Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration
Abstract
:1. Introduction
2. Results
2.1. Morphological Characteristics of the Three Salvia Species
2.2. Gene Compositions Comparison of 23 Salvia Species
2.3. Gene Loss Analysis of the Chloroplast Genomes from 41 Species in the Lamiaceae Family
2.4. Analysis of Simple Sequence Repeats Polymorphism in the 23 Salvia Chloroplast Genomes
2.5. Repeat Sequences Analysis in the Chloroplast Genomes of 23 salvia Species
2.6. Structures of the IR Boundaries and Gene Features from 23 Salvia Species
2.7. The Discrepancy of the 23 Salvia Chloroplast Genomes
2.8. Identification and Cloning of Hypervariable Regions
2.9. Identification and Comparison of the Genus-Specific DNA Barcodes Primer and Sequences
2.10. Phylogenetic Analysis
3. Discussion
3.1. The Characteristics of Chloroplast Genomes and Genes in the Salvia Genus
3.2. The Divergence between IGS Regions of the Salvia Genus Compared to Other Plants
3.3. The Functional Features of IR Regions and Genes of the Salvia Genus together with Other Plants
4. Materials and Methods
4.1. Plant Photos and Materials
4.2. DNA Extraction, Determination of DNA Quality, and PCR Amplification Products
4.3. Chloroplast Genome Sequencing, Assembly, Annotation, and Manual Curation
4.4. Visualization and Analysis of Genome Content, cis- and Trans-Splicing genes
4.5. Repeat Analysis
4.6. Comparative Genomic Analysis
4.7. Primer Identification and Design, PCR Amplification, Sequencing, and Analysis of Genus-Specific DNA Barcode Sequences
4.8. Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.W.; Ian, C.H. Lamiaceae. Editorial board, Chinese Academy of Sciences. Flora of China, 17th ed.; Science Press: Beijing, China, 1994. [Google Scholar]
- Rattray, R.D.; Van Wyk, B.E. The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae. Molecules 2021, 26, 3712. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cantino, P.D.; Olmstead, R.G.; Bramley, G.L.; Xiang, C.L.; Ma, Z.H.; Tan, Y.H.; Zhang, D.X. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci. Rep. 2016, 6, 34343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentham, G.; Labiatae Bentham, G.; Hooker, J.D. Genera Plantarum; Reeve and Co: London, UK, 1876; Volume 2, pp. 1160–1223. [Google Scholar]
- Briquet, J. Labiatae. In Engler & Prantl, Die natürlichen Pflanzenfamilien IV, 3a; W. Engelmann: Leipzig, Germany, 1895–1897; Volume 4, pp. 183–375. [Google Scholar]
- Valdés, L.J., III; Díaz, J.; Paul, A.G. Ethnopharmacology of ska María Pastora (Salvia divinorum, Epling AND Játiva-M.). J. Ethnopharmacol. 1983, 7, 287–312. [Google Scholar] [CrossRef] [Green Version]
- Pobedimova, E.G. Rod Shalfei-Salvia, L. In Flora SSSR; The McGraw-Hill Companies, Inc.: Moscow, Russia, 1954; Volume 21. [Google Scholar]
- Hedge, I.C. Salvia L. In Flora Europaea; Tutin, T.G., Ed.; Cambridge University Press: Cambridge, UK, 1972; p. 188. [Google Scholar]
- Wu, Z.Y.; Sun, X.C. Salvia Genus. In Flora of China; Wu, Z.Y., Li, X.W., Eds.; Science Press: Beijing, China, 1977; pp. 70–196. [Google Scholar]
- Walker, J.B.; Sytsma, K.J. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. 2007, 100, 375–391. [Google Scholar] [CrossRef]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walked, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Takano, A.; Okada, H. Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). J. Plant. Res. 2011, 124, 245–252. [Google Scholar] [CrossRef]
- Li, M.H.; Li, Q.Q.; Liu, Y.Z.; Cui, Z.H.; Zhang, N.; Huang, L.Q.; Xiao, P.G. Pharmacophylogenetic study on plants of genus Salvia L. from China. China Herb. Med. 2013, 5, 164–181. [Google Scholar]
- Hu, G.X.; Takano, A.; Drew, B.T.; Liu, E.D.; Soltis, D.E.; Soltis, P.S.; Peng, H.; Xiang, C.L. Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Ann. Bot. 2018, 122, 649–668. [Google Scholar] [CrossRef]
- Zaman, W.; Ye, J.; Hmad, M.; Saqib, S.; Shinwari, Z.K.; Chen, Z.D. Phylogenetic exploration of traditional chinese medicinal plants: A case study on lamiaceae (angiosperms). Pak. J. Bot. 2022, 54, 1033–1040. [Google Scholar] [CrossRef]
- Green, B.R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 2019, 66, 34–44. [Google Scholar] [CrossRef]
- Xiao-Ming, Z.; Junrui, W.; Li, F.; Sha, L.; Hongbo, P.; Lan, Q.; Jing, L.; Yan, S.; Weihua, Q.; Lifang, Z.; et al. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci. Rep. 2019, 7, 1555. [Google Scholar] [CrossRef]
- Lo′pez, E.-J. Plastid biogenesis, between light and shadows. J. Exp. Bot. 2007, 58, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Glynn, J.M.; Miyagishima, S.; Yoder, D.W.; Osteryoung, K.W.; Vitha, S. Chloroplast Division. Traffic 2007, 8, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; Miyake, C.; Iwano, M.; Sekine, M.; Shinmyo, A.; Kato, K. Ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit translation is regulated in a small subunit-independent manner in the expanded leaves of tobacco. Plant Cell Physiol. 2008, 49, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.D. Comparative organization of chloroplast genomes. Ann. Rev. Genet. 1985, 19, 325–354. [Google Scholar] [CrossRef]
- Zhang, R.; Ge, F.; Li, H.; Chen, Y.; Zhao, Y.; Gao, Y.; Liu, Z.; Yang, L. PCIR: A database of Plant Chloroplast Inverted Repeats. Database J. Biol. Databases Curation 2019, 2019, baz127. [Google Scholar] [CrossRef]
- Nock, C.J.; Waters, D.L.; Edwards, M.A.; Bowen, S.G.; Rice, N.; Cordeiro, G.M.; Henry, R.J. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol. J. 2011, 9, 328–333. [Google Scholar] [CrossRef]
- Yang, Y.C.; Kung, T.L.; Hu, C.Y.; Lin, S.F. Development of primer pairs from diverse chloroplast genomes for use in plant phylogenetic research. Genet. Mol. Res. 2015, 14, 14857–14870. [Google Scholar] [CrossRef]
- Adem, M.; Beyene, D.; Feyissa, T. Recent achievements obtained by chloroplast transformation. Plant Methods 2017, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.G.; Dong, L.L.; Chen, S.L. Development direction of molecular breeding of medicinal plants. Chin. J. Chin. Mater. Med. 2020, 45, 2714–2719. [Google Scholar]
- Santos, C.; Pereira, F. Identification of plant species using variable length chloroplast DNA sequences. Forensic Sci. Int. Genet. 2018, 36, 1–12. [Google Scholar] [CrossRef]
- Qian, J.; Song, J.Y.; Gao, H.H.; Zhu, Y.J.; Xu, J.; Pang, X.H. The Complete Chloroplast Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. PLoS ONE 2013, 8, e57607. [Google Scholar] [CrossRef]
- Liang, C.L.; Wang, L.; Lei, J.; Duan, B.Z.; Ma, W.S.; Xiao, S.M. Comparative Analysis of the Chloroplast Genomes of Four Salvia Medicinal Plants. Engineering 2019, 5, 907–915. [Google Scholar] [CrossRef]
- Gao, C.W.; Wu, C.H.; Zhang, Q.; Zhao, X.; Wu, M.X.; Chen, R.R. Characterization of Chloroplast Genomes From Two Salvia Medicinal Plants and Gene Transfer Among Their Mitochondrial and Chloroplast Genomes. Front Genet. 2020, 11, 574962. [Google Scholar] [CrossRef]
- Moriguchi, Y.; Kang, K.S.; Lee, K.Y. Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondrial, and nuclear DNA markers. J. Plant Res. 2009, 122, 153–160. [Google Scholar] [CrossRef]
- Funk, H.T.; Berg, S.; Krupinska, K.; Maier, U.G.; Krause, K. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol. 2007, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- McNeal, J.R.; Kuehl, J.V.; Boore, J.L.; Leebens-Mack, J.; dePamphilis, C.W. Parallel loss of plastid introns and their maturase in the genus Cuscuta. PLoS ONE 2009, 4, e5982. [Google Scholar] [CrossRef] [Green Version]
- Barthet, M.M.; Pierpont, C.L.; Tavernier, E.-K. Unraveling the role of the enigmatic MatK maturase in chloroplast group IIA intron excision. Plant Direct. 2020, 4, 1–17. [Google Scholar] [CrossRef]
- Zoschke, R.; Nakamura, M.; Liere, K.; Sugiura, M.; Börner, T.; Schmitz-Linneweber, C. An organellar maturase associates with multiple group II introns. Proc. Natl. Acad. Sci. USA. 2010, 107, 3245–3250. [Google Scholar] [CrossRef] [Green Version]
- Leeder, W.M.; Voskuhl, S.; Göringer, H.U. The 2D Structure of the T. brucei Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding. J. Nucleic Acids 2017, 2017, 6067345. [Google Scholar] [CrossRef] [Green Version]
- Weglöhner, W.; Subramanian, A.R. Nucleotide sequence of a region of maize chloroplast DNA containing the 3′ end of clpP, exon 1 of rps12 and rpl20 and their cotranscription. Plant. Mol. Biol. 1992, 18, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.P.; Xu, C.; Li, C.H.; Sun, J.H.; Zuo, Y.J.; Shi, S. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Liu, Y.; Huang, H.; Xia, E.H.; Zhang, H.B.; Gao, L.Z. Contradiction between Plastid Gene Transcription and Function Due to Complex Posttranscriptional Splicing: An Exemplary Study of ycf15 Function and Evolution in Angiosperms. PLoS ONE 2013, 8, e59620. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.A.; Jansen, R.K. The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome. Sci. Rep. 2021, 11, 7466. [Google Scholar] [CrossRef]
- Cheatham, T.E.; Srinivasan, J.; Case, D.A.; Kollman, P.A. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J. Biomol. Struct. Dyn. 1998, 16, 265–280. [Google Scholar] [CrossRef]
- Niu, Z.; Pan, J.; Zhu, S.; Li, L.; Xue, Q.; Liu, W.; Ding, X. Comparative Analysis of the Complete Plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) Reveals Different Evolutionary Dynamics of IR/SSC Boundary among Photosynthetic Orchids. Front. Plant Sci. 2017, 8, 1713. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.O.; Cardoso, H.G.; Macedo, E.S.; Breviario, D.; Arnholdt-Schmitt, B. Intron polymorphism pattern inAOX1bof wild St John′s wort (Hypericum perforatum) allows discrimination between individual plants. Physiol. Plant. 2009, 137, 520–531. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wang, L.Q.; Chen, H.M.; Jiang, M.; Wu, W.W.; Liu, S.Y. Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences. BMC Plant Biol. 2021, 21, 431. [Google Scholar] [CrossRef]
- Fisher, V.L. Indigenous Salvia Species-An Investigation of the Antimicrobial Activity, Antioxidant Activity and Chemical Composition of Leaf Extracts. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2006. [Google Scholar]
- Sun, Q.; Wang, K.; Yoshimura, A.; Doi, K. Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). Theor. Appl. Genet. 2002, 104, 1335–1345. [Google Scholar] [CrossRef]
- Cui, Y.X.; Nie, L.P.; Sun, W.; Xu, Z.C.; Wang, Y.; Yu, J. Comparative and Phylogenetic Analyses of Ginger (Zingiber officinale) in the Family Zingiberaceae Based on the Complete Chloroplast Genome. Plants 2019, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Amenu, S.G.; Wei, N.; Wu, L.; Oyetola, O.; Hu, G.W.; Zhou, Y.D. Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): Deep insights into phylogenetic relationships and plastome evolution. BMC Plant Biol. 2022, 22, 88. [Google Scholar] [CrossRef]
- Bakker, R.T.; Culham, A.; Gmez-Martinez, R.; Carvalho, J.; Compton, J.; Dawtrey, R. Patterns of Nucleotide Substitution in Angiosperm cpDNA trnL (UAA)-trnF(GAA) Regions. Mol. Biol. Evol. 2000, 17, 1146–1155. [Google Scholar] [CrossRef]
- Wang, D.Y.; Wu, Y.W.; Shih, A.C.C.; Wu, C.S.; Wang, Y.N.; Chaw, S.M. Transfer of Chloroplast Genomic DNA to Mitochondrial Genome Occurred At Least 300 MYA. Mol. Biol. Evol. 2007, 24, 2040–2048. [Google Scholar] [CrossRef]
- Salmaki, Y.; Heubl, G.; Weigend, M. Towards a new classification of tribe Stachydeae (Lamiaceae): Naming clades using molecular evidence. Bot. J. Linn. Soc. 2019, 190, 345–359. [Google Scholar] [CrossRef]
- Li, S.; Duan, W.; Zhao, J.; Jing, Y.; Feng, M.; Kuang, B.; Wei, N.; Chen, B.; Yang, X. Comparative Analysis of Chloroplast Genome in Saccharum spp. and Related Members of ′Saccharum Complex′. Int. J. Mol. Sci. 2022, 23, 7661. [Google Scholar] [CrossRef]
- Li, P.; Lou, G.; Cai, X.; Zhang, B.; Cheng, Y.; Wang, H. Comparison of the complete plastomes and the phylogenetic analysis of Paulownia species. Sci. Rep. 2020, 10, 2225. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, A.; Zaman, W.; Saqib, S.; Ullah, F.; Mahmood, T. Phylogeny and Diversity of Lamiaceae based on rps14 gene in Pakistan. Genetika. 2020, 52, 435–452. [Google Scholar] [CrossRef]
- Dong, W.P.; Liu, J.; Yu, J.; Wang, L.; Zhou, S.L. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 2012, 7, e35071. [Google Scholar] [CrossRef]
- Duan, L.; Li, S.J.; Su, C.; Sirichamorn, Y.; Han, L.N.; Ye, W.; Lôc, P.K.; Wen, J.; Compton, J.A.; Schrire, B.; et al. Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae. Mol. Phylogenet. Evol. 2021, 163, 107235. [Google Scholar] [CrossRef]
- Du, Q.; Jiang, M.; Sun, S.S.; Wang, L.Q.; Liu, S.Y.; Jiang, C.B. The complete chloroplast genome sequence of Clerodendranthus spicatus, a medicinal plant for preventing and treating kidney diseases from Lamiaceae family. Mol. Biol. Rep. 2022, 49, 3073–3083. [Google Scholar] [CrossRef]
- Boudreau, E.; Takahashi, Y.; Lemieux, C.; Turmel, M.; Rochaix, J.D. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J. 1997, 16, 6095–6104. [Google Scholar] [CrossRef] [Green Version]
- Naver, H.; Boudreau, E.; Rochaix, J.D. Functional studies of Ycf3: Its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell. 2001, 13, 2731–2745. [Google Scholar] [CrossRef]
- Krech, K.; Ruf, S.; Masduki, F.F.; Thiele, W.; Bednarczyk, D.; Albus, C.A.; Tiller, N.; Hasse, C.; Schöttler, M.A.; Bock, R. The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants. Plant Physiol. 2012, 159, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Li, J.F.; Li, L.; Sheen, J. Protocol: A rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Methods 2010, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; McCord, B.; Buel, E. Advances in forensic DNA quantification: A review. Electrophoresis 2014, 35, 3044–3052. [Google Scholar] [CrossRef]
- Diekmann, K.; Hodkinson, T.R.; Fricke, E.; Barth, S. An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. PLoS ONE 2008, 3, e2813. [Google Scholar] [CrossRef] [Green Version]
- Cronn, R.; Liston, A.; Parks, M.; Gernandt, D.S.; Shen, R.; Mockler, T. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008, 36, e122. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Shi, L.C.; Chen, H.M.; Jiang, M.; Wang, L.Q.; Wu, X.; Huang, L.F.; Liu, C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019, 47, W65–W73. [Google Scholar] [CrossRef]
- Firtina, C.; Kim, J.S.; Alser, M.; Senol Cali, D.; Cicek, A.E.; Alkan, C.; Mutlu, O. Apollo: A sequencing-technology-independent, scalable and accurate assembly polishing algorithm. Bioinformatics 2020, 36, 3669–3679. [Google Scholar] [CrossRef] [PubMed]
- Stothard, P.; Grant, J.R.; Van Domselaar, G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform. 2019, 20, 1576–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Melle Guy, D. VMATCH: Stata Module to Match Variables between Subjects. Statistical Software Components S350801; Boston College Department of Economics: Boston, MA, USA, 1998. [Google Scholar]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [Green Version]
- Brudno, M.; Malde, S.; Poliakov, A.; Do, C.B.; Couronne, O.; Dubchak, I.; Batzoglou, S. Glocal alignment: Finding rearrangements during alignment. Bioinformatics 2003, 1, i54–i62. [Google Scholar] [CrossRef] [Green Version]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Mahadani, A.K.; Awasthi, S.; Sanyal, G.; Bhattacharjee, P.; Pippal, S. Indel-K2P: A modified Kimura 2 Parameters (K2P) model to incorporate insertion and deletion (Indel) information in phylogenetic analysis. Cyber-Phys. Syst. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Riaz, T.; Shehzad, W.; Viari, A.; Pompanon, F.; Taberlet, P.; Coissac, E. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 2011, 39, e145. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, H.; Xu, Y.; Shao, Q.; Yi, J.; Wang, R.; Cai, W.; Hang, X.; Zhang, C.; Cai, H.; et al. MFEprimer-3.0: Quality control for PCR primers. Nucleic Acids Res. 2019, 47, W610–W613. [Google Scholar] [CrossRef]
- Lee, D.J.; Kim, J.D.; Kim, Y.S.; Song, H.J.; Park, C.Y. Evaluation-independent system for DNA section amplification. Biomed. Eng. Online 2018, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, K.B.; Nicholas, H.B., Jr.; Deerfield, I.I. GeneDoc: A tool for editing and annotating multiple sequence alignments. Embnew. News. 1997, 4, 1–4. [Google Scholar]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef]
Species/Items | S. bowleyana | S. splendens | S. officinalis | |
---|---|---|---|---|
Gene Function | Gene Type | Gene Name | ||
tRNA | tRNA genes | 36 trn genes (include one intron in 8 genes) | 36 trn genes (include one intron in 8 genes) | 36 trn genes (include one intron in 8 genes) |
Photosynthesis | Subunits of ATP synthase | atpA, atpB, atpE, atpF, atpH, atpI | ||
Subunits of photosystem Ⅰ | psaA, psaB, psaC, psaI, psaJ | |||
Subunits of photosystem Ⅱ | psbA, psbB, psbC, psbD, psbE, psbF, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ, ycf3 | |||
Gene expression | Ribosomal RNAs | rrn16sa, rrn16sb, rrn23sa, rrn23sb, rrn4.5sa, rrn4.5sb, rrn5sa, rrn5sb | ||
DNA-dependent RNA polymerase | rpoA, rpoB, rpoC1, rpoC2 | |||
Small subunit of ribosome | rps11, rps12L, rps12a, rps12b, rps14, rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7a, rps7b, rps8 | |||
Large subunit of ribosome | rpl14, rpl16, rpl2a, rpl2b, rpl20, rpl22, rpl23a, rpl23b, rpl32, rpl33, rpl36 | |||
Subunits of NADH-dehydrogenase | ndhA, ndhBa, ndhBb, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |||
Subunits of cytochrome b/f complex | petA, petB, petD, petG, petL, petN | |||
Ribulose diphosphate carboxylase subunit | rbcL | |||
Other genes | Subunit of acetyl-CoA-carboxylase | accD | ||
C-type cytochrome synthase | ccsA | |||
Protease | clpP | |||
Translation initiation factor | infA | |||
Mature enzyme | matK | |||
Envelope membrane protein | cemA | |||
Unknown functions | Conservative open reading frame | ycf1s-b, ycf2a, ycf2b, ycf15a, ycf15b, ycf4 |
Gene Name | Strand | Initial Position–Final Position | Length (bp) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. bowleyan | S. splendens | S. officinalis | The First Exon | The First Intron | The Second Exon | The Second Intron | The Third Exon | ||||||||||||
A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | ||
trnK-UUU | - | 1672–4266 | 1684–4250 | 1703–4292 | 37 | 37 | 37 | 2522 | 2494 | 2517 | 36 | 36 | 36 | ||||||
rps16 | - | 4835–5945 | 4819–5917 | 4863–5972 | 40 | 40 | 40 | 874 | 862 | 873 | 197 | 197 | 197 | ||||||
trnT-CGU | + | 9001–9755 | 8765–9528 | / | 35 | 35 | / | 677 | 686 | / | 43 | 43 | / | ||||||
trnS-CGA | + | / | / | 8621–9377 | / | / | 32 | / | / | 665 | / | 60 | |||||||
atpF | - | 11,742–12,989 | 11,506–12,764 | 11,353–12,606 | 145 | 145 | 145 | 693 | 704 | 699 | 410 | 410 | 410 | ||||||
rpoC1 | - | 20,712–23,525 | 20,528–23,339 | 20,399–23,215 | 430 | 430 | 430 | 759 | 757 | 762 | 1625 | 1625 | 1625 | ||||||
ycf3 | - | 41,963–43,894 | 41,526–43,464 | 41,641–43,591 | 129 | 129 | 129 | 696 | 702 | 706 | 228 | 228 | 228 | 726 | 727 | 735 | 153 | 153 | 153 |
trnL-UAA | + | 46,799–47,338 | 46,350–46,917 | 46,202–46,773 | 35 | 35 | 35 | 455 | 483 | 487 | 50 | 50 | 50 | ||||||
trnC-ACA | - | 50,870–51,518 | 50,236–50,881 | 50,440–51,087 | 38 | 38 | 38 | 555 | 552 | 554 | 56 | 56 | 56 | ||||||
rps12L | 68,691–68,804 | 68,105–68,218 | 68,355–68,468 | 114 | 114 | 114 | |||||||||||||
clpP | - | 68,928–70,839 | 68,342–70,250 | 68,591–70,509 | 71 | 71 | 71 | 692 | 703 | 711 | 294 | 294 | 294 | 629 | 615 | 617 | 226 | 226 | 226 |
petB | + | 73,746–75,096 | 73,171–74,533 | / | 6 | 6 | / | 703 | 715 | / | 642 | 642 | / | ||||||
petD | - | 75,290–76,492 | 74,721–75,904 | 74,979–76,169 | 8 | 8 | 8 | 720 | 701 | 708 | 475 | 475 | 475 | ||||||
rpl16 | - | 79,937–81,217 | 79,325–80,600 | 79,599–80,867 | 9 | 9 | 9 | 873 | 868 | 861 | 399 | 399 | 399 | ||||||
rpl2 | - | 82,875–84,357 | 82,266–83,757 | 82,532–84,019 | 391 | 391 | 391 | 658 | 667 | 663 | 434 | 434 | 434 | ||||||
ndhB | + | 93,058–95,211 | 92,464–94,617 | 92,711–94,918 | 721 | 721 | 775 | 675 | 675 | 675 | 758 | 758 | 758 | ||||||
rps12b | 96,061–96,844 | 96,018–96,260 | 95,714–96,507 | 114 | 114 | 114 | / | / | / | 232 | 243 | 232 | 528 | / | 538 | 26 | / | 26 | |
trnE-UUC | + | 100,535–101,546 | 99,979–100,997 | 100,210–101,229 | 32 | 32 | 32 | 940 | 947 | 948 | 40 | 40 | 40 | ||||||
trnA-UGC | + | 101,611–102,478 | 101,062–101,938 | 101,294–102,171 | 37 | 37 | 37 | 795 | 804 | 805 | 36 | 36 | 36 | ||||||
ndhA | - | 117,349–119,425 | 116,488–118,588 | 117,038–119,137 | 553 | 553 | 553 | 985 | 1009 | 1008 | 539 | 539 | 539 | ||||||
trnA-UGC | - | 131,682–132,549 | 130,848–131,724 | 131,422–132,299 | 37 | 37 | 37 | 795 | 804 | 805 | 36 | 36 | 36 | ||||||
trnE-UUC | - | 132,614–133,625 | 131,789–132,807 | 132,364–133,383 | 32 | 32 | 32 | 940 | 947 | 948 | 40 | 40 | 40 | ||||||
rps12a | 137,316–138,099 | 136,526–136,768 | 137,086–137,879 | 114 | 114 | 114 | / | / | / | 232 | 241 | 232 | 528 | / | 528 | 26 | / | 26 | |
ndhB | + | 138,949–141,102 | 138,169–140,322 | 138,675–140,882 | 721 | 721 | 775 | 675 | 675 | 675 | 758 | 758 | 758 | ||||||
rpl2 | + | 149,803–151,285 | 149,029–150,520 | 149,574–151,061 | 391 | 391 | 391 | 658 | 667 | 663 | 434 | 434 | 434 |
Genus | Name of Species | The Genes in the IR Region | The Genes in the LSC Region | The Genes in the SSC Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rpl20_copy | ycf1 | ycf1_copy | ycf15 | petN | accD | rps2 | rps16 | rps18 | rps19 * | rpl32 | ndhD | ||
Salvia | S. bowleyana | - | + | - | + | + | + | + | + | + | + | + | + |
S. splendens | - | + | - | + | + | + | + | + | + | + | - | + | |
S. officinalis | - | + | - | + | + | + | + | + | + | + | + | + | |
S. bulleyana | - | + | - | + | + | + | + | + | + | + | + | + | |
S. digitaloides | - | + | + | + | + | + | + | + | + | + | + | + | |
S. japonica | - | + | - | + | + | + | + | + | + | + | + | + | |
S. plebeia | - | + | - | + | + | + | + | + | + | + | + | + | |
S. przewalskii | - | + | - | + | + | + | + | + | + | + | + | + | |
S. yunnanensis | - | + | - | + | + | + | + | + | + | + | + | + | |
S. miltiorrhiza | - | + | - | + | + | + | + | + | + | + | + | + | |
S. daiguii | - | + | + | + | + | + | + | + | + | + | + | + | |
S. miltiorrhiza f.alba | - | + | - | + | + | + | + | + | + | + | + | + | |
S. meiliensis | - | + | - | + | + | + | + | + | + | + | + | + | |
S. hispanica | - | + | - | - | + | + | + | + | + | + | + | + | |
S. merjamie | - | + | + | + | + | + | + | + | + | + | + | + | |
S. sclarea | - | + | - | + | + | + | + | + | + | + | + | + | |
S. petrophila | - | + | - | + | + | + | + | + | + | + | + | + | |
S. tiliifolia | - | + | - | - | + | + | + | + | + | + | + | + | |
S. chanryoenica | - | + | + | - | + | + | + | + | + | + | + | + | |
S. yangii | - | + | + | + | + | + | + | + | + | + | + | + | |
S. Prattii Hemsl. | - | + | - | + | + | + | + | + | + | + | + | + | |
S. roborowskii | - | + | - | + | + | + | + | + | + | + | + | + | |
S. nilotica | - | + | + | + | + | + | + | + | + | + | + | + | |
Rosmarinus | R. officinalis | - | + | - | + | + | - | + | + | + | + | + | + |
Agastache | A. rugosa | - | + | + | + | + | + | + | + | + | + | + | + |
Dracocephalum | D. heterophyllum | + | + | + | + | + | + | + | + | - | + | + | + |
D. taliense | - | + | + | + | + | + | + | + | + | + | + | + | |
D. tanguticum | - | + | + | + | + | + | + | + | + | + | + | + | |
D. moldavica | - | + | + | + | + | + | - | + | + | + | + | + | |
Ajuga | A. forrestii | - | + | - | - | + | + | + | + | + | + | + | + |
A. campylanthoides | - | - | - | + | + | + | + | + | + | + | + | + | |
A. ciliata | - | - | - | + | + | + | + | + | + | + | + | + | |
A. decumbens | - | - | - | + | + | + | + | + | + | + | + | + | |
A. lupulina | - | - | - | + | + | + | + | + | + | + | + | + | |
A. nipponensis | - | - | - | + | + | + | + | + | + | + | + | + | |
Leonurus | L. japonicus | - | + | + | + | + | + | + | + | + | - | + | + |
Elsholtzia | E. densa | - | + | - | - | + | + | + | - | + | + | + | + |
Caryopteris | C. trichosphaera | - | + | - | + | - | + | + | + | + | + | + | + |
C. mongholica | - | + | - | + | + | + | + | + | + | + | + | - | |
C. incana | - | + | - | + | + | + | + | + | + | + | + | + | |
C. forrestii | - | + | - | + | + | + | + | + | + | + | + | + |
No | Species | Conserved Sequences for Designing Forward Primers | Conserved Sequences for Designing Reverse Primers | IGS |
---|---|---|---|---|
M1 | S. bowleyana, S. splendens, S. officinalis | GCGGATATGGTCGAATGGTAAA | GCAGTTTGGTAGCTCGCAAG | trnG-GCC-trnM-CAU |
M2 | TGAAGTTGTCGGAATTATTTGCA | AATGCTACGCCTTGAACCAC | ycf3-trnS-GGA | |
M3 | 23 Salvia species | TTTTCCCCTTCCTACCCC | AAAAAAAGATGTTGCGGAGACAGGATTTGAACCCGTGACCTCAAGGTTATGAGCCTTGCGAGCTACCAAACTGCTCTACCCCGCGCTGAAGAGAAGAA | trnM-CAU-atpE |
M4 | TTACATAGTTATGGTTCATTTACATTAACATCTAATTAAAT | TTTTTTCATTGTACAACGAAC | ccsA-ndhD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Q.; Yang, H.; Zeng, J.; Chen, Z.; Zhou, J.; Sun, S.; Wang, B.; Liu, C. Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration. Int. J. Mol. Sci. 2022, 23, 12080. https://doi.org/10.3390/ijms232012080
Du Q, Yang H, Zeng J, Chen Z, Zhou J, Sun S, Wang B, Liu C. Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration. International Journal of Molecular Sciences. 2022; 23(20):12080. https://doi.org/10.3390/ijms232012080
Chicago/Turabian StyleDu, Qing, Heyu Yang, Jing Zeng, Zhuoer Chen, Junchen Zhou, Sihui Sun, Bin Wang, and Chang Liu. 2022. "Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration" International Journal of Molecular Sciences 23, no. 20: 12080. https://doi.org/10.3390/ijms232012080
APA StyleDu, Q., Yang, H., Zeng, J., Chen, Z., Zhou, J., Sun, S., Wang, B., & Liu, C. (2022). Comparative Genomics and Phylogenetic Analysis of the Chloroplast Genomes in Three Medicinal Salvia Species for Bioexploration. International Journal of Molecular Sciences, 23(20), 12080. https://doi.org/10.3390/ijms232012080