; Li, H.; Chen, M.; Zhang, J.; Tan, R.; Zhao, S.; Wang, Z. smi–miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 2020, 39, 1263–1283. [Google Scholar]
- Shen, E.M.; Singh, S.K.; Ghosh, J.S.; Patra, B.; Paul, P.; Yuan, L.; Pattanaik, S. The miRNAome of Catharanthus roseus: Identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci. Rep. 2017, 7, srep43027. [Google Scholar]
- Ding, J.; Ruan, C.; Guan, Y.; Krishna, P. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high–throughput sequencing. Sci. Rep. 2018, 8, 4022. [Google Scholar]
- Khan, S.; Ali, A.; Saifi, M.; Saxena, P.; Ahlawat, S.; Abdin, M.Z. Identification and the potential involvement of miRNAs in the regulation of artemisinin biosynthesis in A. annua. Sci. Rep. 2020, 10, 13614. [Google Scholar]
- Li, C.; Li, D.; Li, J.; Shao, F.; Lu, S. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza. Sci. Rep. 2017, 7, 44622. [Google Scholar] [PubMed]
- Fan, K.; Fan, D.; Ding, Z.; Su, Y.; Wang, X. Cs–miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiol. Bioch. 2015, 97, 350–360. [Google Scholar]
- Qian, X.; Zhu, J.; Yuan, Q.; Jia, Q.; Jin, H.; Han, J.; Sarsaiya, S.; Jin, L.; Chen, J.; Guo, L. Illumina sequencing reveals conserved and novel microRNAs of Dendrobium nobile protocorm involved in synthesizing dendrobine, a potential nanodrug. J. Biomed. Nanotechnol. 2021, 17, 416–425. [Google Scholar] [PubMed]
- Wu, B.; Li, Y.; Yan, H.; Ma, Y.; Luo, H.; Yuan, L.; Chen, S.; Lu, S. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom. 2012, 13, 15. [Google Scholar]
- Wei, R.; Qiu, D.; Wilson, I.W.; Zhao, H.; Lu, S.; Miao, J.; Feng, S.; Bai, L.; Wu, Q.; Tu, D. Identification of novel and conserved microRNAs in Panax notoginseng roots by high–throughput sequencing. BMC Genom. 2015, 16, 1–10. [Google Scholar]
- Xu, S.; Jiang, Y.; Wang, N.; Xia, B.; Jiang, Y.; Li, X.; Zhang, Z.; Li, Y.; Wang, R. Identification and differential regulation of microRNAs in response to methyl jasmonate treatment in Lycoris aurea by deep sequencing. BMC Genom. 2016, 17, 1–15. [Google Scholar]
- Wong, M.M.; Cannon, C.H.; Wickneswari, R. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genom. 2011, 12, 342. [Google Scholar]
- Gutiérrez–García, C.; Ahmed, S.S.; Ramalingam, S.; Selvaraj, D.; Srivastava, A.; Paul, S.; Sharma, A. Identification of microRNAs from medicinal plant Murraya koenigii by high–throughput sequencing and their functional implications in secondary metabolite biosynthesis. Plants 2021, 11, 46. [Google Scholar]
- Prakash, P.; Ghosliya, D.; Gupta, V. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene 2015, 554, 181–195. [Google Scholar]
- Legrand, S.; Valot, N.; Nicolé, F.; Moja, S.; Baudino, S.; Jullien, F.; Magnard, J.-L.; Caissard, J.-C.; Legendre, L. One–step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L. Gene 2010, 450, 55–62. [Google Scholar]
- Singh, N.; Srivastava, S.; Sharma, A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 2016, 575, 570–576. [Google Scholar] [CrossRef]
- Singh, N.; Sharma, A. In–silico identification of miRNAs and their regulating target functions in Ocimum basilicum. Gene 2014, 552, 277–282. [Google Scholar] [CrossRef]
- Najafabadi, A.S.; Naghavi, M.R. Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene 2018, 645, 41–47. [Google Scholar] [CrossRef]
- Khaldun, A.; Huang, W.; Liao, S.; Lv, H.; Wang, Y. Identification of microRNAs and target genes in the fruit and shoot tip of Lycium chinense: A traditional Chinese medicinal plant. PLoS ONE 2015, 10, e0116334. [Google Scholar]
- Xu, X.; Jiang, Q.; Ma, X.; Ying, Q.; Shen, B.; Qian, Y.; Song, H.; Wang, H. Deep sequencing identifies tissue–specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS ONE 2014, 9, e111679. [Google Scholar] [CrossRef]
- Fan, R.; Li, Y.; Li, C.; Zhang, Y. Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS ONE 2015, 10, e0139002. [Google Scholar]
- Li, C.; Li, D.; Zhou, H.; Li, J.; Lu, S. Analysis of the laccase gene family and miR397–/miR408–mediated posttranscriptional regulation in Salvia miltiorrhiza. PeerJ 2019, 7, e7605. [Google Scholar] [CrossRef] [Green Version]
- Rajakani, R.; Prakash, P.; Ghosliya, D.; Soni, R.; Singh, A.; Gupta, V. Azadirachta indica microRNAs: Genome–wide identification, target transcript prediction, and expression analyses. Appl. Biochem. Biotech. 2021, 193, 1924–1944. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, R.; Srivastava, G.; Sharma, A. Comparative study of withanolide biosynthesis–related miRNAs in root and leaf tissues of Withania somnifera. Appl. Biochem. Biotech. 2018, 185, 1145–1159. [Google Scholar] [CrossRef]
- Singh, N.; Srivastava, S.; Shasany, A.K.; Sharma, A. Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput. Biol. Chem. 2016, 64, 154–162. [Google Scholar] [CrossRef]
- Pérez–Quintero, Á.L.; Sablok, G.; Tatarinova, T.V.; Conesa, A.; Kuo, J.; López, C. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti–malarial plant, Artemisia annua. Biotechnol. Lett. 2012, 34, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Singh, N.; Khan, S.A.; Mathur, A.K.; Sharma, A.; Jamal, F. TIAs pathway genes and associated miRNA identification in Vinca minor: Supporting aspidosperma and eburnamine alkaloids linkage via transcriptomic analysis. Physiol. Mol. Biol. Plants 2020, 26, 1695–1711. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Sharma, A. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. CR. Biol. 2017, 340, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Padhan, J.K.; Kumar, A.; Chauhan, R.S. Transcriptomes of Podophyllum hexandrum unravel candidate miRNAs and their association with the biosynthesis of secondary metabolites. J. Plant Biochem. Biot. 2018, 27, 46–54. [Google Scholar] [CrossRef]
- Biswas, S.; Hazra, S.; Chattopadhyay, S. Deep sequencing unravels methyl jasmonate responsive novel miRNAs in Podophyllum hexandrum. J. Plant Biochem. Biot. 2021, 31, 511–523. [Google Scholar] [CrossRef]
- Samad, A.F.A.; Nazaruddin, N.; Jani, J.; Ismail, I. Identification and analysis of microRNAs responsive to abscisic acid and methyl jasmonate treatments in Persicaria minor. Sains Malays. 2020, 49, 1245–1272. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Wang, C.; Chen, H.; Liu, Y.; Wang, Y.; Gao, W. Comprehensive Identification and profiling of miRNAs involved in terpenoid synthesis of Gleditsia sinensis Lam. Forests 2022, 13, 108. [Google Scholar] [CrossRef]
- Rostami Azar, A.; Maroufi, A. Identification of long non–coding RNA transcripts in Glycyrrhiza uralensis. Iran. J. Biotechnol. 2022, 20, 88–97. [Google Scholar]
- Zhou, Y.; Mumtaz, M.A.; Zhang, Y.; Yang, Z.; Hao, Y.; Shu, H.; Zhu, J.; Bao, W.; Cheng, S.; Zhu, G. Response of anthocyanin biosynthesis to light by strand–specific transcriptome and miRNA analysis in Capsicum annuum. BMC Plant Biol. 2022, 22, 79. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Bahadur, R.P.; Basak, J. Genome–wide prediction of cauliflower miRNAs and lncRNAs and their roles in post–transcriptional gene regulation. Planta 2021, 254, 72. [Google Scholar] [CrossRef] [PubMed]
- Samad, A.; Rahnamaie-Tajadod, R.; Sajad, M.; Jani, J.; Murad, A.; Noor, N.; Ismail, I. Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genom. 2019, 20, 586. [Google Scholar]
- Song, C.; Guan, Y.; Zhang, D.; Tang, X.; Chang, Y. Integrated mRNA and miRNA Transcriptome Analysis Suggests a Regulatory Network for UV–B-Controlled Terpenoid Synthesis in Fragrant Woodfern (Dryopteris fragrans). Int. J. Mol. Sci. 2022, 23, 5708. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Noda, N.; Mikami, R.; Kang, X.; Akita, Y. Insertion of a novel transposable element disrupts the function of an anthocyanin biosynthesis-related gene in Echinacea purpurea. Sci. Hortic-Amsterdam. 2021, 282, 110021. [Google Scholar] [CrossRef]
- Mathiyalagan, R.; Subramaniyam, S.; Natarajan, S.; Kim, Y.J.; Sun, M.S.; Kim, S.Y.; Kim, Y.-J.; Yang, D.C. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). J. Ginseng Res. 2013, 37, 227. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Liu, Y.; Pan, L.; Hayward, A.; Wang, Y. Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high–throughput sequencing. Front. Plant Sci. 2015, 6, 778. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, X.; Liu, S.; Wang, G.; Zhou, J.; Yuan, Y.; Chen, T.; Jiang, C.; Zha, L. Validation of suitable reference genes for assessing gene expression of microRNAs in Lonicera japonica. Front. Plant Sci. 2016, 7, 1101. [Google Scholar] [CrossRef]
- Khaldun, A.; Huang, W.; Lv, H.; Liao, S.; Zeng, S.; Wang, Y. Comparative profiling of miRNAs and target gene identification in distant–grafting between tomato and lycium (Goji Berry). Front. Plant Sci. 2016, 7, 1475. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, D.; Xue, J.; Lu, J.; Feng, S.; Shen, C.; Wang, H. A transcriptome–wide, organ–specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci. Rep. 2016, 6, 18864. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.; Xu, Z.; Liao, P.; Zhang, X.; Liu, L.; Wei, K.; Liu, D.; Li, Y.-F.; Sunkar, R. Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Sci. Rep. 2017, 7, 9418. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Dong, Y.; Sun, Y.; Zhu, E.; Yang, J.; Liu, X.; Xue, P.; Xiao, Y.; Yang, S.; Wu, J. Investigation of the microRNAs in safflower seed, leaf, and petal by high–throughput sequencing. Planta 2011, 233, 611–619. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Y.; Guo, X.; Sun, C.; Luo, H.; Song, J.; Li, Y.; Wang, L.; Qian, J.; Chen, S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genom. 2013, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, S.; Han, X.; Ma, J.; Deng, W.; Wang, X.; Guo, H.; Xia, X. Integrated transcriptome and miRNA analysis uncovers molecular regulators of aerial stem–to–rhizome transition in the medical herb Gynostemma pentaphyllum. BMC Genom. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Galla, G.; Volpato, M.; Sharbel, T.F.; Barcaccia, G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. Plant Reprod. 2013, 26, 209–229. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, B.; Liu, X.; Feng, R.; Dong, M.; Chen, J. Microarray–based identification of conserved microRNAs from Pinellia ternata. Gene 2012, 493, 267–272. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Wang, Y.; Jiang, C.; Chen, T.; Zhu, F.; Zhao, Y.; Zhou, J.; Huang, L. Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica. RSC Adv. 2017, 7, 35426–35437. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Sang, Y.; Xing, S.; Wu, Q.; Liu, X. Identification and characterization of microRNAs in Ginkgo biloba var. epiphylla Mak. PLoS ONE 2015, 10, e0127184. [Google Scholar] [CrossRef]
- Nadiya, F.; Anjali, N.; Thomas, J.; Gangaprasad, A.; Sabu, K. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. BMC Plant Biol. 2019, 21, 3–14. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Luo, K.; Cui, J.; He, Q.; Xia, X.; Lu, Z.; Li, W.; Jin, B. Deep sequencing discovery and profiling of conserved and novel miRNAs in the ovule of Ginkgo biloba. Trees 2016, 30, 1557–1567. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J.; Zhao, J.; Xu, H.; Wang, L.; Jin, B. Cytological and miRNA expression changes during the vascular cambial transition from the dormant stage to the active stage in Ginkgo biloba L. Trees 2016, 30, 2177–2188. [Google Scholar] [CrossRef]
- Paul, S.; de la Fuente–Jiménez, J.L.; Manriquez, C.G.; Sharma, A. Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech 2020, 10, 25. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Zhang, M.; Li, W.; Luo, K.; Lu, Z.; Zhang, C.; Jin, B. Identification and characterization of microRNA expression in Ginkgo biloba L. leaves. Tree Genet. Genomes 2015, 11, 76. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, D.; Ding, X.; Gao, Y.; Li, D.; Xu, T. MicroRNA expression profiles in conventional and micropropagated Dendrobium officinale. Genes Genom. 2015, 37, 315–325. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Tu, N.; Hu, Y.; Jin, C.; Luo, Y.; Liu, A.; Zhang, X. Integrated transcriptome and microRNA profiles analysis reveals molecular mechanisms underlying the consecutive monoculture problem of Polygonatum odoratum. Cell. Mol. Biol. 2020, 66, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tang, K.; Tang, Z.; Dong, A.; Xiao, H.; Meng, Y.; Wang, P. An organ-specific transcriptomic atlas of the medicinal plant Bletilla striata: Protein-coding genes, microRNAs, and regulatory networks. Plant Genome 2022, 15, e20210. [Google Scholar] [CrossRef]
- Yang, R.; Zeng, Y.; Yi, X.; Zhao, L.; Zhang, Y. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica. Plant Biotechnol. J. 2015, 13, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Khan, A.W.; Kudapa, H.; Kale, S.M.; Chitikineni, A.; Qiwei, S.; Sharma, M.; Li, C.; Zhang, B.; Xin, L. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol. J. 2019, 17, 914–931. [Google Scholar] [CrossRef] [PubMed]
- Abla, M.; Sun, H.; Li, Z.; Wei, C.; Gao, F.; Zhou, Y.; Feng, J. Identification of miRNAs and their response to cold stress in Astragalus membranaceus. Biomolecules 2019, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Snigdha, M.; Prasath, D. Transcriptomic analysis to reveal the differentially expressed miRNA targets and their miRNAs in response to Ralstonia solanacearum in ginger species. BMC Plant Biol. 2021, 21, 355. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, J.; Chen, R.; Song, C.; Wei, P.; Cai, Y.; Wang, Y.; Han, B. miRNA–based drought regulation in the important medicinal plant Dendrobium huoshanense. J. Plant Growth Regul. 2022, 41, 1099–1108. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, L.; Liu, W.; Huang, P.; Jiang, R.; Tang, Z.; Cheng, P.; Zeng, J. Identification of drought resistant miRNA in Macleaya cordata by high–throughput sequencing. Arch. Biochem. Biophys. 2020, 684, 108300. [Google Scholar] [CrossRef]
- Jung, I.; Kang, H.; Kim, J.U.; Chang, H.; Kim, S.; Jung, W. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature. BMC Syst. Biol. 2018, 12, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.-H.; Wei, J.-H.; Yang, Y.; Zhang, Z.; Xiong, H.-Y.; Zhao, W.-T. Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data. Gene 2012, 505, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, M.; Ma, Y.; Yuan, L.; Lu, S. High–throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. PLoS ONE 2012, e44385. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Zhang, Q.; Liu, H.; Lu, S.; Qiu, D. Genome–wide identification and analysis of microRNAs involved in witches’–broom phytoplasma response in Ziziphus jujuba. PLoS ONE 2016, 11, e0166099. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Cao, S.; Wu, Y.; Ye, Z.; Zhang, C.; Yao, G.; Yu, J.; Yang, D.; Zhang, J. Integrated analysis of physiological, mRNA sequencing, and miRNA sequencing data reveals a specific mechanism for the response to continuous cropping obstacles in Pogostemon cablin Roots. Front. Plant Sci. 2022, 13, 853110. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Du, H.; Wuyun, T.-N. Genome–wide identification of microRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high–throughput sequencing. Front. Plant Sci. 2016, 7, 1632. [Google Scholar] [CrossRef]
- Hao, D.C.; Yang, L.; Xiao, P.G.; Liu, M. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol. Plant. 2012, 146, 388–403. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Ding, Y. Identification of conserved microRNAs and their targets in the model legume Lotus japonicus. J. Biotechnol. 2013, 164, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Duraisamy, G.S.; Týcová, A.; Matoušek, J. Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis. Comput. Biol. Chem. 2015, 59, 131–141. [Google Scholar] [CrossRef]
- Samad, A.F.A.; Nazaruddin, N.; Murad, A.M.A.; Jani, J.; Zainal, Z.; Ismail, I. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome. 3 Biotech 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kalariya, K.A.; Meena, R.P.; Saran, P.L.; Manivel, P. Identification of microRNAs from transcriptome data in gurmar (Gymnema sylvestre). Hortic. Environ. Biote. 2019, 60, 383–397. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Chen, J.; Xu, H.; Li, J.; Zhang, Z. Identification of novel and conserved microRNAs in Rehmannia glutinosa L. by Solexa sequencing. Plant Mol. Biol. Rep. 2011, 29, 986–996. [Google Scholar] [CrossRef]
- Yu, D.; Lu, J.; Shao, W.; Ma, X.; Xie, T.; Ito, H.; Wang, T.; Xu, M.; Wang, H.; Meng, Y. MepmiRDB: A medicinal plant microRNA database. Database 2019, 2019, baz070. [Google Scholar] [CrossRef] [PubMed]
- Petijová, L.; Jurčacková, Z.; Čellárová, E. Computational screening of miRNAs and their targets in leaves of Hypericum spp. by transcriptome–mining: A pilot study. Planta 2020, 251, 49. [Google Scholar] [CrossRef]
- Wang, B.; Dong, M.; Chen, W.; Liu, X.; Feng, R.; Xu, T. Microarray identification of conserved microRNAs in Pinellia pedatisecta. Gene 2012, 498, 36–40. [Google Scholar] [CrossRef]
- Philip, A.; Ferro, V.A.; Tate, R.J. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol. Nutr. Food Res. 2015, 59, 1962–1972. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross–kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, X.; Li, L. Biogenesis and function of extracellular miRNAs. ExRNA 2019, 1, 1–9. [Google Scholar] [CrossRef]
- Zhang, S.; Hong, Z. Mobile RNAs—the magical elf traveling between plant and the associated organisms. ExRNA 2019, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Elbaz–Younes, I.; Primo, C.; Murungi, D.; Hirschi, K.D. Intestinal permeability, digestive stability and oral bioavailability of dietary small RNAs. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Winter, J.; Diederichs, S. Argonaute proteins regulate microRNA stability: Increased microRNA abundance by argonaute proteins is due to microRNA stabilization. RNA Biol. 2011, 8, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of microRNAs and microRNA–protective protein by mammalian cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef] [PubMed]
- Vora, J.; Patel, S.; Sinha, S.; Sharma, S.; Srivastava, A.; Chhabria, M.; Shrivastava, N. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV. J. Biomol. Struct. Dyn. 2019, 37, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.; Everett, C.P.; Chan, S.Y.; Snow, J.W. Negligible uptake and transfer of diet–derived pollen microRNAs in adult honey bees. RNA Biol. 2016, 13, 109–118. [Google Scholar] [CrossRef]
- Dickinson, B.; Zhang, Y.; Petrick, J.S.; Heck, G.; Ivashuta, S.; Marshall, W.S. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. 2013, 31, 965–967. [Google Scholar] [CrossRef]
- Zhang, S.; Sang, X.; Hou, D.; Chen, J.; Gu, H.; Zhang, Y.; Li, J.; Yang, D.; Zhu, H.; Yang, X. Plant–derived RNAi therapeutics: A strategic inhibitor of HBsAg. Biomaterials 2019, 210, 83–93. [Google Scholar] [CrossRef]
- Brown, B.D.; Venneri, M.A.; Zingale, A.; Sergi, L.S.; Naldini, L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med. 2006, 12, 585–591. [Google Scholar] [CrossRef]
- Xie, W.; Weng, A.; Melzig, M.F. MicroRNAs as new bioactive components in medicinal plants. Planta Med. 2016, 82, 1153–1162. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, S.; Fu, Z.; Wang, Y.; Wang, N.; Liu, Y.; Zhao, C.; Wu, J.; Hu, Y.; Zhang, J. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J. Nutr. Biochem. 2015, 26, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef]
- Peterson, S.M.; Thompson, J.A.; Ufkin, M.L.; Sathyanarayana, P.; Liaw, L.; Congdon, C.B. Common features of microRNA target prediction tools. Front. Genet. 2014, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.R.; Fong, M.Y.; Somlo, G.; Wu, J.; Swiderski, P.; Wu, X.; Wang, S.E. Cross–kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016, 26, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Wang, Q.; Ma, J.; He, Q.; Zhang, B. Differentiated expression of microRNAs may regulate genotype–dependent traits in cotton. Gene 2014, 547, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, C.; Wu, L.; Cai, H.; Li, H.; Xu, M. The peu-miR160a−PeARF17. 1/PeARF17. 2 module participates in the adventitious root development of poplar. Plant Biotechnol. J. 2020, 18, 457–469. [Google Scholar] [CrossRef]
- Gershenzon, J.; McConkey, M.E.; Croteau, R.B. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol. 2000, 122, 205–214. [Google Scholar] [CrossRef]
- Nguyen, M.; Osipo, C. Targeting breast cancer stem cells using naturally occurring phytoestrogens. Int. J. Mol. Sci. 2022, 23, 6813. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Liu, Y.; Liu, H.; Wang, H.; Jin, W.; Zhang, Y.; Zhang, C.; Xu, D. Role of plant microRNA in cross–species regulatory networks of humans. BMC Syst. Biol. 2016, 10, 60. [Google Scholar] [CrossRef]
- Cheng, Q.; Ouyang, Y.; Tang, Z.; Lao, C.; Zhang, Y.; Cheng, C.; Zhou, H. Review on the development and applications of medicinal plant genomes. Front. Plant Sci. 2021, 12, 791219. [Google Scholar] [CrossRef]
- Chen, W.; Kui, L.; Zhang, G.; Zhu, S.; Zhang, J.; Wang, X.; Yang, M.; Huang, H.; Liu, Y.; Wang, Y. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng. Mol. Plant 2017, 10, 899–902. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, W.; Xia, E.; Zhang, Q.; Liu, Y.; Zhang, Y.; Tong, Y.; Zhao, Y.; Niu, Y.; Xu, J. The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution. Mol. Plant 2017, 10, 903–907. [Google Scholar] [CrossRef]
- Fan, G.; Liu, X.; Sun, S.; Shi, C.; Du, X.; Han, K.; Yang, B.; Fu, Y.; Liu, M.; Seim, I. The chromosome level genome and genome-wide association study for the agronomic traits of Panax notoginseng. Iscience 2020, 23, 101538. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Tu, L.; Yang, W.; Zhang, Y.; Hu, T.; Ma, B.; Lu, Y.; Cui, X.; Gao, J.; Wu, X. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Commun. 2021, 2, 100113. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, G.; Zhang, G.; Yan, J.; Dong, Y.; Lu, Y.; Fan, W.; Hao, B.; Lin, Y.; Li, Y. The chromosome–scale high–quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis. Plant Biotechnol. J. 2021, 19, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Leng, L.; Yin, Q.; Xu, M.; Huang, M.; Xu, Z.; Zhang, Y.; Yao, H.; Wang, C.; Xiong, C. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. Plant J. 2019, 97, 841–857. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, S.; Wei, K.; Yang, Z.; Duan, S.; Du, Y.; Qu, P.; Miao, J.; Chen, W.; Dong, Y. Chromosome level genome assembly of Andrographis paniculata. Front. Genet. 2020, 11, 701. [Google Scholar] [CrossRef]
- Yuan, Y.; Jin, X.; Liu, J.; Zhao, X.; Zhou, J.; Wang, X.; Wang, D.; Lai, C.; Xu, W.; Huang, J. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 2018, 9, 1615. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Wang, Y.; Zhang, G.; Song, W.; Dong, X.; Arnold, M.; Wang, W.; Miao, J.; Chen, W. Improved de novo assembly of the achlorophyllous orchid Gastrodia elata. Front. Genet. 2020, 11, 580568. [Google Scholar] [CrossRef]
Latin Name | Aim Pathway | Methods of Target Functional Identification | References | ||
---|---|---|---|---|---|
Prediction | Indirect Verification | GMOs/GMCs Direct Validation | |||
Cross-kingdom regulation | |||||
Lonicera japonica | Replication of influenza A virus | − | − | √ | [23] |
Lonicera japonica | Replication of COVID-19 | − | − | √ | [46] |
Camptotheca acuminata | Breast cancer, leukemia and lung cancer | √ | − | − | [47] |
Gastrodia elata | Homo sapiens A20 gene | − | − | √ | [48] |
Ocimum basilicum | Rheumatoid arthritis and diabetes mellitus | √ | − | − | [11] |
Lonicera japonica | Tumor proliferation | − | − | √ | [49] |
Atropa belladonna | Central nervous system toxicity | − | √ | − | [12] |
Panax ginseng | Cancers, immune diseases, and neurological disorders | √ | − | − | [50] |
Viscum album | Cancers | √ | − | − | [51] |
Ocimum basilicum | Cardiomyopathy, HIV, Alzheimer’s diseases and cancers | √ | − | − | [52] |
Bacopa monnieri | NF-kB and MAPK pathways | √ | − | − | [13] |
Aucklandia lapp, Rhodiola crenulata, and Taraxacum mongolicum | Stability assessment of miRNAs during decoction preparation | − | − | − | [53] |
Ten medicinal plants | MiRNAs were detected in mammalian blood and tissues | √ | − | − | [54] |
Viscum album | Stability assessment of miRNAs during decoction preparation | − | − | − | [55] |
Intra-kingdom secondary metabolism | |||||
Pogostemon cablin | Synthesis of sesquiterpenes | − | − | √ | [56] |
Papaver somniferum | Benzylisoquinoline alkaloid synthesis | − | √ | − | [57] |
Artemisia annua | Artemisinin synthesis | √ | − | − | [58] |
Euphorbia kansui | Terpenoid biosynthesis | √ | − | − | [59] |
Glycyrrhiza | Glycyrrhizic acid synthesis | √ | − | − | [60] |
Salvia miltiorrhiza | Tanshinone synthesis and biomass | − | − | √ | [61] |
Salvia miltiorrhiza | Synthesis of salvianolic acid | − | − | √ | [62] |
Podophyllum hexandrum | Podophylloxin synthesis | − | √ | − | [63] |
Taxus | Taxol, phenylpropanoid, and flavonoid biosynthesis | − | − | √ | [64] |
Ginkgo biloba | Terpene trilactone synthesis | − | √ | − | [65] |
Desmodium styracifolium | Schaftoside biosynthesis | √ | − | − | [66] |
Camellia sinensis | Catechin, theanine and caffeine synthesis | √ | − | − | [67] |
Salvia miltiorrhiza | Tanshinone, salvianolic acid, and biomass | − | − | √ | [68] |
Catharanthus roseus | Terpenoid indole alkaloids | − | √ | − | [69] |
Hippophae rhamnoides | Lipid synthesis | − | √ | − | [70] |
Artemisia annua | Artemisinin synthesis | − | √ | − | [71] |
Salvia miltiorrhiza | Phenolic acid synthesis | − | √ | − | [72] |
Camellia sinensis | Catechin synthesis | − | √ | − | [73] |
Picrorhiza kurroa | Terpenoid synthesis | − | √ | − | [14] |
Dendrobium nobile | Synthesis of dendrobine | √ | − | − | [74] |
Digitalis purpurea | Cardiac glycoside biosynthesis | − | √ | − | [75] |
Panax notoginseng | Synthesis of triterpenoid saponins | − | √ | − | [76] |
Lycoris aurea | Alkaloid synthesis | − | √ | − | [77] |
Acacia | Lignin and flavonoid synthesis | √ | − | − | [78] |
Murraya koenigii | Flavonoid and terpenoid synthesis | √ | − | − | [79] |
Catharanthus roseus | Secondary metabolism | √ | − | − | [80] |
Salvia sclarea | Phenylpropanoids and terpenoids synthesis | √ | − | − | [81] |
Zingiber officinalis | Gingerol synthesis | √ | − | − | [82] |
Ocimum basilicum | Secondary metabolism | √ | − | − | [83] |
Taxus chinensis | Taxoid synthesis | √ | − | − | [40] |
Ferula gummosa | Synthesis of ferulide | − | √ | − | [84] |
Lycium chinense | Lycopene synthesis | − | √ | − | [85] |
Salvia miltiorrhiza | Biosynthesis of tanshinones | − | √ | − | [86] |
Xanthium strumarium | Terpenoid biosynthesis | √ | − | − | [87] |
Salvia miltiorrhiza | Phenolic synthesis | − | √ | − | [88] |
Azadirachta indica | Secondary metabolism | √ | − | − | [89] |
Withania somnifera | Withanolide synthesis | − | √ | − | [90] |
Mentha | Essential oil biosynthesis | √ | − | − | [91] |
Salvia miltiorrhiza | Tanshinone Synthesis | − | − | √ | [61] |
Artemisia annua | Artemisinin synthesis | √ | − | − | [92] |
Vinca minor | Synthesis of terpenoid indole alkaloids | √ | − | − | [93] |
Curcuma longa | Curcumin biosynthesis | √ | − | − | [94] |
Podophyllum hexandrum | Podophyllotoxin synthesis | − | √ | − | [95] |
Podophyllum hexandrum | Podophyllotoxin synthesis | − | √ | − | [96] |
Persicaria minor | Terpenoid and GLV synthesis | − | √ | − | [97] |
Gleditsia sinensis | Synthesis of monoterpenes and alkaloids | √ | − | − | [98] |
Glycyrrhiza uralensis | Secondary metabolism | √ | − | − | [99] |
Capsicum annuum | Anthocyanin synthesis | √ | − | − | [100] |
Brassica oleracea | Secondary metabolism | − | √ | − | [101] |
Persicaria minor | Terpenoid and GLV synthesis | − | √ | − | [102] |
Dryopteris fragrans | Terpenoid synthesis | − | √ | − | [103] |
Echinacea purpurea | Anthocyanin biosynthesis | √ | − | − | [104] |
Intra-kingdom growth and development | |||||
Papaver somniferum | Root, stem, leaf and young capsule prior to flowering tissues | − | √ | − | [57] |
Panax ginseng | Flower buds, leaves, and lateral roots | √ | − | − | [105] |
Lycium barbarum | Different fruit stages | − | √ | − | [106] |
Lonicera japonica | Flower buds, leaves, and stems of 21 cultivated varieties | − | − | − | [107] |
Lycopersicon esculentum and Lycium chinense | Shoot and fruit of grafted tomato | √ | − | − | [108] |
Ginkgo biloba | Roots, stems, leaves, microstrobilus, and ovulate strobilus | − | √ | − | [65] |
Camellia sinensis | Buds, different development stages of leaves and stems | √ | − | − | [67] |
Dendrobium officinale | Flower, root, leaf and stem | √ | − | − | [109] |
Panax notoginseng | Root with various biomasses | − | √ | − | [110] |
Carthamus tinctorius | Seed, leaf, and petal | − | − | − | [111] |
Panax ginseng | Roots, stems, leaves and flowers | √ | − | − | [112] |
Panax notoginseng | Roots, stems, and leaves of 1-, 2-, and 3-year-old seedlings | − | √ | − | [76] |
Gynostemma pentaphyllum | three stages of developmental stem-to-rhizome transition | − | √ | − | [113] |
Hypericum perforatum | Flower parts | √ | − | − | [114] |
Pinellia ternate | Leaves, stalks and tubers | − | − | − | [115] |
Lonicera japonica | Flowers including 2 varieties of honeysuckle at 2 locations | − | √ | − | [116] |
Ginkgo biloba | Epiphyllous ovule leaves and normal leaves | − | √ | − | [117] |
Elettaria cardamomum | Cultivar and wild cardamom genotypes | − | √ | − | [118] |
Ginkgo biloba | Mature ovules (pollination stage) and leaves of female trees | √ | − | − | [119] |
Ginkgo biloba | Cambial structure | − | − | − | [120] |
Passifora edulis | Inter-tissue and inter-varietal | √ | − | − | [121] |
Ginkgo biloba | Female and male leaves | √ | − | − | [122] |
Dendrobium officinale | Conventional and micropropagated plants | √ | − | − | [123] |
Polygonatum odoratum | Leaves and roots of CC and FC seedlings | √ | − | − | [124] |
Bletilla striata | Leaves, roots, and tubers | − | √ | − | [125] |
Intra-kingdom stress responses | |||||
Halostachys caspica | Salt stress | − | √ | − | [126] |
Cicer arietinum | Ascochyta blight | − | √ | − | [127] |
Salvia miltiorrhiza | Salt stress | − | − | − | [6] |
Astragalus Membranaceus | Cold stress | − | √ | − | [128] |
Zingiber officinale and Curcuma amada | Bacterial wilt | − | √ | − | [129] |
Dendrobium huoshanense | Drought stress | − | √ | − | [130] |
Macleaya cordata | Drought stress | − | √ | − | [131] |
Digitalis purpurea | Cold and dehydration stresses | − | √ | − | [75] |
Humulus lupulus | CBCVd | − | √ | − | [15] |
Panax ginseng | High ambient temperature | − | √ | − | [132] |
Aquilaria sinensis | Wound treatment | − | − | − | [133] |
Panax ginseng | Dehydration and heat stresses | − | √ | − | [134] |
Ziziphus jujuba | Jujube witches’-broom | − | √ | − | [135] |
Polygonatum odoratum | Consecutive monoculture problem | √ | − | − | [124] |
Pogostemon cablin | Consecutive monoculture problem | − | √ | − | [136] |
Other research functioning in intra-kingdom | |||||
Eucommia ulmoides | First report | − | √ | − | [137] |
Taxus | First report | − | √ | − | [138] |
Lotus japonicus | First report | √ | − | − | [139] |
Humulus lupulus | First report | − | √ | − | [140] |
Persicaria minor | First report | √ | − | − | [141] |
Gymnema sylvestre | First report | √ | − | − | [142] |
Rehmannia glutinosa | First report | √ | − | − | [143] |
29 medicinal plants | Database | √ | − | − | [144] |
Papaver somniferum | Non-classical miRNA | √ | − | − | [18] |
Hypericum | Evolutionary analysis | √ | − | − | [145] |
Pinellia pedatisecta | Evolutionary analysis | − | − | − | [146] |
Aquilegia coerulea | Evolutionary analysis | √ | − | − | [9] |
Elettaria cardamomum | Evolutionary analysis | − | √ | − | [118] |
Name of miRNA | Aim Pathway |
---|---|
Cross-kingdom | |
• MIR2911 | COVID-19, influenza A virus, and tumor proliferation |
• Gas-miR01, and 02 | Anti-inflammatory |
• MiR414 | Alzheimer’s diseases, diabetes, hypoganglionosis, and inflammatory bowel diseases |
• Oba-miR156f, and 156t | Bile duct carcinoma, lung cancer, and osteoarthritis |
• Oba-miR160g | Lung cancer, nephronophthisis, and retinitis pigmentosa |
• Oba-miR482a | Breast cancer, gastric cancer, and ovarian cancer |
• MiR869.1 | Alzheimer’s diseases, cataracts, and diabetes mellitus |
• Bmn-miR156, 167h, 172d, and 396g | Immune responses |
• MiR166 | Glioblastoma, papillary thyroid carcinoma, and secretory breast carcinomas |
• Cac-miR-29c-5p | Breast cancer, and ovarian cancer |
• Cac-miR-4723-3p | Prostate cancer, and renal cancer |
• Cac-miR-548d-3p, 5653, 5780d, and 7009-3p | Tumor proliferation, ovarian clear cell adenocarcinoma, breast cancer, and lung cancer |
• MiR10206, 5059, 5073, 5272, 6135, oba-miR531, and aba-miRNA-9497 | Tumor proliferation, psoriasis, Alzheimer’s disease, epilepsy syndromes, immune responses, retinitis pigmentosa, and central nervous system toxicity |
Secondary metabolism | |
• MiR5298b, and 8154 | Phenylpropanoid |
• Smi-miR396b, and miR408 | Salvianolic acid |
• MiR5298b, and 8154 | Taxol |
• MiR160b, ath-MIR160b and smi-miR396b | Tanshinone |
• MiR156 | Sesquiterpene |
• MiR035, 1168.2, 1438, 156b, 170, 172i, 1858,1873, 2275, 2673a, 2910, 2919, 396b, 408, 5015, 5021, 5658, 828b, 829.1, 8291, f10132-akr, ain-miR1533c, ain-miR156, ain-miR157, cro-miR397a, cro-miR828a, Cs-miR156, mko-miR159b-3p, mko-miR167c-5p, mko-miR168b, mko-miR5082, mko-miR858, mko-miR8610.1, smi-miR12112, smi-miR397, smi-miR396b, and smi-miR408 | Phenolic compounds |
• MiR_116, _1194, _1276, _15, _1508, _1900, _2141, _2596, _334, _853, 1134, 1533, 160, 164, 167a, 167b, 171, 172, 172d-3p, 2919, 396a, 398f/g, -4995, 5563-x, 5021, 5658, 6435, 838, ain-miR1525, dfr-miR156b, dfr-miR160a, mko-miR156, mko-miR167a, mko-miR396c, mko-miR396g-5p, mko-miR5082, mko-miR827b, mko-miR858, novel-m0022-5p, pmi-miR6300, pmi-miR6173, pmi-miR530, and pmi-Nov_13 | Terpenoid |
• MiR159, 159a, 166, 171, 172, 2673a, 390, 396, 858, cro-miR160, EY064998, EY082442, EY107691, EY57163, leaf-miR-477, leaf-miR530, root-miR159, root-miR5140, mko-miR159b-3p, mko-miR5082, mko-miR858, mko-miR8610.1, novel miR_218, novel miR_2432, novel miR2642, novel miR_2924, novel miR_457, and novel miR_853 | Esters |
• MiR2673a, 396, cro-miR160, pso-miR13, pso-miR2161, and pso-miR408 | Alkaloids |
• MiR156, 5298b, 8154, and novel_miR_47 | Saponins |
• MiR5072, MIR1446-x, and MIR394-y | Quinone |
• MiR156, 414, 5015b, and 5021 | Essential oil |
• NovelmiRNA-191, novelmiRNA-23, and novelmiRNA-58 | Triacylglycerols |
• Pmi-miR396b and pmi-Nov_12 | Green leaf volatile |
• MIR845-y | Steroid |
• MiR5021 | Strictosidine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Xu, S.; Mei, Y.; Li, J.; Gu, Y.; Zhang, W.; Wang, J. MicroRNAs in Medicinal Plants. Int. J. Mol. Sci. 2022, 23, 10477. https://doi.org/10.3390/ijms231810477
Sun M, Xu S, Mei Y, Li J, Gu Y, Zhang W, Wang J. MicroRNAs in Medicinal Plants. International Journal of Molecular Sciences. 2022; 23(18):10477. https://doi.org/10.3390/ijms231810477
Chicago/Turabian StyleSun, Mingyang, Shiqiang Xu, Yu Mei, Jingyu Li, Yan Gu, Wenting Zhang, and Jihua Wang. 2022. "MicroRNAs in Medicinal Plants" International Journal of Molecular Sciences 23, no. 18: 10477. https://doi.org/10.3390/ijms231810477
APA StyleSun, M., Xu, S., Mei, Y., Li, J., Gu, Y., Zhang, W., & Wang, J. (2022). MicroRNAs in Medicinal Plants. International Journal of Molecular Sciences, 23(18), 10477. https://doi.org/10.3390/ijms231810477