Surface Engineering of Top7 to Facilitate Structure Determination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mutant Constructions and Preparation
2.2. Size-Exclusion Chromatography and CD Measurements
2.3. Structure Determination of Top7sm1 and Top7sm2
2.4. I68R Mutation on Top7sm2 to Disrupt the Continuous β-Sheet in Crystal Packing
2.5. Top7sm2-I68R as a Model Protein
3. Materials and Methods
3.1. Sample Preparations
3.2. Crystallization and Structure Determination
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 2003, 302, 1364–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basanta, B.; Chan, K.; Barth, P.; King, T.; Sosnick, T.R.; Hinshaw, J.R.; Liu, G.; Everett, J.K.; Xiao, R.; Montelione, G.T.; et al. Introduction of a polar core into the de novo designed protein Top7. Protein Sci. 2016, 25, 1299–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschek, C.B.; Apiyo, D.O.; Soares, T.A.; Engelmann, H.E.; Pefaur, N.B.; Straatsma, T.P.; Baird, C.L. Engineering an ultra-stable affinity reagent based on Top7. Protein Eng. Des. Sel. 2009, 22, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Soares, T.A.; Boschek, C.B.; Apiyo, D.; Baird, C.; Straatsma, T. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. J. Mol. Graph. Model. 2010, 28, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Viana, I.F.T.; Soares, T.A.; Lima, L.F.O.; Marques, E.T.A.; Krieger, M.A.; Dhalia, R.; Lins, R.D. De novo design of immunoreactive conformation-specific HIV-1 epitopes based on Top7 scaffold. RSC Adv. 2013, 3, 11790–11800. [Google Scholar] [CrossRef]
- Viana, I.F.T.; Dhalia, R.; Krieger, M.A.; Marques, E.T.A.; Lins, R.D. Influence of Scaffold Stability and Electrostatics on Top7-Based Engineered Helical HIV-1 Epitopes BT. In Advances in Bioinformatics and Computational Biology; Setubal, J.C., Almeida, N.F., Eds.; Springer International Publishing: Cham, Switzerland, 2013; pp. 94–103. [Google Scholar]
- Derewenda, Z.S.; Vekilov, P.G. Entropy and surface engineering in protein crystallization. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 62, 116–124. [Google Scholar] [CrossRef]
- Derewenda, Z.S. Rational Protein Crystallization by Mutational Surface Engineering. Structure 2004, 12, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.R.; Boczek, T.; Grelewska-Nowotko, K.; Pinkowska, M.; Sikorska, M.; Zawadzki, M.; Derewenda, Z. Protein crystallization by surface entropy reduction: Optimization of the SER strategy. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 63, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Derewenda, Z. The use of recombinant methods and molecular engineering in protein crystallization. Methods 2004, 34, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Mateja, A.; Devedjiev, Y.; Krowarsch, D.; Longenecker, K.; Dauter, Z.; Otlewski, J.; Derewenda, Z.S. The impact of Glu→Ala and Glu→Asp mutations on the crystallization properties of RhoGDI: The structure of RhoGDI at 1.3 Å resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58, 1983–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munshi, S.; Hall, D.L.; Kornienko, M.; Darke, P.L.; Kuo, L.C. Structure of apo, unactivated insulin-like growth factor-1 receptor kinase at 1.5 Å resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 2005, 41, 207–234. Available online: http://internal-pdf//Studier-2005-Protein-production-b-0113570596/Studier-2005-Protein-production-b.pdf (accessed on 20 October 2021). [CrossRef] [PubMed]
- Kabsch, W. XDS research papers. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein | Top7SuMu2 I68R |
---|---|
Data collection statistics | |
Space group | P 1 21 1 |
Cell parameters | a = 24.02 |
b = 86.30 | |
c = 40.13 | |
β = 97.18 | |
Beamline | KEK-PF BL5A |
Wavelength | 1.0000 |
Resolution (Å) a | 19.91–1.43 |
Completeness(%) | 98.64 (99.46) |
I/s (I) | 17.0 (2.5) |
Rmerge b | 0.034 |
Average redundancy | 3.2(3.2) |
Refinement statistics | |
Resolution range (Å) | 19.908–1.430 (1.481–1.430) |
Reflections used (free) | 29,515 (2957) |
R factor c | 0.2029 |
Rfree d | 0.2422 |
RMS deviations | |
Bonds (Å) | 0.005 |
Angles (°) | 0.73 |
No. protein residues | 96 |
No. waters | 127 |
Ramachandran plot statistics | |
Favored (%) | 98.94 |
Allowed (%) | 1.06 |
Outliers (%) | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, Y.; Araki, T.; Shiga, S.; Konno, H.; Makabe, K. Surface Engineering of Top7 to Facilitate Structure Determination. Int. J. Mol. Sci. 2022, 23, 701. https://doi.org/10.3390/ijms23020701
Ito Y, Araki T, Shiga S, Konno H, Makabe K. Surface Engineering of Top7 to Facilitate Structure Determination. International Journal of Molecular Sciences. 2022; 23(2):701. https://doi.org/10.3390/ijms23020701
Chicago/Turabian StyleIto, Yuki, Takuya Araki, Shota Shiga, Hiroyuki Konno, and Koki Makabe. 2022. "Surface Engineering of Top7 to Facilitate Structure Determination" International Journal of Molecular Sciences 23, no. 2: 701. https://doi.org/10.3390/ijms23020701
APA StyleIto, Y., Araki, T., Shiga, S., Konno, H., & Makabe, K. (2022). Surface Engineering of Top7 to Facilitate Structure Determination. International Journal of Molecular Sciences, 23(2), 701. https://doi.org/10.3390/ijms23020701