Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse
Abstract
:1. Introduction
2. Results
2.1. In Vivo [11C]Flumazenil Brain PET Imaging
2.2. Western Blot Analyses
2.3. Immunofluorescence Analyses
3. Discussion
3.1. Density of GABAARs
3.2. Expression of Synaptic GABAARs
3.3. Expression of Extrasynaptic GABAARs
3.4. Concluding Remarks
4. Materials and Methods
4.1. Animals
4.2. [11C]-Flumazenil PET Imaging: Acquisition Protocol and Imaging Data Analysis
4.3. Western Blot Analyses of GABAAR Subunits
4.4. Semi-Quantitative Immunohistochemistry
4.5. Detection of Dystrophin in Spinal Cord Using the Automated Jess Western Blot System
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desguerre, I.; Christov, C.; Mayer, M.; Zeller, R.; Becane, H.-M.; Bastuji-Garin, S.; Leturcq, F.; Chiron, C.; Chelly, J.; Gherardi, R.K. Clinical Heterogeneity of Duchenne Muscular Dystrophy (DMD): Definition of Sub-Phenotypes and Predictive Criteria by Long-Term Follow-Up. PLoS ONE 2009, 4, e4347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perronnet, C.; Vaillend, C. Dystrophins, Utrophins, and Associated Scaffolding Complexes: Role in Mammalian Brain and Implications for Therapeutic Strategies. J. Biomed. Biotechnol. 2010, 2010, 849426. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, V.; Mandy, W.P.L.; Scoto, M.; Pane, M.; Deconinck, N.; Messina, S.; Mercuri, E.; Skuse, D.H.; Muntoni, F. Neurodevelopmental, Emotional, and Behavioural Problems in Duchenne Muscular Dystrophy in Relation to Underlying Dystrophin Gene Mutations. Dev. Med. Child Neurol. 2016, 58, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brünig, I.; Suter, A.; Knuesel, I.; Lüscher, B.; Fritschy, J.-M. GABAergic Terminals Are Required for Postsynaptic Clustering of Dystrophin but Not of GABA(A) Receptors and Gephyrin. J. Neurosci. 2002, 22, 4805–4813. [Google Scholar] [CrossRef] [Green Version]
- Fritschy, J.M.; Schweizer, C.; Brünig, I.; Lüscher, B. Pre- and Post-Synaptic Mechanisms Regulating the Clustering of Type A Gamma-Aminobutyric Acid Receptors (GABAA Receptors). Biochem. Soc. Trans. 2003, 31, 889–892. [Google Scholar] [CrossRef]
- Knuesel, I.; Mastrocola, M.; Zuellig, R.A.; Bornhauser, B.; Schaub, M.C.; Fritschy, J.M. Short Communication: Altered Synaptic Clustering of GABAA Receptors in Mice Lacking Dystrophin (Mdx Mice). Eur. J. Neurosci. 1999, 11, 4457–4462. [Google Scholar] [CrossRef]
- Tang, X.; Jaenisch, R.; Sur, M. The Role of GABAergic Signalling in Neurodevelopmental Disorders. Nat. Rev. Neurosci. 2021, 22, 290–307. [Google Scholar] [CrossRef]
- Brickley, S.G.; Mody, I. Extrasynaptic GABA(A) Receptors: Their Function in the CNS and Implications for Disease. Neuron 2012, 73, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Duggan, M.J.; Pollard, S.; Stephenson, F.A. Immunoaffinity Purification of GABAA Receptor Alpha-Subunit Iso-Oligomers. Demonstration of Receptor Populations Containing Alpha 1 Alpha 2, Alpha 1 Alpha 3, and Alpha 2 Alpha 3 Subunit Pairs. J. Biol. Chem. 1991, 266, 24778–24784. [Google Scholar] [CrossRef]
- Khan, Z.U.; Gutiérrez, A.; de Blas, A.L. The Alpha 1 and Alpha 6 Subunits Can Coexist in the Same Cerebellar GABAA Receptor Maintaining Their Individual Benzodiazepine-Binding Specificities. J. Neurochem. 1996, 66, 685–691. [Google Scholar] [CrossRef]
- Benke, D.; Fakitsas, P.; Roggenmoser, C.; Michel, C.; Rudolph, U.; Mohler, H. Analysis of the Presence and Abundance of GABAA Receptors Containing Two Different Types of Alpha Subunits in Murine Brain Using Point-Mutated Alpha Subunits. J. Biol. Chem. 2004, 279, 43654–43660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutt, D. GABAA Receptors: Subtypes, Regional Distribution, and Function. J. Clin. Sleep Med. 2006, 2, S7–S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, T.C.; Moss, S.J.; Jurd, R. GABA(A) Receptor Trafficking and Its Role in the Dynamic Modulation of Neuronal Inhibition. Nat. Rev. Neurosci. 2008, 9, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirker, S.; Schwarzer, C.; Wieselthaler, A.; Sieghart, W.; Sperk, G. GABA(A) Receptors: Immunocytochemical Distribution of 13 Subunits in the Adult Rat Brain. Neuroscience 2000, 101, 815–850. [Google Scholar] [CrossRef]
- Laurie, D.J.; Wisden, W.; Seeburg, P.H. The Distribution of Thirteen GABAA Receptor Subunit MRNAs in the Rat Brain. III. Embryonic and Postnatal Development. J. Neurosci. 1992, 12, 4151–4172. [Google Scholar] [CrossRef] [PubMed]
- Schneider Gasser, E.M.; Duveau, V.; Prenosil, G.A.; Fritschy, J.M. Reorganization of GABAergic Circuits Maintains GABAA Receptor-Mediated Transmission onto CA1 Interneurons in A1-Subunit-Null Mice. Eur. J. Neurosci. 2007, 25, 3287–3304. [Google Scholar] [CrossRef]
- Fritschy, J.-M. Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Front. Mol. Neurosci. 2008, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Fritschy, J.M.; Panzanelli, P.; Tyagarajan, S.K. Molecular and Functional Heterogeneity of GABAergic Synapses. Cell. Mol. Life Sci. 2012, 69, 2485–2499. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, M.; Zushida, K.; Yoshida, M.; Maekawa, M.; Kamichi, S.; Yoshida, M.; Sahara, Y.; Yuasa, S.; Takeda, S.; Wada, K. A Deficit of Brain Dystrophin Impairs Specific Amygdala GABAergic Transmission and Enhances Defensive Behaviour in Mice. Brain 2009, 132, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Vaillend, C.; Perronnet, C.; Ros, C.; Gruszczynski, C.; Goyenvalle, A.; Laroche, S.; Danos, O.; Garcia, L.; Peltekian, E. Rescue of a Dystrophin-like Protein by Exon Skipping in Vivo Restores GABAa-Receptor Clustering in the Hippocampus of the Mdx Mouse. Mol. Ther. 2010, 18, 1683–1688. [Google Scholar] [CrossRef]
- Fuenzalida, M.; Espinoza, C.; Pérez, M.Á.; Tapia-Rojas, C.; Cuitino, L.; Brandan, E.; Inestrosa, N.C. Wnt Signaling Pathway Improves Central Inhibitory Synaptic Transmission in a Mouse Model of Duchenne Muscular Dystrophy. Neurobiol. Dis. 2016, 86, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Dallérac, G.; Perronnet, C.; Chagneau, C.; Leblanc-Veyrac, P.; Samson-Desvignes, N.; Peltekian, E.; Danos, O.; Garcia, L.; Laroche, S.; Billard, J.-M.; et al. Rescue of a Dystrophin-like Protein by Exon Skipping Normalizes Synaptic Plasticity in the Hippocampus of the Mdx Mouse. Neurobiol. Dis. 2011, 43, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Vaillend, C.; Chaussenot, R. Relationships Linking Emotional, Motor, Cognitive and GABAergic Dysfunctions in Dystrophin-Deficient Mdx Mice. Hum. Mol. Genet. 2017, 26, 1041–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kueh, S.L.L.; Head, S.I.; Morley, J.W. GABAA Receptor Expression and Inhibitory Post-Synaptic Currents in Cerebellar Purkinje Cells in Dystrophin-Deficient Mdx Mice. Clin. Exp. Pharmacol. Physiol. 2008, 35, 207–210. [Google Scholar] [CrossRef]
- Vaillend, C.; Billard, J.M. Facilitated CA1 Hippocampal Synaptic Plasticity in Dystrophin-Deficient Mice: Role for GABAA Receptors? Hippocampus 2002, 12, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Graciotti, L.; Minelli, A.; Minciacchi, D.; Procopio, A.; Fulgenzi, G. GABAergic Miniature Spontaneous Activity Is Increased in the CA1 Hippocampal Region of Dystrophic Mdx Mice. Neuromuscul. Disord. 2008, 18, 220–226. [Google Scholar] [CrossRef]
- de Sarro, G.; Ibbadu, G.F.; Marra, R.; Rotiroti, D.; Loiacono, A.; Donato Di Paola, E.; Russo, E. Seizure Susceptibility to Various Convulsant Stimuli in Dystrophin-Deficient Mdx Mice. Neurosci. Res. 2004, 50, 37–44. [Google Scholar] [CrossRef]
- Wu, W.-C.; Bradley, S.P.; Christie, J.M.; Pugh, J.R. Mechanisms and Consequences of Cerebellar Purkinje Cell Disinhibition in a Mouse Model of Duchenne Muscular Dystrophy. J. Neurosci. 2022, 42, 2103–2115. [Google Scholar] [CrossRef]
- Kueh, S.L.L.; Dempster, J.; Head, S.I.; Morley, J.W. Reduced Postsynaptic GABAA Receptor Number and Enhanced Gaboxadol Induced Change in Holding Currents in Purkinje Cells of the Dystrophin-Deficient Mdx Mouse. Neurobiol. Dis. 2011, 43, 558–564. [Google Scholar] [CrossRef]
- Zarrouki, F.; Relizani, K.; Bizot, F.; Tensorer, T.; Garcia, L.; Vaillend, C.; Goyenvalle, A. Partial Restoration of Brain Dystrophin and Behavioral Deficits by Exon Skipping in the Muscular Dystrophy X-Linked (Mdx) Mouse. Ann. Neurol. 2022, 92, 213–229. [Google Scholar] [CrossRef]
- Goyenvalle, A.; Griffith, G.; Babbs, A.; El Andaloussi, S.; Ezzat, K.; Avril, A.; Dugovic, B.; Chaussenot, R.; Ferry, A.; Voit, T.; et al. Functional Correction in Mouse Models of Muscular Dystrophy Using Exon-Skipping Tricyclo-DNA Oligomers. Nat. Med. 2015, 21, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Juhász, C.; Chugani, D.C.; Muzik, O.; Shah, A.; Shah, J.; Watson, C.; Canady, A.; Chugani, H.T. Relationship of Flumazenil and Glucose PET Abnormalities to Neocortical Epilepsy Surgery Outcome. Neurology 2001, 56, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Hammers, A.; Panagoda, P.; Heckemann, R.A.; Kelsch, W.; Turkheimer, F.E.; Brooks, D.J.; Duncan, J.S.; Koepp, M.J. [11C]Flumazenil PET in Temporal Lobe Epilepsy: Do We Need an Arterial Input Function or Kinetic Modeling? J. Cereb. Blood Flow Metab. 2008, 28, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller Herde, A.; Benke, D.; Ralvenius, W.T.; Mu, L.; Schibli, R.; Zeilhofer, H.U.; Krämer, S.D. GABA A Receptor Subtypes in the Mouse Brain: Regional Mapping and Diazepam Receptor Occupancy by in Vivo [ 18 F]Flumazenil PET. Neuroimage 2017, 150, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Froklage, F.E.; Postnov, A.; Yaqub, M.M.; Bakker, E.; Boellaard, R.; Harry Hendrikse, N.; Comans, E.F.I.; Schuit, R.C.; Schober, P.; Velis, D.N.; et al. Altered GABAA Receptor Density and Unaltered Blood-Brain Barrier [11C]Flumazenil Transport in Drug-Resistant Epilepsy Patients with Mesial Temporal Sclerosis. J. Cereb. Blood Flow Metab. 2017, 37, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Asiedu, M.N.; Mejia, G.; Ossipov, M.K.; Malan, T.P.; Kaila, K.; Price, T.J. Modulation of Spinal GABAergic Analgesia by Inhibition of Chloride Extrusion Capacity in Mice. J. Pain 2012, 13, 546–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munro, G.; Lopez-Garcia, J.A.; Rivera-Arconada, I.; Erichsen, H.K.; Nielsen, E.; Larsen, J.S.; Ahring, P.K.; Mirza, N.R. Comparison of the Novel Subtype-Selective GABAA Receptor-Positive Allosteric Modulator NS11394 [3′-[5-(1-Hydroxy-1-Methyl-Ethyl)-Benzoimidazol-1-Yl]-Biphenyl-2-Carbonitrile] with Diazepam, Zolpidem, Bretazenil, and Gaboxadol in Rat Models of Inflammatory and Neuropathic Pain. J. Pharmacol. Exp. Ther. 2008, 327, 969–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidov, H.G.; Byers, T.J.; Kunkel, L.M. The Distribution of Dystrophin in the Murine Central Nervous System: An Immunocytochemical Study. Neuroscience 1993, 54, 167–187. [Google Scholar] [CrossRef]
- Krasowska, E.; Zabłocki, K.; Górecki, D.C.; Swinny, J.D. Aberrant Location of Inhibitory Synaptic Marker Proteins in the Hippocampus of Dystrophin-Deficient Mice: Implications for Cognitive Impairment in Duchenne Muscular Dystrophy. PLoS ONE 2014, 9, e108364. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Higuchi, S.; Aida, I.; Nakajima, T.; Nakada, T. Abnormal Distribution of GABAA Receptors in Brain of Duchenne Muscular Dystrophy Patients. Muscle Nerve 2017, 55, 591–595. [Google Scholar] [CrossRef]
- Hendriksen, R.G.F.; Hoogland, G.; Schipper, S.; Hendriksen, J.G.M.; Vles, J.S.H.; Aalbers, M.W. A Possible Role of Dystrophin in Neuronal Excitability: A Review of the Current Literature. Neurosci. Biobehav. Rev. 2015, 51, 255–262. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, M.E.; Ferretti, V.; Mozzetta, C. Synaptic Alterations as a Neurodevelopmental Trait of Duchenne Muscular Dystrophy. Neurobiol. Dis. 2022, 168, 105718. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.-M.; Yuan, Z. PET/SPECT Molecular Imaging in Clinical Neuroscience: Recent Advances in the Investigation of CNS Diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Kneussel, M.; Loebrich, S. Trafficking and Synaptic Anchoring of Ionotropic Inhibitory Neurotransmitter Receptors. Biol. Cell 2007, 99, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Marques, T.R.; Ashok, A.H.; Angelescu, I.; Borgan, F.; Myers, J.; Lingford-Hughes, A.; Nutt, D.J.; Veronese, M.; Turkheimer, F.E.; Howes, O.D. GABA-A Receptor Differences in Schizophrenia: A Positron Emission Tomography Study Using [11 C]Ro154513. Mol. Psychiatry 2021, 26, 2616–2625. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.W.; Sieghart, W. GABA A Receptors: Subtypes Provide Diversity of Function and Pharmacology. Neuropharmacology 2009, 56, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Lévi, S.; Grady, R.M.; Henry, M.D.; Campbell, K.P.; Sanes, J.R.; Craig, A.M. Dystroglycan Is Selectively Associated with Inhibitory GABAergic Synapses but Is Dispensable for Their Differentiation. J. Neurosci. 2002, 22, 4274–4285. [Google Scholar] [CrossRef] [Green Version]
- Panzanelli, P.; Früh, S.; Fritschy, J.M. Differential Role of GABA A Receptors and Neuroligin 2 for Perisomatic GABAergic Synapse Formation in the Hippocampus. Brain Struct. Funct. 2017, 222, 4149–4161. [Google Scholar] [CrossRef] [Green Version]
- Sumita, K.; Sato, Y.; Iida, J.; Kawata, A.; Hamano, M.; Hirabayashi, S.; Ohno, K.; Peles, E.; Hata, Y. Synaptic Scaffolding Molecule (S-SCAM) Membrane-Associated Guanylate Kinase with Inverted Organization (MAGI)-2 Is Associated with Cell Adhesion Molecules at Inhibitory Synapses in Rat Hippocampal Neurons. J. Neurochem. 2007, 100, 154–166. [Google Scholar] [CrossRef]
- Wallis, T.; Bubb, W.A.; McQuillan, J.A.; Balcar, V.J.; Rae, C. For Want of a Nail. Ramifications of a Single Gene Deletion, Dystrophin, in the Brain of the Mouse. Front. Biosci. 2004, 9, 74–84. [Google Scholar] [CrossRef]
- Assis, A.D.; Chiarotto, G.B.; Simões, G.F.; Oliveira, A.L.R. Pregabalin-Induced Neuroprotection and Gait Improvement in Dystrophic MDX Mice. Mol. Cell Neurosci. 2021, 114, 103632. [Google Scholar] [CrossRef] [PubMed]
- Meera, P.; Wallner, M.; Otis, T.S. Molecular Basis for the High THIP/Gaboxadol Sensitivity of Extrasynaptic GABA(A) Receptors. J. Neurophysiol. 2011, 106, 2057–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarelainen, K.S.; Ranna, M.; Rabe, H.; Sinkkonen, S.T.; Möykkynen, T.; Uusi-Oukari, M.; Linden, A.-M.; Lüddens, H.; Korpi, E.R. Enhanced Behavioral Sensitivity to the Competitive GABA Agonist, Gaboxadol, in Transgenic Mice over-Expressing Hippocampal Extrasynaptic Alpha6beta GABA(A) Receptors. J. Neurochem. 2008, 105, 338–350. [Google Scholar] [CrossRef]
- Delgado-Lezama, R.; Loeza-Alcocer, E.; Andres, C.; Aguilar, J.; Guertin, P.; Felix, R. Extrasynaptic GABA(A) Receptors in the Brainstem and Spinal Cord: Structure and Function. Curr. Pharm. Des. 2013, 19, 4485–4497. [Google Scholar] [CrossRef] [PubMed]
- Hausrat, T.J.; Muhia, M.; Gerrow, K.; Thomas, P.; Hirdes, W.; Tsukita, S.; Heisler, F.F.; Herich, L.; Dubroqua, S.; Breiden, P.; et al. Radixin Regulates Synaptic GABAA Receptor Density and Is Essential for Reversal Learning and Short-Term Memory. Nat. Commun. 2015, 6, 6872. [Google Scholar] [CrossRef] [Green Version]
- Damgaard, T.; Plath, N.; Neill, J.C.; Hansen, S.L. Extrasynaptic GABAA Receptor Activation Reverses Recognition Memory Deficits in an Animal Model of Schizophrenia. Psychopharmacology 2011, 214, 403–413. [Google Scholar] [CrossRef]
- Shen, H.; Sabaliauskas, N.; Yang, L.; Aoki, C.; Smith, S.S. Role of A4-Containing GABA A Receptors in Limiting Synaptic Plasticity and Spatial Learning of Female Mice during the Pubertal Period. Brain Res. 2017, 1654, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.D.; Cushman, J.; Chandra, D.; Homanics, G.E.; Olsen, R.W.; Fanselow, M.S. Trace and Contextual Fear Conditioning Is Enhanced in Mice Lacking the Alpha4 Subunit of the GABA(A) Receptor. Neurobiol. Learn Mem. 2010, 93, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; van Gerven, J.; Cohen, A.; Jacobs, G. Human Pharmacology of Positive GABA-A Subtype-Selective Receptor Modulators for the Treatment of Anxiety. Acta Pharmacol. Sin. 2019, 40, 571–582. [Google Scholar] [CrossRef]
- Sieghart, W.; Chiou, L.C.; Ernst, M.; Fabjan, J.; Savić, M.M.; Lee, M.T. α 6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol. Rev. 2022, 74, 238–270. [Google Scholar] [CrossRef]
- Evrard, M.R.; Li, M.; Shen, H.; Smith, S.S. Preventing Adolescent Synaptic Pruning in Mouse Prelimbic Cortex via Local Knockdown of A4βδ GABA A Receptors Increases Anxiety Response in Adulthood. Sci. Rep. 2021, 11, 21059. [Google Scholar] [CrossRef] [PubMed]
- Bannai, H.; Lévi, S.; Schweizer, C.; Inoue, T.; Launey, T.; Racine, V.; Sibarita, J.B.; Mikoshiba, K.; Triller, A. Activity-Dependent Tuning of Inhibitory Neurotransmission Based on GABAAR Diffusion Dynamics. Neuron 2009, 62, 670–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcor, D.; Gouzer, G.; Triller, A. Single-Particle Tracking Methods for the Study of Membrane Receptors Dynamics. Eur. J. Neurosci. 2009, 30, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Bouzigues, C.; Morel, M.; Triller, A.; Dahan, M. Asymmetric Redistribution of GABA Receptors during GABA Gradient Sensing by Nerve Growth Cones Analyzed by Single Quantum Dot Imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 11251–11256. [Google Scholar] [CrossRef] [Green Version]
- Lorenz-Guertin, J.M.; Jacob, T.C. GABA Type a Receptor Trafficking and the Architecture of Synaptic Inhibition. Dev. Neurobiol. 2018, 78, 238–270. [Google Scholar] [CrossRef]
- Ma, Y.; Hof, P.R.; Grant, S.C.; Blackband, S.J.; Bennett, R.; Slatest, L.; Mcguigan, M.D.; Benveniste, H. A Three-Dimensional Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy. Neuroscience 2005, 135, 1203–1215. [Google Scholar] [CrossRef]
- Paxinos, G.F.K. The Mouse Brain in Stereotaxic Coordinates, 2nd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Früh, S.; Romanos, J.; Panzanelli, P.; Bürgisser, D.; Tyagarajan, S.K.; Campbell, K.P.; Santello, M.; Fritschy, J.M. Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells. J. Neurosci. 2016, 36, 10296–10313. [Google Scholar] [CrossRef] [Green Version]
- Sassoè-Pognetto, M.; Panzanelli, P.; Sieghart, W.; Fritschy, J.M. Colocalization of Multiple GABA(A) Receptor Subtypes with Gephyrin at Postsynaptic Sites. J. Comp. Neurol. 2000, 420, 481–498. [Google Scholar] [CrossRef]
- Beekman, C.; Janson, A.A.; Baghat, A.; van Deutekom, J.C.; Datson, N.A. Use of Capillary Western Immunoassay (Wes) for Quantification of Dystrophin Levels in Skeletal Muscle of Healthy Controls and Individuals with Becker and Duchenne Muscular Dystrophy. PLoS ONE 2018, 13, e0195850. [Google Scholar] [CrossRef]
Western Blot Quantification | ||||
---|---|---|---|---|
HIP | CBL | CX | SC | |
α1 | - | - | ** ↑ | - |
α2 | * ↓ | - | * ↓ | - |
α3 | - | - | - | * ↑ |
α4 | - | - | - | * ↓ |
α5 | - | - | - | - |
α6 | - | - | - | * ↑ |
β1 | - | - | 0.07↓ | - |
β2 | ** ↓ | - | - | - |
β3 | ** ↓ | - | - | - |
γ2 | - | - | 0.07↑ | - |
δ | - | - | 0.05↓ | - |
HIP (SP) | Number | Size | Distribution | HIP (SR) | Number | Size | Distribution |
α4 | - | - | **** ↑ | α4 | - | - | *** ↑ |
α5 | - | - | - | α5 | - | - | - |
α6 | - | - | - | α6 | - | - | - |
CBL | Number | Size | Distribution | CX | Number | Size | Distribution |
α4 | - | - | **** ↑ | α4 | - | - | **** ↓ |
α5 | - | - | - | α5 | - | - | **** ↓ |
α6 | - | - | **** ↓ | α6 | - | - | - |
Primary Antibodies | |||||
Target | Species | Dilution WB | Dilution IHC | Company, Cat.No | |
Vinculin | Mouse | 1/50 | - | Sigma Aldrich, V9131 | |
α1 subunit | Guinea pig | 1/500 | 1/500 | Synaptic System, 224 204 | |
α2 subunit | Rabbit | 1/1000 | 1/1000 | Synaptic System, 224 102 | |
α3 subunit | Rabbit | 1/500 | - | Synaptic System, 224 303 | |
α4 subunit | Rabbit | 1/100 | 1/100 | Synaptic System, 224 402 | |
α5 subunit | Rabbit | 1/500 | 1/500 | Synaptic System, 224 502 | |
α6 subunit | Rabbit | 1/500 | 1/500 | Synaptic System, 224 603 | |
β1 subunit | Guinea pig | 1/500 | - | Synaptic System, 224 705 | |
β2 subunit | Guinea pig | 1/500 | - | Synaptic System, 224 805 | |
β3 subunit | Mouse | 1/500 | - | Synaptic System, 224 411 | |
γ2 subunit | Rabbit | 1/1000 | - | Synaptic System, 224 003 | |
δ subunit | Mouse | 1/1000 | - | Merck, 05-474 | |
Secondary Antibodies | |||||
Target | Species | Use | Dilution | Fluorophore | Company, Cat.No |
Mouse | Goat | WB | 1/2000 | IRDye 800CW | Li-Cor Biosciences, 926-32210 |
Rabbit | Goat | WB | 1/2000 | IRDye 800CW | Li-Cor Biosciences, 926-32211 |
Guinea Pig | Donkey | WB | 1/2000 | IRDye 800CW | Li-Cor Biosciences, 926-32411 |
Rabbit | Goat | IHC | 1/400 | Alexa 488 | Invitrogen, A-11070 |
Guinea Pig | Goat | IHC | 1/400 | Alexa 555 | Invitrogen, A-21435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarrouki, F.; Goutal, S.; Vacca, O.; Garcia, L.; Tournier, N.; Goyenvalle, A.; Vaillend, C. Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse. Int. J. Mol. Sci. 2022, 23, 12617. https://doi.org/10.3390/ijms232012617
Zarrouki F, Goutal S, Vacca O, Garcia L, Tournier N, Goyenvalle A, Vaillend C. Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse. International Journal of Molecular Sciences. 2022; 23(20):12617. https://doi.org/10.3390/ijms232012617
Chicago/Turabian StyleZarrouki, Faouzi, Sébastien Goutal, Ophélie Vacca, Luis Garcia, Nicolas Tournier, Aurélie Goyenvalle, and Cyrille Vaillend. 2022. "Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse" International Journal of Molecular Sciences 23, no. 20: 12617. https://doi.org/10.3390/ijms232012617
APA StyleZarrouki, F., Goutal, S., Vacca, O., Garcia, L., Tournier, N., Goyenvalle, A., & Vaillend, C. (2022). Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse. International Journal of Molecular Sciences, 23(20), 12617. https://doi.org/10.3390/ijms232012617