Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. MRI
4.2.1. 23Na Coil Sensitivity Correction
4.2.2. Protocol 1: 23Na T1 Relaxation Times
4.2.3. Protocol 2: 23Na T2* Relaxation Times
4.2.4. Protocol 3: 1H T2* Relaxation Times, aTSC and Clinical Imaging
4.3. Image Post-Processing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Komi, P.V. Relevance of In Vivo Force Measurements to Human Biomechanics. J. Biomech. 1990, 23 (Suppl. S1), 23–34. [Google Scholar] [CrossRef]
- Dederer, K.M.; Tennant, J.N. Anatomical and Functional Considerations in Achilles Tendon Lesions. Foot Ankle Clin. 2019, 24, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Juras, V.; Apprich, S.; Pressl, C.; Zbyn, S.; Szomolanyi, P.; Domayer, S.; Hofstaetter, J.G.; Trattnig, S. Histological Correlation of 7 T Multi-Parametric MRI Performed in Ex-Vivo Achilles Tendon. Eur. J. Radiol. 2013, 82, 740–744. [Google Scholar] [CrossRef]
- Del Buono, A.; Chan, O.; Maffulli, N. Achilles Tendon: Functional Anatomy and Novel Emerging Models of Imaging Classification. Int. Orthop. 2013, 37, 715–721. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Lagopoulos, M.; McConnell, P.; Soames, R.W.; Sefton, G.K. Blood Supply of the Achilles Tendon. J. Orthop. Res. 1998, 16, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Claessen, F.M.A.P.; de Vos, R.-J.; Reijman, M.; Meuffels, D.E. Predictors of Primary Achilles Tendon Ruptures. Sports Med. 2014, 44, 1241–1259. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, U.G.; Kadakia, A.; Spiezia, F. Achilles Tendinopathy. Foot Ankle Surg. 2020, 26, 240–249. [Google Scholar] [CrossRef]
- Longo, U.G.; Ronga, M.; Maffulli, N. Achilles Tendinopathy. Sports Med. Arthrosc. 2009, 17, 112–126. [Google Scholar] [CrossRef]
- Tom, S.; Parkinson, J.; Ilic, M.Z.; Cook, J.; Feller, J.A.; Handley, C.J. Changes in the Composition of the Extracellular Matrix in Patellar Tendinopathy. Matrix Biol. 2009, 28, 230–236. [Google Scholar] [CrossRef]
- de Mos, M.; van El, B.; DeGroot, J.; Jahr, H.; van Schie, H.T.M.; van Arkel, E.R.; Tol, H.; Heijboer, R.; van Osch, G.J.V.M.; Verhaar, J.A.N. Achilles Tendinosis. Am. J. Sports Med. 2007, 35, 1549–1556. [Google Scholar] [CrossRef]
- Parkinson, J.; Samiric, T.; Ilic, M.Z.; Cook, J.; Feller, J.A.; Handley, C.J. Change in Proteoglycan Metabolism Is a Characteristic of Human Patellar Tendinopathy. Arthritis Rheum. 2010, 62, 3028–3035. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-C.; Chan, K.-M.; Rolf, C.G. Increased Deposition of Sulfated Glycosaminoglycans in Human Patellar Tendinopathy. Clin. J. Sport Med. 2007, 17, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Wilms, L.M.; Radke, K.L.; Abrar, D.B.; Latz, D.; Schock, J.; Frenken, M.; Windolf, J.; Antoch, G.; Filler, T.J.; Nebelung, S. Micro- and Macroscale Assessment of Posterior Cruciate Ligament Functionality Based on Advanced MRI Techniques. Diagnostics 2021, 11, 1790. [Google Scholar] [CrossRef]
- Chen, B.; Cheng, X.; Dorthe, E.W.; Zhao, Y.; D’Lima, D.; Bydder, G.M.; Liu, S.; Du, J.; Ma, Y.J. Evaluation of Normal Cadaveric Achilles Tendon and Enthesis with Ultrashort Echo Time (UTE) Magnetic Resonance Imaging and Indentation Testing. NMR Biomed. 2019, 32, e4034. [Google Scholar] [CrossRef]
- Weinreb, J.H.; Sheth, C.; Apostolakos, J.; McCarthy, M.-B.; Barden, B.; Cote, M.P.; Mazzocca, A.D. Tendon Structure, Disease, and Imaging. Muscle Ligaments Tendons J. 2019, 4, 66. [Google Scholar] [CrossRef]
- Wilms, L.M.; Radke, K.L.; Latz, D.; Thiel, T.A.; Frenken, M.; Kamp, B.; Filler, T.J.; Nagel, A.M.; Müller-Lutz, A.; Abrar, D.B.; et al. UTE-T2* versus Conventional T2* Mapping to Assess Posterior Cruciate Ligament Ultrastructure and Integrity—An in-Situ Study. Quant. Imaging Med. Surg. 2022, 12, 4190–4201. [Google Scholar] [CrossRef]
- Marik, W.; Nemec, S.F.; Zbýň, Š.; Zalaudek, M.; Ludvik, B.; Riegler, G.; Karner, M.; Trattnig, S. Changes in Cartilage and Tendon Composition of Patients with Type I Diabetes Mellitus. Investig. Radiol. 2016, 51, 266–272. [Google Scholar] [CrossRef]
- Radke, K.L.; Wilms, L.M.; Frenken, M.; Stabinska, J.; Knet, M.; Kamp, B.; Thiel, T.A.; Filler, T.J.; Nebelung, S.; Antoch, G.; et al. Lorentzian-Corrected Apparent Exchange-Dependent Relaxation (LAREX) Ω-Plot Analysis—An Adaptation for QCEST in a Multi-Pool System: Comprehensive In Silico, In Situ, and In Vivo Studies. Int. J. Mol. Sci. 2022, 23, 6920. [Google Scholar] [CrossRef]
- Du, J.; Carl, M.; Diaz, E.; Takahashi, A.; Han, E.; Szeverenyi, N.M.; Chung, C.B.; Bydder, G.M. Ultrashort TE T 1 Rho (UTE T 1 Rho) Imaging of the Achilles Tendon and Meniscus. Magn. Reson. Med. 2010, 64, 834–842. [Google Scholar] [CrossRef]
- Linka, K.; Thüring, J.; Rieppo, L.; Aydin, R.C.; Cyron, C.J.; Kuhl, C.; Merhof, D.; Truhn, D.; Nebelung, S. Machine Learning-Augmented and Microspectroscopy-Informed Multiparametric MRI for the Non-Invasive Prediction of Articular Cartilage Composition. Osteoarthr. Cartil. 2021, 29, 592–602. [Google Scholar] [CrossRef]
- Juras, V.; Zbýň, Š.; Pressl, C.; Domayer, S.E.R.; Hofstaetter, J.G.; Mayerhoefer, M.E.; Windhager, R.; Trattnig, S. Sodium MR Imaging of Achilles Tendinopathy at 7 T: Preliminary Results. Radiology 2012, 262, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Juras, V.; Winhofer, Y.; Szomolanyi, P.; Vosshenrich, J.; Hager, B.; Wolf, P.; Weber, M.; Luger, A.; Trattnig, S. Multiparametric MR Imaging Depicts Glycosaminoglycan Change in the Achilles Tendon during Ciprofloxacin Administration in Healthy Men: Initial Observation. Radiology 2015, 275, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Lott, J.; Platt, T.; Niesporek, S.C.; Paech, D.; GR Behl, N.; Niendorf, T.; Bachert, P.; Ladd, M.E.; Nagel, A.M. Corrections of Myocardial Tissue Sodium Concentration Measurements in Human Cardiac 23Na MRI at 7 Tesla. Magn. Reson. Med. 2019, 82, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Niesporek, S.C.; Hoffmann, S.H.; Berger, M.C.; Benkhedah, N.; Kujawa, A.; Bachert, P.; Nagel, A.M. Partial Volume Correction for in Vivo 23Na-MRI Data of the Human Brain. Neuroimage 2015, 112, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Haneder, S.; Konstandin, S.; Morelli, J.N.; Nagel, A.M.; Zoellner, F.G.; Schad, L.R.; Schoenberg, S.O.; Michaely, H.J. Quantitative and Qualitative 23Na MR Imaging of the Human Kidneys at 3 T: Before and after a Water Load. Radiology 2011, 260, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Madelin, G.; Babb, J.; Xia, D.; Chang, G.; Krasnokutsky, S.; Abramson, S.B.; Jerschow, A.; Regatte, R.R. Articular Cartilage: Evaluation with Fluid-Suppressed 7.0-T Sodium MR Imaging in Subjects with and Subjects without Osteoarthritis. Radiology 2013, 268, 481–491. [Google Scholar] [CrossRef]
- Madelin, G.; Lee, J.-S.; Regatte, R.R.; Jerschow, A. Sodium MRI: Methods and Applications. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 14–47. [Google Scholar] [CrossRef]
- Linz, P.; Santoro, D.; Renz, W.; Rieger, J.; Ruehle, A.; Ruff, J.; Deimling, M.; Rakova, N.; Muller, D.N.; Luft, F.C.; et al. Skin Sodium Measured with 23Na MRI at 7.0 T. NMR Biomed. 2014, 28, 54–62. [Google Scholar] [CrossRef]
- Borthakur, A.; Shapiro, E.M.; Akella, S.V.S.; Gougoutas, A.; Kneeland, J.B.; Reddy, R. Quantifying Sodium in the Human Wrist in Vivo by Using MR Imaging. Radiology 2002, 224, 598–602. [Google Scholar] [CrossRef]
- Madelin, G.; Xia, D.; Brown, R.; Babb, J.; Chang, G.; Krasnokutsky, S.; Regatte, R.R. Longitudinal Study of Sodium MRI of Articular Cartilage in Patients with Knee Osteoarthritis: Initial Experience with 16-Month Follow-Up. Eur. Radiol. 2018, 28, 133–142. [Google Scholar] [CrossRef]
- Müller-Lutz, A.; Kamp, B.; Nagel, A.M.; Ljimani, A.; Abrar, D.; Schleich, C.; Wollschläger, L.; Nebelung, S.; Wittsack, H.-J. Sodium MRI of Human Articular Cartilage of the Wrist: A Feasibility Study on a Clinical 3T MRI Scanner. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kamp, B.; Frenken, M.; Henke, J.M.; Abrar, D.B.; Nagel, A.M.; Gast, L.V.; Oeltzschner, G.; Wilms, L.M.; Nebelung, S.; Antoch, G.; et al. Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI. Diagnostics 2021, 11, 2301. [Google Scholar] [CrossRef] [PubMed]
- Stobbe, R.W.; Beaulieu, C. Residual Quadrupole Interaction in Brain and Its Effect on Quantitative Sodium Imaging. NMR Biomed. 2016, 29, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Kordzadeh, A.; Duchscherer, J.; Beaulieu, C.; Stobbe, R. Radiofrequency Excitation–Related 23Na MRI Signal Loss in Skeletal Muscle, Cartilage, and Skin. Magn. Reson. Med. 2020, 83, 1992–2001. [Google Scholar] [CrossRef]
- Fox, A.J.S.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Burstein, D.; Springer, C.S. Sodium MRI Revisited. Magn. Reson. Med. 2019, 82, 521–524. [Google Scholar] [CrossRef]
- Madelin, G.; Jerschow, A.; Regatte, R.R. Sodium Relaxation Times in the Knee Joint In Vivo at 7T. NMR Biomed. 2012, 25, 530–537. [Google Scholar] [CrossRef]
- Gray, M.L.; Burstein, D.; Kim, Y.-J.; Maroudas, A. Magnetic Resonance Imaging of Cartilage Glycosaminoglycan: Basic Principles, Imaging Technique, and Clinical Applications. J. Orthop. Res. 2008, 26, 281–291. [Google Scholar] [CrossRef]
- Madelin, G.; Kline, R.; Walvick, R.; Regatte, R.R. A Method for Estimating Intracellular Sodium Concentration and Extracellular Volume Fraction in Brain In Vivo Using Sodium Magnetic Resonance Imaging. Sci. Rep. 2014, 4, 4763. [Google Scholar] [CrossRef]
- Freedman, B.R. The Achilles Tendon: Fundamental Properties and Mechanisms Governing Healing. Muscles Ligaments Tendons J. 2014, 4, 245–255. [Google Scholar] [CrossRef]
- Kopp, C.; Linz, P.; Wachsmuth, L.; Dahlmann, A.; Horbach, T.; Schöfl, C.; Renz, W.; Santoro, D.; Niendorf, T.; Müller, D.N.; et al. 23Na Magnetic Resonance Imaging of Tissue Sodium. Hypertension 2012, 59, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhao, Y.; Cheng, X.; Ma, Y.; Chang, E.Y.; Kavanaugh, A.; Liu, S.; Du, J. Three-Dimensional Ultrashort Echo Time Cones (3D UTE-Cones) Magnetic Resonance Imaging of Entheses and Tendons. Magn. Reson. Imaging 2018, 49, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Filho, G.H.; Du, J.; Pak, B.C.; Statum, S.; Znamorowski, R.; Haghighi, P.; Bydder, G.; Chung, C.B. Quantitative Characterization of the Achilles Tendon in Cadaveric Specimens: T1 and T2* Measurements Using Ultrashort-TE MRI at 3 T. Am. J. Roentgenol. 2009, 192, W117–W124. [Google Scholar] [CrossRef] [PubMed]
- Waggett, A.D.; Ralphs, J.R.; Kwan, A.P.L.; Woodnutt, D.; Benjamin, M. Characterization of Collagens and Proteoglycans at the Insertion of the Human Achilles Tendon. Matrix Biol. 1998, 16, 457–470. [Google Scholar] [CrossRef]
- Vogel, K.G.; Koob, T.J. Structural Specialization in Tendons under Compression. Int. Rev. Cytol. 1989, 115, 267–293. [Google Scholar] [CrossRef]
- Insko, E.K.; Kaufman, J.H.; Leigh, J.S.; Reddy, R. Sodium NMR Evaluation of Articular Cartilage Degradation. Magn. Reson. Med. 1999, 41, 30–34. [Google Scholar] [CrossRef]
- Feldman, R.E.; Stobbe, R.; Watts, A.; Beaulieu, C. Sodium Imaging of the Human Knee Using Soft Inversion Recovery Fluid Attenuation. J. Magn. Reson. 2013, 234, 197–206. [Google Scholar] [CrossRef]
- Lee, J.-S.; Xia, D.; Madelin, G.; Regatte, R.R. Sodium Inversion Recovery MRI on the Knee Joint at 7 T with an Optimal Control Pulse. J. Magn. Reson. 2016, 262, 33–41. [Google Scholar] [CrossRef]
- Chang, G.; Madelin, G.; Sherman, O.H.; Strauss, E.J.; Xia, D.; Recht, M.P.; Jerschow, A.; Regatte, R.R. Improved Assessment of Cartilage Repair Tissue Using Fluid-Suppressed 23Na Inversion Recovery MRI at 7 Tesla: Preliminary Results. Eur. Radiol. 2012, 22, 1341–1349. [Google Scholar] [CrossRef]
- Kratzer, F.J.; Flassbeck, S.; Schmitter, S.; Wilferth, T.; Magill, A.W.; Knowles, B.R.; Platt, T.; Bachert, P.; Ladd, M.E.; Nagel, A.M. 3D Sodium (23Na) Magnetic Resonance Fingerprinting for Time-efficient Relaxometric Mapping. Magn. Reson. Med. 2021, 86, 2412–2425. [Google Scholar] [CrossRef]
- Müller-Franzes, G.; Nolte, T.; Ciba, M.; Schock, J.; Khader, F.; Prescher, A.; Wilms, L.M.; Kuhl, C.; Nebelung, S.; Truhn, D. Fast, Accurate, and Robust T2 Mapping of Articular Cartilage by Neural Networks. Diagnostics 2022, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Lachner, S.; Utzschneider, M.; Zaric, O.; Minarikova, L.; Ruck, L.; Zbýň, Š.; Hensel, B.; Trattnig, S.; Uder, M.; Nagel, A.M. Compressed Sensing and the Use of Phased Array Coils in 23Na MRI: A Comparison of a SENSE-Based and an Individually Combined Multi-Channel Reconstruction. Z. Med. Phys. 2021, 31, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Madelin, G.; Chang, G.; Otazo, R.; Jerschow, A.; Regatte, R.R. Compressed Sensing Sodium MRI of Cartilage at 7T: Preliminary Study. J. Magn. Reson. 2012, 214, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Halper, J. Tendon Proteoglycans: Biochemistry and Function. J. Musculoskelet. Neuronal Interact. 2005, 5, 22–34. [Google Scholar] [PubMed]
- Nagel, A.M.; Laun, F.B.; Weber, M.A.; Matthies, C.; Semmler, W.; Schad, L.R. Sodium MRI Using a Density-Adapted 3D Radial Acquisition Technique. Magn. Reson. Med. 2009, 62, 1565–1573. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- Wittsack, H.; Lanzman, R.S.; Mathys, C.; Janssen, H.; Mödder, U.; Blondin, D. Statistical Evaluation of Diffusion-weighted Imaging of the Human Kidney. Magn. Reson. Med. 2010, 64, 616–622. [Google Scholar] [CrossRef]
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration. Neuroimage 2011, 54, 2033–2044. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
ROI | 23Na T1 [ms] | R2 (23Na T1 Fitting) | 23Na T2s* [ms] | 23Na T2l* [ms] | ps [%] | R2 (23Na T2* Fitting) |
---|---|---|---|---|---|---|
INS | 18.4 ± 2.7 | 0.994 ± 0.007 | 1.4 ± 0.4 | 14.5 ± 1.4 | 30.4 ± 2.7 | 0.994 ± 0.003 |
MID | 19.2 ± 2.5 | 0.999 ± 0.001 | 1.4 ± 0.3 | 14.2 ± 1.0 | 32.6 ± 2.7 | 0.995 ± 0.003 |
MTJ | 23.3 ± 7.2 | 0.996 ± 0.003 | 1.5 ± 0.5 | 14.6 ± 0.8 | 31.8 ± 3.6 | 0.986 ± 0.011 |
Total | 20.4 ± 2.4 | 0.998 ± 0.002 | 1.4 ± 0.4 | 13.9 ± 0.8 | 31.6 ± 2.6 | 0.995 ± 0.004 |
125 mM Phantom | 40.5 ± 2.6 | 0.998 ± 0.002 | 5.8 ± 0.3 | 14.6 ± 0.7 | 52.8 ± 0.8 | 0.997 ± 0.001 |
100 mM Phantom | 40.0 ± 4.9 | 0.996 ± 0.001 | 5.7 ± 0.5 | 14.2 ± 0.6 | 49.9 ± 4.7 | 0.993 ± 0.009 |
75 mM Phantom | 37.5 ± 2.2 | 0.993 ± 0.004 | 6.6 ± 0.1 | 11.8 ± 0.2 | 67.7 ± 1.3 | 0.987 ± 0.010 |
50 mM Phantom | 35.9 ± 4.6 | 0.979 ± 0.012 | 5.8 ± 0.7 | 11.2 ± 0.3 | 70.6 ± 0.9 | 0.991 ± 0.001 |
Phantom mean | 38.5 ± 3.8 | 0.991 ± 0.009 | 6.0 ± 0.5 | 13.0 ± 1.6 | 60.2 ± 9.6 | 0.992 ± 0.007 |
Parameter | ROI | Controls | Patient | ||
---|---|---|---|---|---|
Mean ± SD | SD [%] | Mean ± SD | SD [%] | ||
aTSC [mM] | INS | 112.9 ± 21.1 | 28.6 ± 4.4 | 89.3 ± 37.7 | 42.2 |
MID | 77.3 ± 13.3 | 26.1 ± 3.9 | 90.6 ± 35.2 | 38.8 | |
MTJ | 55.3 ± 13.3 | 28.0 ± 5.5 | 51.3 ± 19.2 | 37.4 | |
Total | 82.2 ± 13.9 | 36.6 ± 8.0 | 76.5 ± 33.1 | 43.3 | |
23Na SNR [a.u.] | INS | 14.2 ± 2.8 | 24.3 ± 3.1 | 11.8 ± 3.7 | 31.2 |
MID | 10.7 ± 2.2 | 20.7 ± 2.0 | 12.3 ± 3.5 | 28.8 | |
MTJ | 9.5 ± 2.1 | 20.2 ± 1.6 | 9.5 ± 2.2 | 23.2 | |
Total | 11.7 ± 2.2 | 29.4 ± 5.4 | 11.3 ± 3.5 | 30.7 | |
1H T2* [ms] | INS | 1.9 ± 0.1 | 25.5 ± 5.3 | 2.7 ± 0.8 | 30.6 |
MID | 2.0 ± 0.3 | 32.9 ± 3.5 | 3.7 ± 1.3 | 34.4 | |
MTJ | 2.3 ± 0.6 | 33.1 ± 5.3 | 3.5 ± 1.0 | 28.1 | |
Total | 2.1 ± 0.3 | 32.9 ± 2.7 | 3.3 ± 1.1 | 34.3 |
Parameters Tested | Friedman-ANOVA p-Values | Wilcoxon Rank-Sum Test p-Values | ||
---|---|---|---|---|
INS-MID | INS-MTJ | MID-MTJ | ||
mean aTSC | <0.001 | 0.015 | 0.015 | 0.015 |
SD aTSC | 0.202 | - | - | - |
mean 23Na SNR | <0.001 | 0.015 | 0.015 | 0.015 |
SD 23Na SNR | 0.008 | 0.065 | 0.028 | 1.000 |
mean 1H T2* | 0.020 | 0.854 | 0.178 | 0.038 |
SD 1H T2* | 0.061 | - | - | - |
23Na Coil | Protocol 1 | Protocol 2 | Protocol 3 | 1H Imaging | |
---|---|---|---|---|---|
Sensitivity | (23Na T1) | (23Na T2*) | (aTSC) | ||
Sequence type | DA-3D-RAD | DA-3D-RAD | DA-3D-RAD | DA-3D-RAD | DA-3D-RAD |
Nucleus | 23Na | 23Na | 23Na | 23Na | 1H |
Orientation | sag | sag | sag | sag | sag |
Repetition time [ms] | 15 | 8/9/10 /15/25 | 30 | 15 | 12 |
Echo time [ms] | 0.3 | 0.1 | [0.1/6.2/12.3/18.4] [1.5/7.6/13.7/19.8] [3.0/9.1/15.2/21.3] | 0.1 | 0.1/3.0 /6.0/9.0 |
Field of View [mm3] | 180 × 180 × 180 | 180 × 180 × 180 | 180 × 180 × 180 | 180 × 180 × 180 | 180 × 180 × 180 |
Number of Projections | 50,000 | 50,000 | 40,000 | 50,000 | 25,000 |
Voxel size [mm3] | 2 × 2 × 2 | 2 × 2 × 2 | 2 × 2 × 2 | 2 × 2 × 2 | 1 × 1 × 1 |
Flip angle [°] | 90 | 90 | 90 | 90 | 5 |
Pulse duration [ms] | 0.5 | 0.16 | 0.16 | 0.16 | 0.16 |
Readout time [ms] | 5 | 5 | 5 | 5 | 1 |
Signal averages | 20 | 1 | 1 | 1 | 1 |
Total examination time [h:min:s] | 04:10:00 | 00:55:50 | 01:00:00 | 00:12:30 | 00:05:00 |
PD-Weighted fs | PD-Weighted fs | PD-Weighted fs | T1-Weighted | |
---|---|---|---|---|
Sequence type | TSE | TSE | TSE | TSE |
Turbo Factor | 9 | 9 | 9 | 2 |
Grappa | 2 | 2 | 2 | 2 |
Orientation | sag | tra | cor | sag |
Repetition time [ms] | 3150 | 3940 | 3290 | 805 |
Echo time [ms] | 42 | 42 | 44 | 14 |
Field of View [mm] | 280 × 280 | 280 × 280 | 180 × 180 | 280 × 280 |
Image matrix [px] | 704 × 704 | 640 × 640 | 512 × 512 | 832 × 832 |
Pixel size [mm] | 0.40 × 0.40 | 0.44 × 0.44 | 0.35 × 0.35 | 0.34 × 0.34 |
Flip angle [°] | 150 | 150 | 150 | 140 |
Slices | 20 | 56 | 40 | 20 |
Slice gap [mm] | 0.3 | 0.3 | 0.3 | 0.3 |
Slice thickness [mm] | 3 | 3 | 3 | 3 |
Examination time [min:s] | 02:03 | 03:49 | 02:45 | 02:55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamp, B.; Frenken, M.; Klein-Schmeink, L.; Nagel, A.M.; Wilms, L.M.; Radke, K.L.; Tsiami, S.; Sewerin, P.; Baraliakos, X.; Antoch, G.; et al. Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI. Int. J. Mol. Sci. 2022, 23, 10890. https://doi.org/10.3390/ijms231810890
Kamp B, Frenken M, Klein-Schmeink L, Nagel AM, Wilms LM, Radke KL, Tsiami S, Sewerin P, Baraliakos X, Antoch G, et al. Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI. International Journal of Molecular Sciences. 2022; 23(18):10890. https://doi.org/10.3390/ijms231810890
Chicago/Turabian StyleKamp, Benedikt, Miriam Frenken, Lena Klein-Schmeink, Armin M. Nagel, Lena M. Wilms, Karl Ludger Radke, Styliani Tsiami, Philipp Sewerin, Xenofon Baraliakos, Gerald Antoch, and et al. 2022. "Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI" International Journal of Molecular Sciences 23, no. 18: 10890. https://doi.org/10.3390/ijms231810890
APA StyleKamp, B., Frenken, M., Klein-Schmeink, L., Nagel, A. M., Wilms, L. M., Radke, K. L., Tsiami, S., Sewerin, P., Baraliakos, X., Antoch, G., Abrar, D. B., Wittsack, H. -J., & Müller-Lutz, A. (2022). Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI. International Journal of Molecular Sciences, 23(18), 10890. https://doi.org/10.3390/ijms231810890