Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Study Participants
2.2. Relationship between Aspartame Consumption and Infertility Risk
2.3. Aspartame Caused Higher Insulin Resistance and Lipid Abnormal Accumulation
2.4. Aspartame-Induced Oxidative Stress in the Ovary and Granulosa Cells
2.5. Aspartame-Compromised Mitochondrial Function and Triggered Mitochondrial Biogenesis
2.6. Aspartame Altered Fertility by Reserving Fewer Follicles in the Ovary and Affecting Steroidogenesis in Granulosa Cells
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Assessment of Aspartame Consumption
4.3. Assessment of Fertility Outcomes and Covariates
4.4. Animal Model
4.5. In Vitro Cell Culture Experiment
4.6. Glucose, Insulin, Triglycerides, and Transaminases
4.7. Assessment of Changes in Anti-Mullerian Hormone Levels and Estrus Cycle
4.8. Ovarian Oxidative Stress
4.9. Ovary Mitochondrial Function Assessment
4.10. Quantification of mtDNA
4.11. Western Blotting
4.12. Determination of Intracellular and Mitochondrial Reactive Oxygen Species Levels
4.13. Determination of Mitochondrial Membrane Potential and Mitochondrial Mass
4.14. Oxidative Phosphorylation Assay for Mitochondrial Function
4.15. Measurement of Progesterone Released from KGN Cells
4.16. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sylvetsky, A.C.; Jin, Y.; Clark, E.J.; Welsh, J.A.; Rother, K.I.; Talegawkar, S.A. Consumption of Low-Calorie Sweeteners among Children and Adults in the United States. J. Acad. Nutr. Diet. 2017, 117, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Martyn, D.; Darch, M.; Roberts, A.; Lee, H.Y.; Tian, T.Y.; Kaburagi, N.; Belmar, P. Low-/No-Calorie Sweeteners: A Review of Global Intakes. Nutrients 2018, 10, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Safety National Standard—Food Additive Standard. National Food Safety Standard, No. GB:2760-2014; Announcement No. 11, Notice No. 17, 2014; China Bureau of Scientific Standards, Standards Press of China/National Health and Family Planning Commission of the People’s Republic of China (PRC): Beijing, China, 2014.
- Englund-Ögge, L.; Brantsæter, A.L.; Haugen, M.; Sengpiel, V.; Khatibi, A.; Myhre, R.; Myking, S.; Meltzer, H.M.; Kacerovsky, M.; Nilsen, R.M.; et al. Association between intake of artificially sweetened and sugar-sweetened beverages and preterm delivery: A large prospective cohort study. Am. J. Clin. Nutr. 2012, 96, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Liauchonak, I.; Qorri, B.; Dawoud, F.; Riat, Y.; Szewczuk, M.R. Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients 2019, 11, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ Can. Med. Assoc. J. 2017, 189, E929–E939. [Google Scholar] [CrossRef] [Green Version]
- Dunford, E.K.; Miles, D.R.; Ng, S.W.; Popkin, B. Types and Amounts of Nonnutritive Sweeteners Purchased by US Households: A Comparison of 2002 and 2018 Nielsen Homescan Purchases. J. Acad. Nutr. Diet. 2020, 120, 1662. [Google Scholar] [CrossRef]
- Czarnecka, K.; Pilarz, A.; Rogut, A.; Maj, P.; Szymańska, J.; Olejnik, Ł.; Szymański, P. Aspartame-True or False? Narrative Review of Safety Analysis of General Use in Products. Nutrients 2021, 13, 1957. [Google Scholar] [CrossRef]
- Kuk, J.L.; Brown, R.E. Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl. Physiol. Nutr. Metab. 2016, 41, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Tovar, A.P.; Navalta, J.W.; Kruskall, L.J.; Young, J.C. The effect of moderate consumption of non-nutritive sweeteners on glucose tolerance and body composition in rats. Appl. Physiol. Nutr. Metab. 2017, 42, 1225–1227. [Google Scholar] [CrossRef] [Green Version]
- Finamor, I.A.; Bressan, C.A.; Torres-Cuevas, I.; Rius-Pérez, S.; da Veiga, M.; Rocha, M.I.; Pavanato, M.A.; Pérez, S. Long-Term Aspartame Administration Leads to Fibrosis, Inflammasome Activation, and Gluconeogenesis Impairment in the Liver of Mice. Biology 2021, 10, 82. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Pretorius, E. Revisiting the safety of aspartame. Nutr. Rev. 2017, 75, 718–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setti, A.S.; Braga, D.P.d.A.F.; Halpern, G.; Figueira, R.d.C.S.; Iaconelli, A., Jr.; Borges, E., Jr. Is there an association between artificial sweetener consumption and assisted reproduction outcomes? Reprod. Biomed. Online 2018, 36, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Majem, L.B.L.; García-Glosas, R.; Ribas, L.; Inglés, C.; Casals, I.; Saavedra, P.; Renwick, A.G. Cyclamate intake and cyclohexylamine excretion are not related to male fertility in humans. Food Addit. Contam. 2003, 20, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.-J.; Young, R.; Kuo, I.L.; Liaw, C.-M.; Chiang, H.-S.; Yeh, C.-Y. Prevalence of insulin resistance and determination of risk factors for glucose intolerance in polycystic ovary syndrome: A cross-sectional study of Chinese infertility patients. Fertil. Sterility 2009, 91, 1864–1868. [Google Scholar] [CrossRef] [PubMed]
- Monniaux, D.; Michel, P.; Postel, M.; Clément, F. Multi-scale modelling of ovarian follicular development: From follicular morphogenesis to selection for ovulation. Biol. Cell 2016, 108, 149–160. [Google Scholar] [CrossRef]
- Sreerangaraja Urs, D.B.; Wu, W.-H.; Komrskova, K.; Postlerova, P.; Lin, Y.-F.; Tzeng, C.-R.; Kao, S.-H. Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility. Int. J. Mol. Sci. 2020, 21, 3592. [Google Scholar] [CrossRef]
- Uyar, A.; Torrealday, S.; Seli, E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 2013, 99, 979–997. [Google Scholar] [CrossRef] [Green Version]
- Sheu, S.-S.; Nauduri, D.; Anders, M.W. Targeting antioxidants to mitochondria: A new therapeutic direction. Biochim. Biophys. Acta 2006, 1762, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Al-Eisa, R.A.; Al-Salmi, F.A.; Hamza, R.Z.; El-Shenawy, N.S. Role of L-carnitine in protection against the cardiac oxidative stress induced by aspartame in Wistar albino rats. PLoS ONE 2018, 13, e0204913. [Google Scholar] [CrossRef] [Green Version]
- Adaramoye, O.A.; Akanni, O.O. Effects of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 29–37. [Google Scholar] [CrossRef]
- Palmnäs, M.S.A.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef] [PubMed]
- Mitsutomi, K.; Masaki, T.; Shimasaki, T.; Gotoh, K.; Chiba, S.; Kakuma, T.; Shibata, H. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity. Metab. Clin. Exp. 2014, 63, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.S.; Hamilton, A.R.L.; Munoz, A.R.; Phupitakphol, T.; Liu, W.; Hyoju, S.K.; Economopoulos, K.P.; Morrison, S.; Hu, D.; Zhang, W.; et al. Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice. Appl. Physiol. Nutr. Metab. 2017, 42, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsahli, M.; Gerich, J.E. Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res. Clin. Pract. 2017, 133, 1–9. [Google Scholar] [CrossRef]
- Gerich, J.E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications. Diabet. Med. 2010, 27, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Zorov, D.B.; Filburn, C.R.; Klotz, L.O.; Zweier, J.L.; Sollott, S.J. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 2000, 192, 1001–1014. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kim, H. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review. Nutrients 2018, 10, 1137. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–646. [Google Scholar] [CrossRef]
- Bouchez, C.; Devin, A. Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): A Complex Relationship Regulated by the cAMP/PKA Signaling Pathway. Cells 2019, 8, 287. [Google Scholar] [CrossRef]
- Evans, M.J.; Scarpulla, R.C. NRF-1: A trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 1990, 4, 1023–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopa, L.R.S.; de Souza, C.F.; Martins, A.B.; Lopes, G.M.; Costa, N.O.; Gerardin, D.C.C.; Carvalho, G.G.; Zaia, D.A.M.; Zaia, C.T.B.V.; Ucho, E.T.; et al. Neonatal overfeeding reduces estradiol plasma levels and disrupts noradrenergic-kisspeptin-GnRH pathway and fertility in adult female rats. Mol. Cell. Endocrinol. 2021, 524, 111147. [Google Scholar] [CrossRef]
- Abbara, A.; Eng, P.C.; Phylactou, M.; Clarke, S.A.; Hunjan, T.; Roberts, R.; Vimalesvaran, S.; Christopoulos, G.; Islam, R.; Purugganan, K.; et al. Anti-Müllerian hormone (AMH) in the Diagnosis of Menstrual Disturbance Due to Polycystic Ovarian Syndrome. Front. Endocrinol. 2019, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Nardo, L.G.; Yates, A.P.; Roberts, S.A.; Pemberton, P.; Laing, I. The relationships between AMH, androgens, insulin resistance and basal ovarian follicular status in non-obese subfertile women with and without polycystic ovary syndrome. Human Reprod. 2009, 24, 2917–2923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.A.; Shankara, T.; Janus, P.; Buck, S.; Diemer, T.; Hales, K.H.; Hales, D.B. Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology 2006, 147, 3924–3935. [Google Scholar] [CrossRef] [PubMed]
- Au, H.-K.; Lin, S.-H.; Huang, S.-Y.; Yeh, T.-S.; Tzeng, C.-R.; Hsieh, R.-H. Deleted mitochondrial DNA in human luteinized granulosa cells. Ann. N. Y. Acad. Sci. 2005, 1042, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-Y.; Tung, Y.-T.; Yang, Y.-C.S.H.; Hsu, J.; Lee, C.-Y.; Chang, T.-H.; Su, E.; Hsieh, R.-H.; Chen, Y.-C. Maternal Vegetable and Fruit Consumption during Pregnancy and Its Effects on Infant Gut Microbiome. Nutrients 2021, 13, 1559. [Google Scholar] [CrossRef]
- Chu, Y.Y.; Chen, Y.H.; Hsieh, R.H.; Hsia, S.M.; Wu, H.T.; Chen, Y.C. Development and Validation of the Chinese Version Non-Nutritive Sweetener Food Frequency Questionnaire with Urinary Biomarker in Children, Adolescents. Public Health Nutr. 2021, 25, 2056–2063. [Google Scholar] [CrossRef]
- Wang, J.-S.; Hsieh, R.-H.; Tung, Y.-T.; Chen, Y.-H.; Yang, C.; Chen, Y.C. Evaluation of a Technological Image-Based Dietary Assessment Tool for Children during Pubertal Growth: A Pilot Study. Nutrients 2019, 11, 2527. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, G.; Lim, H.S.; Yun, S.S.; Hwang, M.; Hong, J.-H.; Kwon, H. Safety assessment of 16 sweeteners for the Korean population using dietary intake monitoring and poundage method. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2017, 34, 1500–1509. [Google Scholar] [CrossRef]
- Steffensen, I.L.A.J.; Mona-Lise, B.; Bruzell, E.M.; Dahl, K.H.; Granum, B.; Herlofsen, B.B.; Hetland, R.B.; Husøy, T.; Paulsen, J.E.; Rohloff, J.; et al. Risk assessments of aspartame, acesfulfame k, sucralose and benzoic acid from soft drinks, “saft”, nectar and flavoured water. Eur. J. Nutr. 2020, 12, 66–68. [Google Scholar]
- Byers, S.L.; Wiles, M.V.; Dunn, S.L.; Taft, R.A. Mouse estrous cycle identification tool and images. PLoS ONE 2012, 7, e35538. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Chen, C. Frozen section with improved H&E staining for follicular morphometric analysis of mouse ovary in oestrus cycle. Acta Physiol. Sin. 2017, 69, 781–784. [Google Scholar]
Characteristics | Total | |
---|---|---|
N | 840 | |
Mean/N | SD/% | |
Maternal age (years) | 33.63 | 4.08 |
≤35 years old | 472 | 59.75% |
>35 years old | 318 | 40.25% |
Gestational age at study (weeks) | 23.97 | 9.86 |
Gestational age at birth (weeks) | 38.63 | 1.86 |
Pre-pregnancy BMI (kg/m2) | 21.37 | 3.29 |
Overweight (27 > BMI ≥ 24) | 86 | 10.25% |
Obesity (BMI ≥ 27) | 51 | 6.08% |
Gestational weight gain (kg) | 10.79 | 5.26 |
Caloric intake (kcal) | 1451.21 | 516.78 |
Physical activity | ||
Low | 368 | 64.34% |
Moderate | 97 | 16.96% |
High | 107 | 18.71% |
Education level | ||
High school or below | 41 | 4.88% |
College or university | 598 | 71.19% |
Post-graduate school | 201 | 23.93% |
Family income, NTD | ||
<600,000 | 231 | 27.50% |
600,001–1,000,000 | 256 | 30.48% |
>1,000,000 | 353 | 42.02% |
Smoking status | ||
Never | 837 | 99.41% |
Former | 3 | 0.36% |
Time to conceive (months) | 12.06 | 4.08 |
Infertility * | 164 | 19.52% |
Aspartame consumption | 208 | 24.76% |
Age Group | Aspartame | Time to Conceive (Months) | Infertility Risk | ||||
---|---|---|---|---|---|---|---|
† β | 95% CI | p Value | OR | 95% CI | p Value | ||
All | No intake | Ref | Ref | ||||
Intake | 1.28 | (−1.34, 3.91) | 0.34 | 1.30 | (0.87, 1.93) | 0.20 | |
≤35 y/o | No intake | Ref | Ref | ||||
Intake | 1.26 | (−1.60, 4.11) | 0.39 | 1.79 | (1.00, 3.22) | 0.05 | |
>35 y/o | No intake | Ref | Ref | ||||
Intake | 1.39 | (−3.16, 5.95) | 0.55 | 1.01 | (0.58, 1.75) | 0.92 |
Characteristics | Control | Low Aspartame | High Aspartame | |
---|---|---|---|---|
Food intake (g/kg body weight/day) | 69.4 ± 2.2 | 68.4 ± 2.7 | 69.2 ± 3.4 | |
Weight gain (g) | Week | 83.9 ± 9.2 | 77.0 ± 14.2 | 83.1 ± 15.2 |
Weight (g) | 0 | 213.9 ± 6.30 | 210.4 ± 7.40 | 209.2 ± 8.20 |
12 | 297.7 ± 12.1 | 283.5 ± 13.4 | 285.9 ± 16.0 | |
Organ weight at week 12 | ||||
Heart (g) | OW | 1.14 ± 0.15 | 1.18 ± 0.26 | 1.15 ± 0.0 |
%BW | 0.39 ± 0.01 | 0.40 ± 0.01 | 0.39 ± 0.00 | |
Liver (g) | OW | 7.80 ± 0.26 | 7.49 ± 0.39 | 7.53 ± 0.96 |
%BW | 2.66 ± 0.09 | 2.56 ± 0.13 | 2.57 ± 0.33 | |
Kidneys (g) | OW | 2.03 ± 0.22 | 1.96 ± 0.18 | 1.83 ± 0.23 |
%BW | 0.69 ± 0.08 | 0.69 ± 0.08 | 0.62 ± 0.08 | |
Kidney fat (g) | OW | 1.71 ± 0.75 | 2.56 ± 1.42 | 3.24 ± 0.88 * |
%BW | 0.58 ± 0.26 | 0.87 ± 0.48 | 1.10 ± 0.30 * | |
Inguinal fat (g) | OW | 0.78 ± 0.58 | 1.14 ± 0.46 | 1.21 ± 0.23 |
%BW | 0.27 ± 0.20 | 0.39 ± 0.16 | 0.41 ± 0.08 * | |
Ovaries (g) | OW | 0.11 ± 0.02 | 0.11 ± 0.03 | 0.10 ± 0.02 |
%BW | 0.037 ± 0.008 | 0.038 ± 0.011 | 0.034 ± 0.006 | |
Uterus (g) | OW | 0.78 ± 0.41 | 0.86 ± 0.46 | 0.73 ± 0.40 |
%BW | 0.26 ± 0.14 | 0.29 ± 0.16 | 0.25 ± 0.14 | |
Uterus fat (g) | OW | 1.25 ± 0.50 | 1.36 ± 0.43 | 1.42 ± 0.40 |
%BW | 0.43 ± 0.17 | 0.47 ± 0.15 | 0.48 ± 0.14 | |
Serum biochemical | Week | |||
Glucose (mg/dL) | 0 | 121.46 ± 16.14 | 118.02 ± 11.03 | 127.22 ± 14.49 |
12 | 110.38 ± 13.96 | 125.06 ± 16.48 | 134.94 ± 13.58 * | |
Insulin (μU/mL) | 0 | 0.32 ± 0.09 | 0.26 ± 0.05 | 0.29 ± 0.04 |
12 | 0.24 ± 0.17 | 0.28 ± 0.02 * | 0.28 ± 0.03 | |
HOMA-IR | 0 | 0.105 ± 0.04 | 0.08 ± 0.02 | 0.09 ± 0.02 |
12 | 0.06 ± 0.01 | 0.08 ± 0.02 | 0.08 ± 0.01 * | |
TG (mg/dL) | 0 | 22.21 ± 4.89 | 23.91 ± 3.01 | 20.80 ± 4.25 |
12 | 18.22 ± 0.70 | 17.43 ± 4.37 | 22.89 ± 5.48 * | |
AST (U/L) | 0 | 8.76 ± 1.38 | 7.70 ± 1.45 | 9.11 ± 1.44 |
12 | 11.03 ± 1.90 | 11.90 ± 1.81 | 13.95 ± 2.12 * | |
ALT (U/L) | 0 | 3.82 ± 0.97 | 4.84 ± 2.48 | 3.44 ± 0.83 |
12 | 3.36 ± 0.80 | 5.07 ± 1.32 | 7.32 ± 2.60 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Yeh, Y.-C.; Lin, Y.-F.; Au, H.-K.; Hsia, S.-M.; Chen, Y.-H.; Hsieh, R.-H. Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk. Int. J. Mol. Sci. 2022, 23, 12740. https://doi.org/10.3390/ijms232112740
Chen Y-C, Yeh Y-C, Lin Y-F, Au H-K, Hsia S-M, Chen Y-H, Hsieh R-H. Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk. International Journal of Molecular Sciences. 2022; 23(21):12740. https://doi.org/10.3390/ijms232112740
Chicago/Turabian StyleChen, Yang-Ching, Yen-Chia Yeh, Yu-Fang Lin, Heng-Kien Au, Shih-Min Hsia, Yue-Hwa Chen, and Rong-Hong Hsieh. 2022. "Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk" International Journal of Molecular Sciences 23, no. 21: 12740. https://doi.org/10.3390/ijms232112740
APA StyleChen, Y.-C., Yeh, Y.-C., Lin, Y.-F., Au, H.-K., Hsia, S.-M., Chen, Y.-H., & Hsieh, R.-H. (2022). Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk. International Journal of Molecular Sciences, 23(21), 12740. https://doi.org/10.3390/ijms232112740