A Common Variant in the CDK8 Gene Is Associated with Sporadic Pituitary Adenomas in the Portuguese Population: A Case-Control Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Genetic Studies
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daly, A.F.; Beckers, A. The Epidemiology of Pituitary Adenomas. Endocrinol. Metab. Clin. N. Am. 2020, 49, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Castro, M.; Berrocal, V.R.; Pascual-Corrales, E. Pituitary tumors: Epidemiology and clinical presentation spectrum. Hormones 2020, 19, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Spada, A.; Mantovani, G.; Lania, A.G.; Treppiedi, D.; Mangili, F.; Catalano, R.; Carosi, G.; Sala, E.; Peverelli, E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022, 112, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Coopmans, E.C.; Korbonits, M. Molecular genetic testing in the management of pituitary disease. Clin. Endocrinol. 2022. [Google Scholar] [CrossRef]
- Denes, J.; Korbonits, M. The clinical aspects of pituitary tumour genetics. Endocrine 2021, 71, 663–674. [Google Scholar] [CrossRef]
- Chang, M.; Yang, C.; Bao, X.; Wang, R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front. Endocrinol. 2020, 11, 596554. [Google Scholar] [CrossRef]
- Ye, Z.; Li, Z.; Wang, Y.; Mao, Y.; Shen, M.; Zhang, Q.; Li, S.; Zhou, L.; Shou, X.; Chen, J.; et al. Common variants at 10p12.31, 10q21.1 and 13q12.13 are associated with sporadic pituitary adenoma. Nat. Genet. 2015, 47, 793–797. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Chen, X.; Yan, Y.; Liu, X. Angel or Devil ?-CDK8 as the new drug target. Eur. J. Med. Chem. 2021, 213, 113043. [Google Scholar] [CrossRef]
- Morris, E.J.; Ji, J.Y.; Yang, F.; Di Stefano, L.; Herr, A.; Moon, N.S.; Kwon, E.J.; Haigis, K.M.; Naar, A.M.; Dyson, N.J. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 2008, 455, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Clevers, H.; Nusse, R. Wnt/beta-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef]
- Chambers, T.J.; Giles, A.; Brabant, G.; Davis, J.R. Wnt signalling in pituitary development and tumorigenesis. Endocr. Relat. Cancer 2013, 20, R101–R111. [Google Scholar] [CrossRef] [Green Version]
- Elston, M.S.; Gill, A.J.; Conaglen, J.V.; Clarkson, A.; Shaw, J.M.; Law, A.J.; Cook, R.J.; Little, N.S.; Clifton-Bligh, R.J.; Robinson, B.G.; et al. Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 2008, 149, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, V.; Villa, C.; Auguste, A.; Lamothe, S.; Guillou, A.; Martin, A.; Caburet, S.; Young, J.; Veitia, R.A.; Binart, N. Natural and molecular history of prolactinoma: Insights from a Prlr(-/-) mouse model. Oncotarget 2018, 9, 6144–6155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, I.S.; Hulpiau, P.; Saeys, Y.; van Roy, F. Evolution and diversity of cadherins and catenins. Exp. Cell Res. 2017, 358, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Kaszak, I.; Witkowska-Pilaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Ngosa Toka, F.; Jurka, P. Role of Cadherins in Cancer-A Review. Int. J. Mol. Sci. 2020, 21, 7624. [Google Scholar] [CrossRef]
- Ahmed, Z.M.; Riazuddin, S.; Bernstein, S.L.; Ahmed, Z.; Khan, S.; Griffith, A.J.; Morell, R.J.; Friedman, T.B.; Riazuddin, S.; Wilcox, E.R. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet. 2001, 69, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Y.; Cullen, C.L.; Ricci, R.; Summers, B.S.; Rehman, S.; Ahmed, Z.M.; Foster, A.Y.; Emery, B.; Gasperini, R.; Young, K.M. Protocadherin 15 suppresses oligodendrocyte progenitor cell proliferation and promotes motility through distinct signalling pathways. Commun. Biol. 2022, 5, 511. [Google Scholar] [CrossRef]
- Kazmierczak, P.; Sakaguchi, H.; Tokita, J.; Wilson-Kubalek, E.M.; Milligan, R.A.; Muller, U.; Kachar, B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007, 449, 87–91. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, C.; Song, J.; Zhang, Y.; Chen, J.; Song, Z.; Shou, X.; Ma, Z.; Peng, H.; Jian, X.; et al. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Am. J. Hum. Genet. 2017, 100, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Lemos, M.C.; Regateiro, F.J. N-acetyltransferase genotypes in the Portuguese population. Pharmacogenetics 1998, 8, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, W.D.; Plummer, W.D., Jr. Power and sample size calculations. A review and computer program. Control Clin. Trials 1990, 11, 116–128. [Google Scholar] [CrossRef]
NEBL rs2359536 | Cases, n (%) | Controls, n (%) | OR (95% CI) | p Value | Adjusted OR (95% CI) † | Adjusted p Value † | |
---|---|---|---|---|---|---|---|
Genotypes | TT | 225 (39.5) | 213 (39.0) | ||||
TC | 271 (47.5) | 258 (47.3) | |||||
CC | 74 (13.0) | 75 (13.7) | 0.94 (0.66–1.32) ¶ | 0.71 | 0.89 (0.63–1.27) ¶ | 0.53 | |
Alleles | T | 721 (63.2) | 684 (62.6) | ||||
C | 419 (36.8) | 408 (37.4) | 0.97 (0.82–1.16) § | 0.76 | 0.95 (0.80–1.13) § | 0.57 | |
PCDH15 rs10763170 | Cases, n (%) | Controls, n (%) | OR (95% CI) | p Value | Adjusted OR (95% CI) † | Adjusted p Value † | |
Genotypes | CC | 184 (32.3) | 180 (33.0) | ||||
CT | 276 (48.4) | 247 (45.2) | |||||
TT | 110 (19.3) | 119 (21.8) | 0.86 (0.64–1.15) ¶ | 0.30 | 0.86 (0.64–1.15) ¶ | 0.31 | |
Alleles | C | 644 (56.5) | 607 (55.6) | ||||
T | 496 (43.5) | 485 (44.4) | 0.97 (0.82–1.14) § | 0.67 | 0.96 (0.81–1.13) § | 0.62 | |
CDK8 rs17083838 | Cases, n (%) | Controls, n (%) | OR (95% CI) | p Value | Adjusted OR (95% CI) † | Adjusted p Value † | |
Genotypes | GG | 487 (85.4) | 498 (91.2) | ||||
GA | 82 (14.4) | 46 (8.4) | |||||
AA | 1 (0.2) | 2 (0.4) | 1.77 (1.21–2.58) Ŧ | 0.003 | 1.82 (1.24–2.68) Ŧ | 0.002 | |
Alleles | G | 1056 (92.6) | 1042 (95.4) | ||||
A | 84 (7.3) | 50 (4.6) | 1.67 (1.16–2.41) § | 0.005 | 1.73 (1.19–2.50) § | 0.004 |
PCDH15 rs10763170 | Somatotrophinomas, n (%) | All Other Tumors, n (%) | OR (95% CI) | p Value | Adjusted OR (95% CI) † | Adjusted p Value † | |
---|---|---|---|---|---|---|---|
Genotypes | CC | 41 (25.5) | 138 (34.6) | ||||
CT | 85 (52.8) | 193 (48.4) | |||||
TT | 35 (21.7) | 68 (17.0) | 1.55 (1.03–2.33) Ŧ | 0.036 | 1.55 (1.02–2.35) Ŧ | 0.035 | |
Alleles | C | 167 (51.9) | 469 (58.8) | ||||
T | 155 (48.1) | 329 (41.2) | 1.32 (1.02–1.72) § | 0.035 | 1.31 (1.00–1.71) § | 0.046 |
Number of Minor Alleles | Cases, n (%) | Controls, n (%) | OR (95% CI) | p Value |
---|---|---|---|---|
0 | 56 (9.8) | 60 (11.0) | ||
1 | 180 (31.6) | 176 (32.2) | ||
2 | 208 (36.5) | 187 (34.2) | ||
3 | 102 (17.9) | 102 (18.7) | ||
4 | 23 (4.0) | 18 (3.3) | ||
5 | 1 (0.2) | 3 (0.6) | ||
6 | 0 (0.0) | 0 (0.0) | ||
2 or less | 444 (77.9) | 423 (77.5) | ||
3 or more | 126 (22.1) | 123 (22.5) | 0.98 (0.74–1.29) | 0.866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, L.M.; Gonçalves, C.I.; Fonseca, F.; Carvalho, D.; Cortez, L.; Palha, A.; Barros, I.F.; Nobre, E.; Duarte, J.S.; Amaral, C.; et al. A Common Variant in the CDK8 Gene Is Associated with Sporadic Pituitary Adenomas in the Portuguese Population: A Case-Control Study. Int. J. Mol. Sci. 2022, 23, 11749. https://doi.org/10.3390/ijms231911749
Gaspar LM, Gonçalves CI, Fonseca F, Carvalho D, Cortez L, Palha A, Barros IF, Nobre E, Duarte JS, Amaral C, et al. A Common Variant in the CDK8 Gene Is Associated with Sporadic Pituitary Adenomas in the Portuguese Population: A Case-Control Study. International Journal of Molecular Sciences. 2022; 23(19):11749. https://doi.org/10.3390/ijms231911749
Chicago/Turabian StyleGaspar, Leonor M., Catarina I. Gonçalves, Fernando Fonseca, Davide Carvalho, Luísa Cortez, Ana Palha, Inês F. Barros, Ema Nobre, João S. Duarte, Cláudia Amaral, and et al. 2022. "A Common Variant in the CDK8 Gene Is Associated with Sporadic Pituitary Adenomas in the Portuguese Population: A Case-Control Study" International Journal of Molecular Sciences 23, no. 19: 11749. https://doi.org/10.3390/ijms231911749
APA StyleGaspar, L. M., Gonçalves, C. I., Fonseca, F., Carvalho, D., Cortez, L., Palha, A., Barros, I. F., Nobre, E., Duarte, J. S., Amaral, C., Bugalho, M. J., Marques, O., Pereira, B. D., & Lemos, M. C. (2022). A Common Variant in the CDK8 Gene Is Associated with Sporadic Pituitary Adenomas in the Portuguese Population: A Case-Control Study. International Journal of Molecular Sciences, 23(19), 11749. https://doi.org/10.3390/ijms231911749