Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy
Abstract
:1. Introduction
2. Results
2.1. Histological Examination
2.2. IHC (Active Caspase-3)
2.3. Ultrastructural (TEM) and Histological Examination of Apoptosis in Epileptic Focus
2.4. WB
2.4.1. WB. Epileptic Focus
2.4.2. WB. Perifocal Zone
2.5. Multiplex Biochemical Analysis of the Cytokine Profile
3. Discussion
3.1. Glial Apoptosis
3.2. Neuronal Apoptosis and Signaling Apoptotic Pathways
3.3. Proinflammatory Factors and Apoptosis
3.4. Protective NF-κB Pathways
3.5. Blood Cytokines
4. Materials and Methods
4.1. Study Design and Patients
4.2. Histological Examination
4.3. IHC
4.4. Transmission Electron Microscopy (TEM)
4.5. WB
4.6. Multiplex Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bersnev, V.; Kravtsova, S.; Stepanova, T.; Kasumov, V.; Gaykova, O.; Odintsova, G.; Yaremenco, N.; Zagorodnicova, K.; Sitovskaya, D.; Ulitin, A.; et al. Structural findings in patients with pharmacoresistant temporal epilepsy after anterior temporal lobectomy with a history of status epilepticus. Epilepsy Behav. 2019, 101, 106750. [Google Scholar] [CrossRef]
- Al-Sofyani, K.A. An insight into the current understanding of status epilepticus: From concept to management. J. Neurol. Res. Int. 2021, 5, 1–12. [Google Scholar] [CrossRef]
- Gidal, B.E.; Ferry, J.; Reyderman, L.; Piña-Garza, J.E. Use of extended-release and immediate-release anti-seizure medications with a long half-life to improve adherence in epilepsy: A guide for clinicians. Epilepsy Behav. 2021, 120, 107993. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Jing, W.; Tian, X.; Wang, X. Valproic acid-induced encephalopathy: A review of clinical features, risk factors, diagnosis, and treatment. Epilepsy Behav. 2021, 120, 107967. [Google Scholar] [CrossRef]
- Trinka, E.; Cock, H.; Hesdorffer, D.; Rossetti, A.O.; Scheffer, I.E.; Shinnar, S.; Shorvon, S.; Lowenstein, D. A definition and classification of status epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015, 56, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- Schmeiser, B.; Wagner, K.; Schulze-Bonhage, A.; Mader, I.; Wendling, A.S.; Steinhoff, B.J.; Prinz, M.; Scheiwe, C.; Weyerbrock, A.; Zentner, J. Treatment of Mesiotemporal Lobe Epilepsy: Which Approach is Favorable? Neurosurgery 2017, 81, 992–1004. [Google Scholar] [CrossRef]
- Sloviter, R.S. Progress on the issue of excitotoxic injury modifi cation vs. real neuroprotection; implications for post-traumatic epilepsy. Neuropharmacology 2011, 61, 1048–1050. [Google Scholar] [CrossRef]
- Lapchak, P.A. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev. Med. Devices 2012, 9, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Sazhina, T.A.; Sitovskaya, D.A.; Zabrodskaya, Y.M.; Bazhanova, E.D. Functional Imbalance of Glutamate- and GABAergic Neuronal Systems in the Pathogenesis of Focal Drug-Resistant Epilepsy in Humans. Bull. Exp. Biol. Med. 2020, 168, 529–532. [Google Scholar] [CrossRef]
- Sokolova, T.V.; Zabrodskaya, Y.M.; Paramonova, N.M.; Dobrogorskaya, L.N.; Kuralbaev, A.K.; Kasumov, V.R.; Sitovskaya, D.A. Apoptosis of brain cells in epileptic focus at drug-resistant temporal lobe epilepsy. Transl. Med. 2017, 4, 22–33. [Google Scholar] [CrossRef]
- Henshall, D.C.; Engel, T. Contribution of apoptosis-associated signaling pathways to epileptogenesis: Lessons from Bcl-2 family knockouts. Front. Cell. Neurosci. 2013, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Sitovskaya, D.A.; Zabrodskaya, Y.M.; Sokolova, T.V.; Kuralbaev, A.K.; Nezdorovina, V.G.; Dobrogorskaya, L.N. Structural heterogeneity of epileptic foci in local drug-resistant epilepsy. Arkhiv Patol. 2020, 82, 5–15. [Google Scholar] [CrossRef]
- Coulter, D.A.; Steinhauser, C. Role of Astrocytes in Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022434. [Google Scholar] [CrossRef] [Green Version]
- Narkilahti, S.; Pirttila, T.J.; Lukasiuk, K.; Tuunanen, J.; Pitkanen, A. Expression and activation of caspase 3 following status epilepticus in the rat. Eur. J. Neurosci. 2003, 18, 1486–1496. [Google Scholar] [CrossRef]
- Luo, X.; Li, Z.; Zhao, J.; Deng, Y.; Zhong, Y.; Zhang, M. Fyn gene silencing reduces oligodendrocytes apoptosis through inhibiting ERK1/2 phosphorylation in epilepsy. Artif. Cells Nanomed. Biotechnol. 2020, 48, 298–304. [Google Scholar] [CrossRef]
- Henshall, D.C.; Simon, R.P. Epilepsy and apoptosis pathways. J. Cereb. Blood Flow Metab. 2005, 25, 1557–1572. [Google Scholar] [CrossRef] [Green Version]
- Newton, K.; Strasser, A. Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev. 2003, 17, 819—25. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, S.; Polajnar, M.; Narbona-Perez, A.J.; Hernandez-Alvarez, M.I.; Frager, P.; Slobodnyuk, K.; Plana, N.; Nebreda, A.; Palacin, M.; Comis, R.; et al. Regulation of death receptor signaling by the autophagy protein TP53INP2. EMBO J. 2019, 38, e99300. [Google Scholar] [CrossRef]
- Robertson, J.D.; Orrenius, S.; Zhivotovsky, B. Review: Nuclear events in apoptosis. J. Struct. Biol. 2000, 129, 346–358. [Google Scholar] [CrossRef]
- Shirokova, A.V. Apoptosis. Signaling pathways and changes in the water and ionic balance of the cell. Cytology 2007, 49, 385–394. [Google Scholar]
- Litovchenko, A.V.; Zabrodskaya, Y.M.; Sitovskaya, D.A.; Khuzhakhmetova, L.K.; Nezdorovina, V.G.; Bazhanova, E.D. Markers of neuroinflammation and apoptosis in the temporal lobe of patients with drug-resistent epilepsy. J. Evol. Biochem. Physiol. 2021, 57, 411–419. [Google Scholar] [CrossRef]
- Bedner, P.; Dupper, A.; Huttmann, K.; Muller, J.; Herde, M.K.; Dublin, P.; Deshpande, T.; Schramm, J.; Hausser, U.; Haas, C.; et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 2015, 136, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Kalinichenko, S.G.; Dudina, Y.V.; Duzen, I.V.; Motavkin, P.A. Induction of NO synthase and glial acidic fibrillary protein in astrocytes in the temporal cortex of the rat with audiogenic epileptiform reactions. Neurosci. Behav. Physiol. 2005, 35, 629–634. [Google Scholar] [CrossRef]
- Engel, T.; Henshall, D.C. Apoptosis, Bcl-2 family proteins and caspases: The ABCs of seizure-damage and epileptogenesis. Int. J. Physiol. Pathophysiol. Pharmacol. 2009, 1, 97–115. [Google Scholar]
- Hu, X.; Wang, J.Y.; Gu, R.; Qu, H.; Li, M.; Chen, L.; Liu, R.; Yuan, P. The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath—an experimental study. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4516–4524. [Google Scholar]
- Lapato, A.S.; Szu, J.I.; Hasselmann, J.P.C.; Khalaj, A.J.; Binder, D.K.; Tiwari-Woodruff, S.K. Chronic demyelination-induced seizures. Neuroscience 2017, 27, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Hu, O.; Zhang, Q.; Qian, Z.; Siqi, H.; Xiaoji, T.; Jiang, L. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res. 2015, 19, 154–164. [Google Scholar] [CrossRef]
- Kıray, H.; Lindsay, S.; Hosseinzadeh, S.; Barnett, S.C. The multifaceted role of astrocytes in regulating myelination. Exp. Neurol. 2016, 283, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Greene, L.A.; Liu, D.X.; Troy, C.M.; Biswas, S.C. Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim. Biophys. Acta 2007, 1772, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Henshall, D.C.; Chen, J.; Simon, R.P. Involvement of caspase-3-like protease in the mechanism of cell death following fokally evoked limbic seizures. Neurochem. 2000, 74, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Mussbacher, M.; Salzmann, M.; Brostjan, C.; Bastian, H.; Christian, S.; Hannes, D.; Hohensinner, P.; Basilio, J.; Petzelbauer, P.; Assinger, A.; et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front. Immunol. 2019, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavrik, I.N.; Krammer, P.H. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012, 19, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Figueroa, E.; Álvarez-Carrasco, P.; Ortega, E.; Maldonado-Bernal, C. Neutrophils: Many ways to die. Front. Immunol. 2021, 12, 631821. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J.A.; Mitchell, J.P.; Cook, S.J. Inhibitory feedback control of NF-κB signalling in health and disease. Biochem. J. 2021, 478, 2619–2664. [Google Scholar] [CrossRef]
- Fan, M.Y.; Low, J.S.; Tanimine, N.; Finn, K.K.; Priyadharshini, B.; Germana, S.K.; Kaech, S.; Turka, L. Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Rep. 2018, 25, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Dauer, D.J.; Ha, G.K.; Lewis, M.H.; Petitto, J.M. Interleukin-2 deficiency-induced T cell autoimmunity in the mouse brain. Neurosci. Lett. 2009, 463, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Wojtulewicz, K.; Krawczyńska, A.; Tomaszewska-Zaremba, D.; Wójcik, M.; Herman, A.P. Effect of Acute and Prolonged Inflammation on the Gene Expression of Proinflammatory Cytokines and Their Receptors in the Anterior Pituitary Gland of Ewes. Int. J. Mol. Sci. 2020, 21, 6939. [Google Scholar] [CrossRef]
Comparison Group (n = 6) | Patients with Epilepsy (n = 20) | |||
---|---|---|---|---|
Cerebral Cortex | White Matter | Cerebral Cortex | White Matter | |
Caspase-3 (M ± m) | 0.33 ± 0.23 | 0 | 25.05 ± 0.70 | 5.94 ± 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, T.V.; Zabrodskaya, Y.M.; Litovchenko, A.V.; Paramonova, N.M.; Kasumov, V.R.; Kravtsova, S.V.; Skiteva, E.N.; Sitovskaya, D.A.; Bazhanova, E.D. Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. Int. J. Mol. Sci. 2022, 23, 12561. https://doi.org/10.3390/ijms232012561
Sokolova TV, Zabrodskaya YM, Litovchenko AV, Paramonova NM, Kasumov VR, Kravtsova SV, Skiteva EN, Sitovskaya DA, Bazhanova ED. Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. International Journal of Molecular Sciences. 2022; 23(20):12561. https://doi.org/10.3390/ijms232012561
Chicago/Turabian StyleSokolova, Tatiana V., Yulia M. Zabrodskaya, Anastasia V. Litovchenko, Natalia M. Paramonova, Vugar R. Kasumov, Svetlana V. Kravtsova, Ekaterina N. Skiteva, Daria A. Sitovskaya, and Elena D. Bazhanova. 2022. "Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy" International Journal of Molecular Sciences 23, no. 20: 12561. https://doi.org/10.3390/ijms232012561
APA StyleSokolova, T. V., Zabrodskaya, Y. M., Litovchenko, A. V., Paramonova, N. M., Kasumov, V. R., Kravtsova, S. V., Skiteva, E. N., Sitovskaya, D. A., & Bazhanova, E. D. (2022). Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. International Journal of Molecular Sciences, 23(20), 12561. https://doi.org/10.3390/ijms232012561