The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation
Abstract
:1. Introduction
2. The Effects of Mast Cell-Derived TGFβ
3. The Role of TGFβ in Mast Cell Development and Survival
4. The Role of TGFβ in Mast Cell Effector Function
5. Inferences on the Role of Mast Cell TGFβ Signaling in Allergic Diseases
6. Updates on the Role of IL-10 in Mast Cell Regulation
7. IL-35 Mediated Suppression of Mast Cells
8. IL-37 Mediated Suppression of Mast Cells
9. Role of IL-33 in Mast Cell IgE-Mediated Functions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mccurdy, J.D.; Lin, T.-J.; Marshall, J.S. Toll-like receptor 4-mediated activation of murine mast cells. J. Leukoc. Biol. 2001, 70, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 2004, 4, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Echtenacher, B.; Männel, D.N.; Hültner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 1996, 381, 75–77. [Google Scholar] [CrossRef]
- Malaviya, R.; Ikeda, T.; Ross, E.; Abraham, S.N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996, 381, 77–80. [Google Scholar] [CrossRef]
- Anderson, E.; Stavenhagen, K.; Kolarich, D.; Sommerhoff, C.P.; Maurer, M.; Metz, M. Human Mast Cell Tryptase Is a Potential Treatment for Snakebite Envenoming Across Multiple Snake Species. Front. Immunol. 2018, 9, 1532. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Xiao, W.; Nishimoto, H.; Hong, H.; Kitaura, J.; Nunomura, S.; Maeda-Yamamoto, M.; Kawakami, Y.; Lowell, C.A.; Ra, C.; Kawakami, T. Positive and negative regulation of mast cell activation by Lyn via the FcepsilonRI. J. Immunol. 2005, 175, 6885–6892. [Google Scholar] [CrossRef]
- Siraganian, R.P.; de Castro, R.O.; Barbu, E.A.; Zhang, J. Mast cell signaling: The role of protein tyrosine kinase Syk, its activation and screening methods for new pathway participants. FEBS Lett. 2010, 584, 4933–4940. [Google Scholar] [CrossRef]
- Iwaki, S.; Tkaczyk, C.; Satterthwaite, A.B.; Halcomb, K.; Beaven, M.A.; Metcalfe, D.D.; Gilfillan, A.M. Btk Plays a Crucial Role in the Amplification of FcϵRI-mediated Mast Cell Activation by Kit. J. Biol. Chem. 2005, 280, 40261–40270. [Google Scholar] [CrossRef]
- Zoltowska, A.M.; Lei, Y.; Fuchs, B.; Rask, C.; Adner, M.; Nilsson, G.P. The interleukin-33 receptor ST2 is important for the development of peripheral airway hyperresponsiveness and inflammation in a house dust mite mouse model of asthma. Clin. Exp. Allergy 2016, 46, 479–490. [Google Scholar] [CrossRef]
- Nagata, K.; Nishiyama, C. IL-10 in mast cell-mediated immune responses: Anti-inflammatory and proinflammatory roles. Int. J. Mol. Sci. 2021, 22, 4972. [Google Scholar] [CrossRef]
- Pennington, D.W.; Lopez, A.R.; Thomas, P.S.; Peck, C.; Gold, W.M. Dog mastocytoma cells produce transforming growth factor aeta1. J. Clin. Investig. 1992, 90, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kendall, J.C.; Li, X.H.; Galli, S.J.; Gordon, J.R. Promotion of mouse fibroblast proliferation by IgE-dependent activation of mouse mast cells: Role for mast cell tumor necrosis factor-alpha and transforming growth factor-beta 1. J. Allergy Clin. Immunol. 1997, 99, 113–123. [Google Scholar] [CrossRef]
- Gordon, J.R. TGFβ1 and TNFα secreted by mast cells stimulated via the FcϵRI activate fibroblasts for high-level production of monocyte chemoattractant protein-1 (MCP-1). Cell. Immunol. 2000, 201, 42–49. [Google Scholar] [CrossRef]
- Kyritsi, K.; Kennedy, L.; Meadows, V.; Hargrove, L.; Demieville, J.; Pham, L.; Sybenga, A.; Kundu, D.; Cerritos, K.; Meng, F.; et al. Mast cells (MCs) induce ductular reaction mimicking liver injury in mice via MC-derived TGF-β1 signaling. Hepatology 2021, 73, 2397–2410. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, L.; Kennedy, L.; Demieville, J.; Jones, H.; Meng, F.; DeMorrow, S.; Karstens, W.; Madeka, T.; Greene, J.; Francis, H. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient Kit W-sh mice. Hepatology 2017, 65, 1991–2004. [Google Scholar] [CrossRef] [PubMed]
- Takasato, Y.; Kurashima, Y.; Kiuchi, M.; Hirahara, K.; Murasaki, S.; Arai, F.; Izawa, K. Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal. Immunol. 2021, 14, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, K.; He, W.; Gao, Y.; Huang, W.; Lin, X.; Cai, L.; Fang, Z.; Zhou, Q.; Luo, Z.; et al. Transforming growth factor beta 1 plays an important role in inducing CD4+ CD25+ forhead box P3+ regulatory T cells by mast cells. Clin. Exp. Immunol. 2010, 161, 490–496. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, S.H.; Shen, J.; Deng, K.; Li, Q.; Wang, Y.; Cui, W.; Ye, H. Interaction between regulatory T cells and mast cells via IL-9 and TGF-β production. Oncol. Lett. 2020, 20, 360. [Google Scholar] [CrossRef]
- Benede, S.; Tordesillas, L.; Berin, C. Demonstration of distinct pathways of mast cell-dependent inhibition of Treg generation using murine bone marrow- derived mast cells. Allergy 2020, 75, 2088–2091. [Google Scholar] [CrossRef]
- Gan, P.; Summers, S.A.; Ooi, J.D.; Sullivan, K.M.O.; Tan, D.S.Y.; Muljadi, R.C.M.; Odobasic, D.; Kitching, A.R.; Holdsworth, S.R. Mast Cells contribute to peripheral tolerance and attenuate autoimmune vasculitis. J. Am. Soc. Nephrol. 2012, 23, 1955–1966. [Google Scholar] [CrossRef] [PubMed]
- Vilas, G.; Yin, Y.; Chul, S.; Lässer, C.; Wennmalm, S. Endosomal signalling via exosome surface TGF β-1. J. Extracell. Vesicles 2019, 8, 1650458. [Google Scholar] [CrossRef]
- Norozian, F.; Kashyap, M.; Ramirez, C.D.; Patel, N.; Kepley, C.L.; Barnstein, B.O.; Ryan, J.J. TGF b 1 induces mast cell apoptosis. Exp. Hematol. 2006, 34, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, M.; Bailey, D.P.; Gomez, G.; Rivera, J.; Huff, T.F.; Ryan, J.J. TGF-beta1 inhibits late-stage mast cell maturation. Exp. Hematol. 2005, 33, 1281–1291. [Google Scholar] [CrossRef]
- Derakhshan, T.; Samuchiwal, S.K.; Hallen, N.; Bankova, L.G.; Boyce, J.A.; Barrett, N.A. Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. J. Exp. Med. 2020, 218, e20200321. [Google Scholar] [CrossRef]
- Nakano, N.; Saida, K.; Hara, M.; Ando, T.; Kaitani, A.; Kasakura, K.; Yashiro, T.; Nishiyama, C.; Ogawa, H.; Okumura, K.; et al. Mucosal mast cell−specific gene expression is promoted by interdependent action of notch and TGF-β signaling. J. Immunol. 2021, 207, 3098–3106. [Google Scholar] [CrossRef]
- Kasakura, K.; Nagata, K.; Miura, R.; Iida, M.; Nakaya, H.; Okada, H.; Arai, T.; Arai, T.; Kawakami, Y.; Kawakami, T.; et al. Cooperative regulation of the mucosal mast cell–specific protease genes Mcpt1 and Mcpt2 by GATA and Smad transcription factors. J. Immunol. 2020, 204, 1641–1649. [Google Scholar] [CrossRef]
- Gomez, G.; Ramirez, C.D.; Rivera, J.; Patel, M.; Norozian, F.; Wright, V.; Kashyap, M.V.; Barnstein, B.O.; Fischer-stenger, K.; Lawrence, B.; et al. TGF-β1 inhibits mast cell FcεRI expression. J. Immunol. 2005, 174, 5987–5993. [Google Scholar] [CrossRef]
- Zhao, W.; Gomez, G.; Yu, S.-H.; Ryan, J.J.; Schwartz, L.B. TGF-beta1 attenuates mediator release and de novo Kit expression by human skin mast cells through a Smad-dependent pathway. J. Immunol. 2008, 181, 7263–7272. [Google Scholar] [CrossRef]
- Lyons, D.; Plewes, M.R.; Pullen, N.A. Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro. PLoS ONE 2018, 13, e0207704. [Google Scholar] [CrossRef] [Green Version]
- Fernando, J.; Faber, T.W.; Pullen, N.A.; Falanga, Y.T.; Kolawole, M.; Oskeritzian, C.A.; Barnstein, B.O.; Bandara, G.; Li, G.; Schwartz, L.B.; et al. Genotype-dependent effects of TGFβ1 on mast cell function: Targeting the Stat5 pathway. J. Immunol. 2014, 191, 4505–4513. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Kim, K.S.; Lee, E.H. Specific inhibition of immunoglobulin E-mediated allergic reaction using antisense FcεRIα oligodeoxynucleotides. Immunology 1998, 93, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Ndaw, V.S.; Abebayehu, D.; Spence, A.J.; Paez, P.A.; Kolawole, E.M.; Taruselli, M.T.; Caslin, H.L.; Chumanevich, A.P.; Paranjape, A.; Baker, B.; et al. TGF-β1 suppresses IL-33–induced mast cell function. J. Immunol. 2017, 199, 866–873. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lee, J.-B.; Liu, B.; Ohta, S.; Wang, P.-Y.; Kartoshov, A.; Mugge, L.; Abonia, P.J.; Barski, A.; Izuhara, K.; et al. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 2015, 43, 788–802. [Google Scholar] [CrossRef]
- Knight, P.A.; Brown, J.K.; Wright, S.H.; Thornton, E.M.; Pate, J.A.; Miller, H.R.P. Aberrant mucosal mast cell protease expression in the enteric epithelium of nematode-infected mice lacking the integrin alphavbeta6, a transforming growth factor-beta1 activator. Am. J. Pathol. 2007, 171, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A.; Stephen-Victor, E.; Wang, S.; Rivas, M.N.; Abdel-Gadir, A.; Harb, H.; Cui, Y.; Fanny, M.; Charbonnier, L.; Jun, J.; et al. Regulatory T cell-derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. Immunity 2021, 53, 1202–1214. [Google Scholar] [CrossRef]
- Andersson, C.K. Uncontrolled asthmatics have increased FceRI + and TGF-b– positive MC TC mast cells and collagen VI in the alveolar parenchyma. Clin. Exp. Allergy 2018, 48, 266–277. [Google Scholar] [CrossRef]
- Polukort, S.H.; Rovatti, J.; Carlson, L.; Thompson, C.; Ser-Dolansky, J.; Kinney, S.R.M.; Schneider, S.S.; Mathias, C.B. IL-10 enhances IgE-mediated mast cell responses and is essential for the development of experimental food allergy in IL-10-deficient mice. J. Immunol. 2016, 196, 4865. [Google Scholar] [CrossRef]
- Qayum, A.A.; Paranjape, A.; Abebayehu, D.; Kolawole, E.M.; Haque, T.T.; McLeod, J.J.A.; Spence, A.J.; Caslin, H.L.; Taruselli, M.T.; Chumanevich, A.P.; et al. IL-10-induced MIR-155 targets SOCS1 to enhance ige-mediated mast cell function. J. Immunol. 2016, 196, 4457–4467. [Google Scholar] [CrossRef]
- Naqash, A.; Stuart, G.; Kemp, R.; Wise, L. Parapoxvirus interleukin-10 homologues vary in their stimulatory activities. Pathogens 2022, 11, 507. [Google Scholar] [CrossRef]
- Collison, L.W.; Workman, C.J.; Kuo, T.T.; Boyd, K.; Wang, Y.; Vignali, K.M.; Cross, R.; Sehy, D.; Blumberg, R.S.; Vignali, D.A.A. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007, 450, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Layhadi, J.A.; Achkova, D.; Kouser, L.; Perera-Webb, A.; Couto-Francisco, N.C.; Parkin, R.V.; Matsuoka, T.; Scadding, G.; Ashton-Rickardt, P.G.; et al. Role of IL-35 in sublingual allergen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zeng, Q.; Wen, Y.; Tang, Y.; Yan, S.; Li, Y.; Zhou, L.; Luo, R. Inhibited interleukin 35 expression and interleukin 35-induced regulatory T cells promote type II innate lymphoid cell response in allergic rhinitis. Ann. allergy, asthma Immunol. 2021, 126, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, C.; Cheng, Z.; Yang, J. Aberrant Th2 immune responses are associated with a reduced frequency of IL-35-induced regulatory T cells after allergen exposure in patients with allergic asthma. Allergy. Asthma Immunol. Res. 2020, 12, 1029–1045. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Hu, Q.; Cai, Q.; Yao, R.; Ouyang, S. IL-35 inhibited th17 response in children with allergic rhinitis. J. Oto-Rhino-Laryngol. 2020, 82, 47–52. [Google Scholar] [CrossRef]
- Fu, L.X.; Chen, T.; Sun, Q.M.; Zhou, P.M.; Guo, Z.P. Interleukin-35 inhibited the production of histamine and pro-inflammatory cytokines through suppression MAPKs pathway in HMC-1 cells. Allergy Asthma Clin. Immunol. 2021, 17, 38. [Google Scholar] [CrossRef]
- Chen, T.; Fu, L.X.; Sun, Q.M.; Zhou, P.M.; Guo, Z.P. Decreased interleukin-35 serum levels in patients with chronic spontaneous urticaria. Ann. Allergy Asthma Immunol. 2018, 121, 503–504. [Google Scholar] [CrossRef]
- Lunding, L.; Schröder, A.; Wegmann, M. Allergic airway inflammation: Unravelling the relationship between IL-37, IL-18Rα and Tir8/SIGIRR. Expert Rev. Respir. Med. 2015, 9, 739–750. [Google Scholar] [CrossRef]
- Li, W.; Ding, F.; Zhai, Y.; Tao, W.; Bi, J.; Fan, H.; Yin, N.; Wang, Z. IL-37 is protective in allergic contact dermatitis through mast cell inhibition. Int. Immunopharmacol. 2020, 83, 106476. [Google Scholar] [CrossRef]
- Teng, X.; Hu, Z.; Wei, X.; Wang, Z.; Guan, T.; Liu, N.; Liu, X.; Ye, N.; Deng, G.; Luo, C.; et al. IL-37 ameliorates the inflammatory process in psoriasis by suppressing proinflammatory cytokine production. J. Immunol. 2014, 192, 1815–1823. [Google Scholar] [CrossRef] [Green Version]
- Caraffa, A.; Gallenga, C.E.; Kritas, S.K.; Ronconi, G.; Di Emidio, P.; Conti, P. CAR-T cell therapy causes inflammation by IL-1 which activates inflammatory cytokine mast cells: Anti-inflammatory role of IL-37. J. Biol. Regul. Homeost. Agents 2019, 33, 1981–1985. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, S. ichi A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett. 1989, 258, 301–304. [Google Scholar] [CrossRef]
- Coyle, A.J.; Lloyd, C.; Tian, J.; Nguyen, T.; Erikkson, C.; Wang, L.; Ottoson, P.; Persson, P.; Delaney, T.; Lehar, S.; et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J. Exp. Med. 1999, 190, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Trajkovic, V.; Sweet, M.J.; Xu, D. T1/ST2—An IL-1 receptor-like modulator of immune responses. Cytokine Growth Factor Rev. 2004, 15, 87–95. [Google Scholar] [CrossRef]
- Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Allakhverdi, Z.; Smith, D.E.; Comeau, M.R.; Delespesse, G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol. 2007, 179, 2051–2054. [Google Scholar] [CrossRef]
- Joulia, R.; L’Faqihi, F.E.; Valitutti, S.; Espinosa, E. IL-33 fine tunes mast cell degranulation and chemokine production at the single-cell level. J. Allergy Clin. Immunol. 2017, 140, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.V.; Iwaki, S.; Ropert, C.; Gazzinelli, R.T.; Cunha-Melo, J.R.; Beaven, M.A. Amplification of cytokine production through synergistic activation of NFAT and AP-1 following stimulation of mast cells with antigen and IL-33. Eur. J. Immunol. 2011, 41, 760–772. [Google Scholar] [CrossRef]
- Wang, J.X.; Kaieda, S.; Ameri, S.; Fishgal, N.; Dwyer, D.; Dellinger, A.; Kepley, C.L.; Gurish, M.F.; Nigrovic, P.A. IL-33/ST2 axis promotes mast cell survival via BCLXL. Proc. Natl. Acad. Sci. USA 2014, 111, 10281–10286. [Google Scholar] [CrossRef]
- Leyva-Castillo, J.M.; Galand, C.; Kam, C.; Burton, O.; Gurish, M.; Musser, M.A.; Goldsmith, J.D.; Hait, E.; Nurko, S.; Brombacher, F.; et al. Mechanical Skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 2019, 50, 1262–1275. [Google Scholar] [CrossRef]
- Sjöberg, L.C.; Gregory, J.A.; Dahlén, S.E.; Nilsson, G.P.; Adner, M. Interleukin-33 exacerbates allergic bronchoconstriction in the mice via activation of mast cells. Allergy 2015, 70, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.A.; Suh, J.W.; Sohn, J.H.; Park, J.W.; Lee, H.; Kang, J.H.L.; Woo, S.Y.; Cho, Y.J. IL-33 induces Th17-mediated airway inflammation via mast cells in ovalbumin-challenged mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L429–L440. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Arae, K.; Unno, H.; Miyauchi, K.; Toyama, S.; Nambu, A.; Oboki, K.; Ohno, T.; Motomura, K.; Matsuda, A.; et al. An interleukin-33-mast cell-Iinterleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 2015, 43, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Rönnberg, E.; Ghaib, A.; Ceriol, C.; Enoksson, M.; Arock, M.; Säfholm, J.; Ekoff, M.; Nilsson, G. Divergent effects of acute and prolonged interleukin 33 exposure on mast cell IgE-mediated functions. Front. Immunol. 2019, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.-Y.; Smrž, D.; Desai, A.; Bandara, G.; Ito, T.; Iwaki, S.; Kang, J.-H.; Andrade, M.V.; Hilderbrand, S.C.; Brown, J.M.; et al. IL-33 induces a hyporesponsive phenotype in human and mouse mast cells. J. Immunol. 2013, 190, 531–538. [Google Scholar] [CrossRef]
- Zoltowska Nilsson, A.M.; Lei, Y.; Adner, M.; Nilsson, G.P. Mast cell-dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma. Am. J. Physiol. Cell. Mol. Physiol. 2018, 314, L484–L492. [Google Scholar] [CrossRef]
- Mukai, K.; Tsai, M.; Saito, H.; Galli, S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018, 282, 121–150. [Google Scholar] [CrossRef]
Citation Number | Role of TGFβ | Conditions | Response | Species; Strain | MC Type |
---|---|---|---|---|---|
[28] | inhibitory | 3 days of recombinant TGFβ1 prior to activation | FcεRI expression | murine; C57BL/6 and BL6 X 129 | BMMCs grown with IL-3 and SCF |
[29] | inhibitory | 0, 1, 10, and 50 ng/mL TGF-β for 3, 5, and 7 days | c-kit expression; IgE mediated cytokine release and degranulation | human | skin derived cultured in SCF |
[30] | augment | 72 h of recombinant TGFβ1 including activation time | IgE mediated IL-13 secretion; SCF mediated IL-6 release | murine; C57BL/6 | BMMC grown with IL-3 |
[31] | inhibitory | 3 days of recombinant TGFβ1 prior to activation | IgE mediated cytokine secretion | murine; C57BL/6 | BMMC grown in IL-3 and SCF |
[31] | No effect to augment | 3 days of recombinant TGFβ1 prior to activation | IgE mediated cytokine release | murine; 129/SV | BMMC grown in IL-3 and SCF |
[31] | variable | 3 days of recombinant TGFβ1 prior to activation | IgE mediated cytokine production | human | skin derived cultured in SCF |
[32] | augment | in vivo, anti-TGFβ oligonucleotide treatment | IgE/antigen induced cutaneous anaphylaxis | rat | in vivo and in vitro rat peritoneal mast cells |
[33] | inhibitory | 3 days of recombinant TGFβ1 prior to activation | IL-33 mediated cytokine secretion and in vivo neutrophil recruitment | murine;C57BL/6J, 129/SvJ, C3H/HeJ, and BALB/cJ | BMMC grown in IL-3 and SCF |
[33] | inhibitory | 4 days of recombinant TGFβ1 prior to activation | IL-33 mediated cytokine production and IL-33 mediated enhancement of IgE induced cytokine production | human | skin derived cultured in SCF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, T.T.; Frischmeyer-Guerrerio, P.A. The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation. Int. J. Mol. Sci. 2022, 23, 10864. https://doi.org/10.3390/ijms231810864
Haque TT, Frischmeyer-Guerrerio PA. The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation. International Journal of Molecular Sciences. 2022; 23(18):10864. https://doi.org/10.3390/ijms231810864
Chicago/Turabian StyleHaque, Tamara T., and Pamela A. Frischmeyer-Guerrerio. 2022. "The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation" International Journal of Molecular Sciences 23, no. 18: 10864. https://doi.org/10.3390/ijms231810864
APA StyleHaque, T. T., & Frischmeyer-Guerrerio, P. A. (2022). The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation. International Journal of Molecular Sciences, 23(18), 10864. https://doi.org/10.3390/ijms231810864