Vitamin D and Weight Change: A Mendelian Randomization, Prospective Study
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Retained Participants
2.2. Association between Genetically-Determined Vitamin D, 25-Hydroxyvitamin D Levels and Changes in Anthropometric Markers
2.3. Association between Genetically-Determined Body Mass Index and 25-Hydroxyvitamin D Levels
3. Discussion
3.1. Association between Genetically-Determined Vitamin D, 25-Hydroxyvitamin D Levels, and Changes in Anthropometric Markers
3.2. Association between Genetically-Determined Body Mass Index and 25-Hydroxyvitamin D Levels
3.3. Strengths and Limitations
4. Materials and Methods
4.1. Participants
4.2. Genotyping
4.3. Vitamin D Assessment
4.4. Weight and Waist Assessment
4.5. Covariates
4.6. Inclusion and Exclusion Criteria
4.7. Statistical Analyses
4.8. Ethical Statement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.S.; Magkos, F.; Dalamaga, M. Vitamin D and Obesity: Current Evidence and Controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Haycock, P.C.; Burgess, S.; Wade, K.H.; Bowden, J.; Relton, C.; Davey Smith, G. Best (but oft-forgotten) practices: The design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 2016, 103, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J.; Vimaleswaran, K.S.; Whittaker, J.C.; Hingorani, A.D.; Hypponen, E. Evaluation of genetic markers as instruments for Mendelian randomization studies on vitamin D. PLoS ONE 2012, 7, e37465. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, R.; Isanejad, M.; Davies, I.G.; Mazidi, M. Genetically determined serum 25-hydroxyvitamin D is associated with total, trunk, and arm fat-free mass: A Mendelian Randomization study. J. Nutr. Health Aging 2022, 26, 46–51. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Timofeeva, M.N.; He, Y.; Spiliopoulou, A.; Wei, W.Q.; Gifford, A.; Wu, H.; Varley, T.; Joshi, P.; et al. Phenome-wide Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study. Int. J. Epidemiol. 2019, 48, 1425–1434. [Google Scholar] [CrossRef]
- Alathari, B.E.; Sabta, A.A.; Kalpana, C.A.; Vimaleswaran, K.S. Vitamin D pathway-related gene polymorphisms and their association with metabolic diseases: A literature review. J. Diabetes Metab. Disord. 2020, 19, 1701–1729. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Cavadino, A.; Berry, D.J.; Genetic Investigation of Anthropometric Traits, C.; Whittaker, J.C.; Power, C.; Jarvelin, M.R.; Hypponen, E. Genetic association analysis of vitamin D pathway with obesity traits. Int. J. Obes. 2013, 37, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Ge, T.; Chen, C.Y. The causal role of circulating vitamin D concentrations in human complex traits and diseases: A large-scale Mendelian randomization study. Sci. Rep. 2021, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yang, H.; Wang, Y.; Zhao, H. A comprehensive genetic and epidemiological association analysis of vitamin D with common diseases/traits in the UK Biobank. Genet. Epidemiol. 2021, 45, 24–35. [Google Scholar] [CrossRef]
- Fiamenghi, V.I.; Mello, E.D. Vitamin D deficiency in children and adolescents with obesity: A meta-analysis. J. Pediatr. 2021, 97, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Patriota, P.; Rezzi, S.; Guessous, I.; Marques-Vidal, P. No association between vitamin D and weight gain: A prospective, population-based study. Nutrients 2022, 14, 3185. [Google Scholar] [CrossRef]
- Heitz, A.; Mai, X.M.; Chen, Y.; Sun, Y.Q. Serum 25-hydroxyvitamin D level in relation to weight change and the risk of weight gain in adults of normal weight at baseline: The Norwegian HUNT cohort study. BMJ Open 2020, 10, e039192. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Ribas de Farias Costa, P.; Miranda Pereira, E.; Russoni de Lima Lago, I.; Marlucia Oliveira, A. Does vitamin D deficiency increase the risk of obesity in adults and the elderly? A systematic review of prospective cohort studies. Public Health 2021, 190, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, T.; Männistö, S.; Härkänen, T.; Sääksjärvi, K.; Koskinen, S.; Lundqvist, A. Does vitamin D status predict weight gain or increase in waist circumference? Results from the longitudinal Health 2000/2011 Survey. Public Health Nutr. 2020, 23, 1266–1272. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.; Van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Bouillon, R.; Bikle, D. Vitamin D metabolism revised: Fall of dogmas. J. Bone Miner Res. 2019, 34, 1985–1992. [Google Scholar] [CrossRef]
- Liu, X.; Baylin, A.; Levy, P.D. Vitamin D deficiency and insufficiency among US adults: Prevalence, predictors and clinical implications. Br. J. Nutr. 2018, 119, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Firmann, M.; Mayor, V.; Vidal, P.M.; Bochud, M.; Pecoud, A.; Hayoz, D.; Paccaud, F.; Preisig, M.; Song, K.S.; Yuan, X.; et al. The CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc. Disord. 2008, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867–2873. [Google Scholar] [CrossRef]
- Delaneau, O.; Marchini, J.; Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 2011, 9, 179–181. [Google Scholar] [CrossRef]
- Delaneau, O.; Zagury, J.F.; Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 2013, 10, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Forer, L.; Schonherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.; et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Novembre, J.; Johnson, T.; Bryc, K.; Kutalik, Z.; Boyko, A.R.; Auton, A.; Indap, A.; King, K.S.; Bergmann, S.; Nelson, M.R.; et al. Genes mirror geography within Europe. Nature 2008, 456, 98–101. [Google Scholar] [CrossRef]
- Patterson, N.; Price, A.L.; Reich, D. Population structure and eigenanalysis. PLoS Genet. 2006, 2, e190. [Google Scholar] [CrossRef]
- Revez, J.A.; Lin, T.; Qiao, Z.; Xue, A.; Holtz, Y.; Zhu, Z.; Zeng, J.; Wang, H.; Sidorenko, J.; Kemper, K.E.; et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat. Commun. 2020, 11, 1647. [Google Scholar] [CrossRef]
- Baratali, L.; Méan, M.; Marques-Vidal, P. Impact of dietary and obesity genetic risk scores on weight gain. Am. J. Clin. Nutr. 2021, 114, 741–751. [Google Scholar] [CrossRef] [PubMed]
First Follow-Up (5.6 Years) | Second Follow-Up (10.7 Years) | Third Follow-Up (14.5 Years) | ||||
---|---|---|---|---|---|---|
Bivariate | Multivariate | Bivariate | Multivariate | Bivariate | Multivariate | |
Weight change (kg) | ||||||
First | 1.46 ± 4.95 | 1.40 ± 0.17 | 2.04 ± 6.67 | 1.91 ± 0.22 | 1.94 ± 7.34 | 1.75 ± 0.28 |
Second | 1.11 ± 4.95 | 1.13 ± 0.16 | 2.00 ± 6.51 | 2.05 ± 0.22 | 2.16 ± 7.29 | 2.18 ± 0.28 |
Third | 1.22 ± 5.08 | 1.23 ± 0.17 | 1.70 ± 6.32 | 1.71 ± 0.22 | 1.49 ± 7.65 | 1.49 ± 0.28 |
Fourth | 0.96 ± 5.02 | 1.00 ± 0.17 | 1.32 ± 6.62 | 1.40 ± 0.22 | 1.43 ± 7.52 | 1.61 ± 0.28 |
p-value | 0.205 | 0.379 | 0.098 | 0.180 | 0.225 | 0.343 |
Weight change (%) | ||||||
First | 2.1 ± 6.7 | 2.0 ± 0.2 | 2.9 ± 9.1 | 2.7 ± 0.3 | 3.0 ± 10.5 | 2.7 ± 0.4 |
Second | 1.6 ± 6.6 | 1.6 ± 0.2 | 2.8 ± 8.8 | 2.9 ± 0.3 | 3.1 ± 9.9 | 3.2 ± 0.4 |
Third | 1.8 ± 6.5 | 1.8 ± 0.2 | 2.5 ± 8.2 | 2.5 ± 0.3 | 2.3 ± 10.0 | 2.3 ± 0.4 |
Fourth | 1.4 ± 6.6 | 1.5 ± 0.2 | 2.0 ± 8.9 | 2.1 ± 0.3 | 2.3 ± 10.2 | 2.5 ± 0.4 |
p-value | 0.210 | 0.409 | 0.149 | 0.248 | 0.283 | 0.430 |
Waist change (cm) | ||||||
First | 3.8 ± 6.8 | 3.8 ± 0.2 | 4.0 ± 7.6 | 4.0 ± 0.3 | 4.5 ± 8.3 | 4.4 ± 0.3 |
Second | 3.1 ± 6.7 | 3.1 ± 0.2 | 4.0 ± 7.6 | 4.0 ± 0.3 | 4.5 ± 7.9 | 4.4 ± 0.3 |
Third | 3.4 ± 6.9 | 3.4 ± 0.2 | 3.6 ± 7.2 | 3.6 ± 0.3 | 4.2 ± 8.5 | 4.2 ± 0.3 |
Fourth | 3.1 ± 6.9 | 3.2 ± 0.2 | 3.6 ± 7.7 | 3.6 ± 0.3 | 4.6 ± 8.5 | 4.6 ± 0.3 |
p-value | 0.093 | 0.168 | 0.395 | 0.504 | 0.869 | 0.877 |
First Follow-Up (5.6 Years) | Second Follow-Up (10.7 Years) | Third Follow-Up (14.5 Years) | |
---|---|---|---|
Weight change (kg) | 0.082 (0.013; 0.150) | 0.035 (−0.058; 0.128) | 0.130 (0.018; 0.243) |
p-value | 0.019 | 0.463 | 0.023 |
Weight change (%) | 0.105 (0.015; 0.195) | 0.052 (−0.072; 0.177) | 0.168 (0.016; 0.321) |
p-value | 0.022 | 0.409 | 0.031 |
Waist change (cm) | −0.034 (−0.127; 0.060) | 0.016 (−0.095; 0.128) | 0.098 (−0.033; 0.228) |
p-value | 0.481 | 0.774 | 0.143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patriota, P.; Rezzi, S.; Guessous, I.; Marques-Vidal, P. Vitamin D and Weight Change: A Mendelian Randomization, Prospective Study. Int. J. Mol. Sci. 2022, 23, 11100. https://doi.org/10.3390/ijms231911100
Patriota P, Rezzi S, Guessous I, Marques-Vidal P. Vitamin D and Weight Change: A Mendelian Randomization, Prospective Study. International Journal of Molecular Sciences. 2022; 23(19):11100. https://doi.org/10.3390/ijms231911100
Chicago/Turabian StylePatriota, Pollyanna, Serge Rezzi, Idris Guessous, and Pedro Marques-Vidal. 2022. "Vitamin D and Weight Change: A Mendelian Randomization, Prospective Study" International Journal of Molecular Sciences 23, no. 19: 11100. https://doi.org/10.3390/ijms231911100
APA StylePatriota, P., Rezzi, S., Guessous, I., & Marques-Vidal, P. (2022). Vitamin D and Weight Change: A Mendelian Randomization, Prospective Study. International Journal of Molecular Sciences, 23(19), 11100. https://doi.org/10.3390/ijms231911100