Dystocic Labor and Adrenergic and Noradrenergic Neurotransmitters: A Morphological Experimental Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANS | Autonomous Nervous System |
LUS | Lower Uterine Segment |
IU | Intrapartum Ultrasonography |
chNs | Catecholaminergic Neurotransmitters |
A | Adrenaline |
N | Noradrenaline |
SEM | Scanning Electronic Microscopy |
PL | Prolonged Labor |
DPL | Dystocic Prolonged Labor |
OPP | Occiput Posterior Position |
VE | Vaginal Examination |
OTP | Occiput Transverse Position |
References
- Tinelli, A.; Vergara, D.; Ma, Y.; Malvasi, A. Uterine Healing and Uterine Innervation: An Unexplored Intersection. Curr. Protein Pept. Sci. 2020, 21, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Tinelli, A.; Barbera, A.; Eggebø, T.M.; Mynbaev, O.A.; Bochicchio, M.; Pacella, E.; Di Renzo, G.C. Occiput posterior position diagnosis: Vaginal examination or intrapartum sonography? A clinical review. J. Matern. -Fetal Neonatal Med. 2014, 27, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Stark, M.; Ghi, T.; Farine, D.; Guido, M.; Tinelli, A. Intrapartum sonography for fetal head asynclitism and transverse position: Sonographic signs and comparison of diagnostic performance between transvaginal and digital examination. J. Matern. -Fetal Neonatal Med. 2012, 25, 508–512. [Google Scholar] [CrossRef]
- Di Tommaso, S.; Cavallotti, C.; Malvasi, A.; Vergara, D.; Rizzello, A.; De Nuccio, F.; Tinelli, A. A Qualitative and Quantitative Study of the Innervation of the Human Non Pregnant Uterus. Curr. Protein Pept. Sci. 2017, 18, 140–148. [Google Scholar] [CrossRef]
- Kosmas, I.P.; Malvasi, A.; Vergara, D.; Mynbaev, O.A.; Sparic, R.; Tinelli, A. Adrenergic and Cholinergic Uterine Innervation and the Impact on Reproduction in Aged Women. Curr. Pharm. Des. 2020, 26, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.W.; Caughey, A.B. Defining and Managing Normal and Abnormal Second Stage of Labor. Obstet. Gynecol. Clin. N. Am. 2017, 44, 547–566. [Google Scholar] [CrossRef]
- Malvasi, A.; Tinelli, A. Intrapartum sonography: Two sings to detect asynclitism degree. J. Matern.-Fetal Neonatal Med. 2016, 29, 1289–1290. [Google Scholar] [CrossRef]
- Segal, S.; Csavoy, A.N.; Datta, S. The tocolytic effect of catecholamines in the gravid rat uterus. Anesth. Analg. 1998, 87, 864–869. [Google Scholar] [CrossRef]
- Sakoda, H. Effect of adrenaline, noradrenaline and acetylcholine on rabbit and human uterine activity in vivo. Nihon Sanka Fujinka Gakkai Zasshi 1980, 32, 697–705. [Google Scholar]
- Story, M.E.; Hall, S.; Ziccone, S.P.; Paull, J.D. Effects of adrenaline, isoprenaline and forskolin on pregnant human myometrial preparations. Clin. Exp. Pharmacol. Physiol. 1988, 15, 703–713. [Google Scholar] [CrossRef]
- Leonard, S.; Lima, P.D.; Croy, B.A.; Murrant, C.L. Gestational modification of murine spiral arteries does not reduce their drug-induced vasoconstrictive responses in vivo. Biol. Reprod. 2013, 89, 139. [Google Scholar] [CrossRef] [PubMed]
- Lederman, R.P.; McCann, D.S.; Work, B., Jr.; Huber, M.J. Endogenous plasma epinephrine and norepinephrine in last-trimester pregnancy and labor. Am. J. Obstet. Gynecol. 1977, 129, 5–8. [Google Scholar] [CrossRef]
- Bengtsson, L.P. Hormonal effects on human myometrial activity. Vitam. Horm. 1973, 31, 257–303. [Google Scholar] [PubMed]
- Ekesbo, R.; Alm, P.; Ekström, P.; Lundberg, L.M.; Akerlund, M. Innervation of the human uterine artery and contractile responses to neuropeptides. Gynecol. Obstet. Investig. 1991, 31, 30–36. [Google Scholar] [CrossRef]
- Stjernquist, M.; Ekblad, E.; Nordstedt, E.; Radzuweit, C. Neuropeptide Y (NPY) co-exists with tyrosine hydroxylase and potentiates the adrenergic contractile response of vascular smooth muscle in the human uterine artery. Hum. Reprod. 1991, 6, 1034–1038. [Google Scholar] [CrossRef]
- Wikland, M.; Lindblom, B.; Wiqvist, N. Catecholamines and contractility of the human myometrium at term: A possible role for prostaglandins. Acta. Physiol. Hung. 1985, 65, 331–334. [Google Scholar]
- Sato, Y.; Hotta, H.; Nakayama, H.; Suzuki, H. Sympathetic and parasympathetic regulation of the uterine blood flow and contraction in the rat. J. Auton. Nerv. Syst. 1996, 59, 151–158. [Google Scholar] [CrossRef]
- Fried, G.; Hökfelt, T.; Lundberg, J.M.; Terenius, L.; Hamberger, L. Neuropeptide Y and noradrenaline in human uterus and myometrium during normal and pre-eclamptic pregnancy. Hum. Reprod. 1986, 1, 359–364. [Google Scholar] [CrossRef]
- Steele, S.C.; Warren, A.Y.; Johnson, I.R. Effect of the vascular endothelium on norepinephrine-induced contractions in uterine radial arteries from the nonpregnant and pregnant human uterus. Am. J. Obstet. Gynecol. 1993, 168, 1623–1628. [Google Scholar] [CrossRef]
- Weiner, C.; Liu, K.Z.; Thompson, L.; Herrig, J.; Chestnut, D. Effect of pregnancy on endothelium and smooth muscle: Their role in reduced adrenergic sensitivity. Am. J. Physiol. 1991, 261, H1275–H1283. [Google Scholar] [CrossRef]
- Toda, N.; Kimura, T.; Okamura, T. Nitroxidergic nerve stimulation relaxes human uterine vein. J. Auton. Nerv. Syst. 1995, 55, 189–192. [Google Scholar] [CrossRef]
- Segal, S.; Wang, S.Y. The effect of maternal catecholamines on the caliber of gravid uterine microvessels. Anesth. Analg. 2008, 106, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Ekström, P.; Alm, P.; Akerlund, M. Differences in vasomotor responses between main stem and smaller branches of the human uterine artery. Acta Obstet. Gynecol. Scand. 1991, 70, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Kublickiene, K.R.; Nisell, H.; Poston, L.; Krüger, K.; Lindblom, B. Modulation of vascular tone by nitric oxide and endothelin 1 in myometrial resistance arteries from pregnant women at term. Am. J. Obstet. Gynecol. 2000, 182, 87–93. [Google Scholar] [CrossRef]
- Nelson, S.H.; Steinsland, O.S.; Johnson, R.L.; Suresh, M.S.; Gifford, A.; Ehardt, J.S. Pregnancy-induced alterations of neurogenic constriction and dilation of human uterine artery. Am. J. Physiol. 1995, 268, H1694–H1701. [Google Scholar] [CrossRef]
- Allen, J.; Hansen, V.; Maigaard, S.; Andersson, K.E.; Forman, A. Effects of some neurotransmitters and prostanoids on isolated human intracervical arteries. Am. J. Obstet. Gynecol. 1988, 158, 637–641. [Google Scholar] [CrossRef]
- Rakitskaia, V.V.; Shaliapina, V.G.; Arzhanova, O.N.; IuV, C. Catecholamine levels and their distribution in the uterus during pregnancy and labor. Akush. Ginekol. (Mosk) 1991, 10, 20–23. [Google Scholar]
- Zuspan, F.P.; O’Shaughnessy, R.W.; Vinsel, J.; Zuspan, M. Adrenergic innervation of uterine vasculature in human term pregnancy. Am. J. Obstet. Gynecol. 1981, 139, 678–680. [Google Scholar] [CrossRef]
- Malvasi, A.; Tinelli, A.; Farine, D.; Rahimi, S.; Cavallotti, C.; Vergara, D.; Martignago, R.; Stark, M. Effects of visceral peritoneal closure on scar formation at cesarean delivery. Int. J. Gynaecol. Obstet. 2009, 105, 131–135. [Google Scholar] [CrossRef]
- Malvasi, A.; Cavallotti, C.; Resta, L.; Mynbaev, O.A.; Di Tommaso, S.; Vergara, D.; Gustapane, S.; Giacci, F.; Tinelli, A. Laminin and Collagen IV: Two Polypeptides as Marker of Dystocic Labor. Curr. Protein Pept. Sci. 2017, 18, 149–154. [Google Scholar] [CrossRef]
- Malvasi, A.; Cavallotti, C.; Gustapane, S.; Giacci, F.; Di Tommaso, S.; Vergara, D.; Mynbaev, O.A.; Tinelli, A. Neurotransmitters and Neuropeptides Expression in the Uterine Scar After Cesarean Section. Curr. Protein Pept. Sci. 2017, 18, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Dell’Edera, D.; Cavallotti, C.; Creanza, A.; Pacella, E.; Di Renzo, G.C.; Mynbaev, O.A.; Tinelli, A. Inflammation and Neurotransmission of the Vescico-Uterine Space in Cesarean Sections. Eur. J. Inflamm. 2013, 11, 247–256. [Google Scholar] [CrossRef]
Elective Cesarean Section (n = 34) | Cesarean Section in Prolonged Labor (n = 36) | p | |
---|---|---|---|
Age (year) | 34.5 ± 4.1 | 37.6 ± 3.5 | >0.05 |
BMI (kg/m2) | 28.2 ± 4.7 | 30.3 ± 1.8 | >0.05 |
Gestation week (weeks ± days) | 39 ± 5.2 | 40 ± 4.9 | >0.05 |
Birthweight (g) | 3230 ± 345 | 3420 ± 290 | >0.05 |
Group 1: Elective CS (N = 34) | Group 2: CS in Prolonged Labor (N = 36) | p-value |
Nerve fibers density containing adrenergic-immune reactivity within specimens of human Lower Uterine Segment (LUS) | ||
LUS specimens 14 ± 1.7 (immune reactivity) | LUS specimens 10 ± 2.2 (immune reactivity) | <0.05 |
Group 1: Elective CS (N = 34) | Group 2: CS in Prolonged Labor (N = 36) | p-value |
Nerve fibers density containing noradrenaline-immune reactivity within specimens of human Lower Uterine Segment (LUS) | ||
LUS specimens 12 ± 1.3 (immune reactivity) | LUS specimens 9 ± 2.3 (immune reactivity) | <0.05 |
Adrenaline and Noradrenaline Effects in the Gravid Uterus in Normal Labor (3) | |
Adrenaline (Epinephrine) | Uterine muscle cells: contracting stimulation effect on the uterine smooth cells. Uterine vessels: vasodilatation effect. |
Noradrenaline (Norepinephrine) | Uterine muscle cells: contracting stimulation effect on uterine smooth cells. Uterine vessels: vasodilatation effect. |
Adrenaline and Noradrenaline Effects in the Gravid Uterus in Prolonged Dystocic Labor | |
Adrenaline (Epinephrine) | Uterine muscle cells: spastic contraction of the uterine smooth cells (7). Uterine vessels: vasoconstriction (35). |
Noradrenaline (Norepinephrine) | Uterine muscle cells: spastic contraction of the uterine smooth cells. Uterine vessels: vasoconstriction. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malvasi, A.; Vimercati, A.; Ricci, I.; Picardi, N.; Cicinelli, E.; Kosmas, I.; Baldini, G.M.; Tinelli, A. Dystocic Labor and Adrenergic and Noradrenergic Neurotransmitters: A Morphological Experimental Study. Int. J. Mol. Sci. 2022, 23, 11379. https://doi.org/10.3390/ijms231911379
Malvasi A, Vimercati A, Ricci I, Picardi N, Cicinelli E, Kosmas I, Baldini GM, Tinelli A. Dystocic Labor and Adrenergic and Noradrenergic Neurotransmitters: A Morphological Experimental Study. International Journal of Molecular Sciences. 2022; 23(19):11379. https://doi.org/10.3390/ijms231911379
Chicago/Turabian StyleMalvasi, Antonio, Antonella Vimercati, Ilaria Ricci, Nico Picardi, Ettore Cicinelli, Ioannis Kosmas, Giorgio Maria Baldini, and Andrea Tinelli. 2022. "Dystocic Labor and Adrenergic and Noradrenergic Neurotransmitters: A Morphological Experimental Study" International Journal of Molecular Sciences 23, no. 19: 11379. https://doi.org/10.3390/ijms231911379
APA StyleMalvasi, A., Vimercati, A., Ricci, I., Picardi, N., Cicinelli, E., Kosmas, I., Baldini, G. M., & Tinelli, A. (2022). Dystocic Labor and Adrenergic and Noradrenergic Neurotransmitters: A Morphological Experimental Study. International Journal of Molecular Sciences, 23(19), 11379. https://doi.org/10.3390/ijms231911379