Innovation Glass-Ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconium-Based Dental Restorations
Abstract
:1. Introduction
2. Results
2.1. Surface Microstructure and Roughness
2.2. Surface Hydrophobicity and Surface Free Energy
2.3. Surface Phase Structure
2.4. Adhesive Properties
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon, S.J.; Lawson, N.C.; McLaren, E.E.; Nejat, A.H.; Burgess, J.O. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J. Prosthet. Dent. 2018, 120, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, Z.; Yin, K.; Li, C.; Guo, M.; Lan, J. The biocompatibility and mechanical properties of plasma sprayed zirconia coated abutment. J. Adv. Prosthodont. 2020, 12, 157–166. [Google Scholar] [CrossRef]
- Han, J.; Zhang, F.; Van Meerbeek, B.; Vleugels, J.; Braem, A.; Castagne, S. Laser surface texturing of zirconia-based ceramics for dental applications: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 112034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2017, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Strasding, M.; Valente, N.A.; Zwahlen, M.; Liu, S.; Pjetursson, B.E. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin. Oral Implants Res. 2018, 29, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Giordano Ii, R. Ceramics overview. Br. Dent. J. 2022, 232, 658–663. [Google Scholar] [CrossRef]
- Tidehag, P.; Shen, Z.J. Digital dentistry calls the change of ceramics and ceramic processes. Adv. Appl. Ceram. 2019, 118, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Papaspyridakos, P.; Chochlidakis, K.; Kang, K.; Chen, Y.W.; Alghfeli, A.; Kudara, Y.; Weber, H.P. Digital workflow for implant rehabilitation with double full-arch monolithic zirconia prostheses. J. Prosthodont. 2020, 29, 460–465. [Google Scholar] [CrossRef]
- Hatanaka, G.R.; Polli, G.S.; Adabo, G.L. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J. Prosthet. Dent. 2020, 123, 330–337. [Google Scholar] [CrossRef]
- Hsu, W.-C.; Peng, T.-Y.; Kang, C.-M.; Chao, F.-Y.; Yu, J.-H.; Chen, S.-F. Evaluating the effect of different polymer and composite abutments on the color accuracy of multilayer pre-colored zirconia polycrystal dental prosthesis. Polymers 2022, 14, 2325. [Google Scholar] [CrossRef]
- Ranjbar Omidi, B.; Karimi Yeganeh, P.; Oveisi, S.; Farahmandpour, N.; Nouri, F. Comparison of micro-shear bond strength of resin cement to zirconia with different surface treatments using universal adhesive and zirconia primer. J. Lasers Med. Sci. 2018, 9, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Ma, S.Q.; Zang, C.C.; Zhang, W.Y.; Liu, Z.H.; Sun, Y.C.; Feng, Y.Y. Enhanced bonding strength between lithium disilicate ceramics and resin cement by multiple surface treatments after thermal cycling. PLoS ONE 2019, 14, e0220466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yao, C.; Yuan, C.; Zhang, H.; Liu, L.; Zhang, Y.; Bai, J.; Tang, C. Evaluation of surface properties and shear bond strength of zirconia substructure after sandblasting and acid etching. Mater. Res. Express 2020, 7, 095403. [Google Scholar] [CrossRef]
- Sadid-Zadeh, R.; Strazzella, A.; Li, R.; Makwoka, S. Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. J. Prosthet. Dent. 2021, 126, 693–697. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.T.F.; Trevelin, L.T.; Schroeter, A.C.; Willers, A.E.; Cesar, P.F.; Matos, A.B. Effect of silica coating and laser treatment on the flexural strength, surface characteristics, and bond strength of a dental zirconia. Eur. J. Oral Sci. 2021, 129, e12754. [Google Scholar] [CrossRef]
- Al-Akhali, M.; Al-Dobaei, E.; Wille, S.; Mourshed, B.; Kern, M. Influence of elapsed time between airborne-particle abrasion and bonding to zirconia bond strength. Dent. Mater. 2021, 37, 516–522. [Google Scholar] [CrossRef]
- Iwaguro, S.; Shimoe, S.; Takenaka, H.; Wakabayashi, Y.; Peng, T.-Y.; Kaku, M. Effects of dimensions of laser-milled grid-like microslits on shear bond strength between porcelain or indirect composite resin and zirconia. J. Prosthodont. Res. 2022, 66, 151–160. [Google Scholar] [CrossRef]
- Shimoe, S.; Peng, T.-Y.; Otaku, M.; Tsumura, N.; Iwaguro, S.; Satoda, T. Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material. J. Prosthet. Dent. 2019, 122, 491.e1–491.e9. [Google Scholar] [CrossRef]
- Kosmač, T.; Oblak, C.; Jevnikar, P.; Funduk, N.; Marion, L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent. Mater. 1999, 15, 426–433. [Google Scholar] [CrossRef]
- Peng, T.-Y.; Kang, C.-M.; Feng, S.-W.; Hung, C.-Y.; Iwaguro, S.; Lin, D.-J. Effects of glass-ceramic spray deposition manipulation on the surface characteristics of zirconia dental restorations. Ceram Int. 2022, 48, 29873–29881. [Google Scholar] [CrossRef]
- Steling Rego, M.E.; Nunes Guimarães Paes, P.; Ribeiro da Silva Schanuel, F.; Mendes Jardim, P. Acid etching and silica coating effects on Y-TZP topography and ceramic/resin cement bond strength. Ceram Int. 2021, 47, 5235–5243. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Barreto, S.C.; Alfrisany, N.M.; Porto, T.S.; De Souza, G.M.; De Goes, M.F. Effect of silane and MDP-based primers on physico-chemical properties of zirconia and its bond strength to resin cement. Dent. Mater. 2019, 35, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Chuang, S.F.; Hou, S.S.; Lin, J.C.; Kang, L.L.; Chen, Y.C. Interaction of silane with 10-MDP on affecting surface chemistry and resin bonding of zirconia. Dent. Mater. 2022, 38, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Matsui, N.; Takagaki, T.; Sadr, A.; Ikeda, M.; Ichinose, S.; Nikaido, T.; Tagami, J. The role of MDP in a bonding resin of a two-step self-etching adhesive system. Dent. Mater. J. 2015, 34, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Carrilho, E.; Cardoso, M.; Marques Ferreira, M.; Marto, C.M.; Paula, A.; Coelho, A.S. 10-MDP based dental adhesives: Adhesive interface characterization and adhesive stability-a systematic review. Materials 2019, 12, 790. [Google Scholar] [CrossRef] [Green Version]
- Chuang, S.-F.; Kang, L.-L.; Liu, Y.-C.; Lin, J.-C.; Wang, C.-C.; Chen, H.-M.; Tai, C.-K. Effects of silane- and MDP-based primers application orders on zirconia–resin adhesion—A ToF-SIMS study. Dent. Mater. 2017, 33, 923–933. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Hsieh, J.-P.; Chen, Y.-C.; Kang, L.-L.; Hwang, C.-S.; Chuang, S.-F. Promoting porcelain–zirconia bonding using different atmospheric pressure gas plasmas. Dent. Mater. 2018, 34, 1188–1198. [Google Scholar] [CrossRef]
- Güers, P.; Wille, S.; Strunskus, T.; Polonskyi, O.; Kern, M. Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods. Dent. Mater. 2019, 35, 1388–1396. [Google Scholar] [CrossRef]
- Aboushelib, M.N. Fusion sputtering for bonding to zirconia-based materials. J. Adhes. Dent. 2012, 14, 323–328. [Google Scholar] [CrossRef]
- Ali, N.; Safwat, A.; Aboushelib, M. The effect of fusion sputtering surface treatment on microshear bond strength of zirconia and MDP-containing resin cement. Dent. Mater. 2019, 35, e107–e112. [Google Scholar] [CrossRef]
- Sundfeld, D.; Correr-Sobrinho, L.; Pini, N.; Inocêncya, P.; Costa, A.R.; Sundfeld, R.H.; Pfeifer, C.S.; Martins, L.; Roberto, M. Heat treatment-improved bond strength of resin cement to lithium disilicate dental glass-ceramic. Ceram Int. 2016, 42, 10071–10078. [Google Scholar] [CrossRef] [Green Version]
- Sundfeld, D.; Palialol, A.R.M.; Fugolin, A.P.P.; Ambrosano, G.M.B.; Correr-Sobrinho, L.; Martins, L.R.M.; Pfeifer, C.S. The effect of hydrofluoric acid and resin cement formulation on the bond strength to lithium disilicate ceramic. Braz. Oral Res. 2018, 32, e43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veríssimo, A.H.; Moura, D.M.D.; Tribst, J.P.M.; Araújo, A.M.M.; Leite, F.P.P.; Souza, R. Effect of hydrofluoric acid concentration and etching time on resin-bond strength to different glass ceramics. Braz. Oral Res. 2019, 33, e041. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Guo, J.; Sun, Y.; Tian, B.; Zheng, X.; Zhou, M.; He, L.; Zhang, S. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics. J. Mech. Behav. Biomed. Mater. 2018, 81, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Alao, A.-R. Elasticity, plasticity and analytical machinability prediction of lithium metasilicate/disilicate glass ceramics. J. Mech. Behav. Biomed. Mater. 2019, 96, 9–19. [Google Scholar] [CrossRef]
- Vilas Boas Fernandes Júnior, V.; Barbosa Dantas, D.C.; Bresciani, E.; Rocha Lima Huhtala, M.F. Evaluation of the bond strength and characteristics of zirconia after different surface treatments. J. Prosthet. Dent. 2018, 120, 955–959. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives. Eur. J. Oral Sci. 2016, 124, 301–308. [Google Scholar] [CrossRef]
- Skienhe, H.; Habchi, R.; Ounsi, H.; Ferrari, M.; Salameh, Z. Evaluation of the effect of different types of abrasive surface treatment before and after zirconia sintering on its structural composition and bond strength with resin cement. BioMed Res. Int. 2018, 2018, 1803425. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Chung, S.H.; Um, S.-H.; Rhee, S.-H. Effect of grain size of dental zirconia on shear bond strength of composite resin cement. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020978138. [Google Scholar] [CrossRef]
- Good, R.J.; Girifalco, L.A. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J. Phys. Chem. C 1960, 64, 561–565. [Google Scholar] [CrossRef]
- ISO 10477: 2018; Dentistry—Polymer-Based Crown and Veneering Materials. International Organization for Standardization, ISO: Geneva, Switzerland, 2018.
Groups | 0 Thermocycles | 5000 Thermocycles | S | Reduction | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | A | M | C | Mean ± SD | A | M | C | |||
LDG | 18.6 ± 2.7 a | 3 | 7 | 0 | 10.4 ± 1.5 A | 4 | 6 | 0 | S | 43.9% |
AAB | 12.5 ± 2.1 b | 5 | 5 | 0 | 5.1 ± 1.1 B | 7 | 3 | 0 | S | 59.5% |
GAB | 8.6 ± 1.7 c | 2 | 8 | 0 | 4.3 ± 1.3 B | 2 | 8 | 0 | S | 50.6% |
G20 | 11.7 ± 1.9 b | 4 | 6 | 0 | 4.5 ± 1.4 B | 6 | 4 | 0 | S | 61.8% |
G60 | 15.9 ± 2.5 d | 2 | 8 | 0 | 6.5 ± 1.8 B,C | 2 | 8 | 0 | S | 59.2% |
G90 | 19.1 ± 3.0 a | 0 | 10 | 0 | 8.8 ± 1.5 A,C | 1 | 9 | 0 | S | 53.6% |
G120 | 20.5 ± 2.1 a | 0 | 10 | 0 | 10.1 ± 1.2 A | 0 | 10 | 0 | S | 51.0% |
Prepare 30 lithium disilicate (LD) glass-ceramic (Cameo Dental Glass Ceramics) and 180 zirconia (Superfect Zir) disk-shaped samples via dental CAD/CAM system (Cameo 250i). | ||||||
Grind the samples flat using 600-grit silicon carbide abrasive papers, clean them ultrasonically with deionized water, and air-dry them. | ||||||
Distribute the samples into seven groups (n = 30) | ||||||
LD Glass-Ceramic | Zirconia (Y-TZP) | |||||
LDG | AAB | Glass-Ceramic Spray Deposition (GCSD) Treatment (Biomic LiSi Connector) | ||||
GAB | G20 | G60 | G90 | G120 | ||
5% HF (IPS Ceramic Etching Gel) etching for 20 s | air abrasion with 50-μm aluminum particles under 3-bar pressure for 10 s | 5% HF etching for 20 s | 5% HF etching for 60 s | 5% HF etching for 90 s | 5% HF etching for 120 s | |
Surface characterization analysis (n = 10): FE-SEM, AFM, CA, SFE, XRD. | ||||||
Bonding according to the following procedures. | ||||||
Priming with Monobond N | Priming with Z-Prime (Bisco) | Priming with Monobond N (Ivoclar Vivadent) | ||||
Attachment of a plastic tube to each sample with a piece of double-sided polyethylene adhesive tape. | ||||||
Flowing resin cement (Variolink N) into the plastic tube, light-curing, and removing residual cement. | ||||||
Division of each group (n = 20) as follows: | ||||||
Immersion of one-half of the samples (n = 10) in distilled water at 37 °C for 24 h without thermocycling. | Interrupted thermocycling of one-half of the samples (n = 10) between 5 and 55 °C for 5000 cycles with a dwell time of 30 s (ISO 10477). | |||||
Shear bond strength (SBS) testing using a universal testing machine (JSV-H1000, Japan Instrumentation System) at a crosshead speed of 1 mm/min (ISO 10477). | ||||||
Observation of the failure mode (adhesive, cohesive, mixture failure) with a dental microscope and recording of representative structures via an optical microscope (BA210, Motic). | ||||||
Statistical analysis (IBM SPSS and Prism) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-M.; Lin, D.-J.; Feng, S.-W.; Hung, C.-Y.; Iwaguro, S.; Peng, T.-Y. Innovation Glass-Ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconium-Based Dental Restorations. Int. J. Mol. Sci. 2022, 23, 12783. https://doi.org/10.3390/ijms232112783
Kang C-M, Lin D-J, Feng S-W, Hung C-Y, Iwaguro S, Peng T-Y. Innovation Glass-Ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconium-Based Dental Restorations. International Journal of Molecular Sciences. 2022; 23(21):12783. https://doi.org/10.3390/ijms232112783
Chicago/Turabian StyleKang, Chien-Ming, Dan-Jae Lin, Sheng-Wei Feng, Cheng-Yuan Hung, Shogo Iwaguro, and Tzu-Yu Peng. 2022. "Innovation Glass-Ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconium-Based Dental Restorations" International Journal of Molecular Sciences 23, no. 21: 12783. https://doi.org/10.3390/ijms232112783
APA StyleKang, C.-M., Lin, D.-J., Feng, S.-W., Hung, C.-Y., Iwaguro, S., & Peng, T.-Y. (2022). Innovation Glass-Ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconium-Based Dental Restorations. International Journal of Molecular Sciences, 23(21), 12783. https://doi.org/10.3390/ijms232112783