Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease
Abstract
:1. Introduction
2. Results
2.1. Mouse Brain: T14 Is Co-Localized with Tyrosine Hydroxylase in Pars Compacta Neurons
2.2. Human Brain: T14 Immunoreactivity in the Human SN Reflects AD Severity
2.3. Rat Brain: Characterization Ex Vivo of T14/T30 Action
3. Discussion
4. Materials and Methods
4.1. Mouse Brains
4.2. Human Brains
4.3. Ex Vivo Rat Brain Slice Preparation
4.4. Voltage Sensitive Dye Imaging
4.5. Data Analysis
4.6. Statistical Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karczmar, A.G. Is the central cholinergic nervous system overexploited? Fed. Proc. 1969, 28, 147–159. [Google Scholar] [PubMed]
- Dally, J.J.; Greenfield, S.A. The release of acetylcholinesterase in vivo is regulated by dopaminergic systems in the guinea-pig substantia nigra. Neurochem. Int. 1994, 25, 339–344. [Google Scholar] [CrossRef]
- Dally, J.J.; Schaefer, M.; Greenfield, S.A. The spontaneous release of acetylcholinesterase in rat substantia nigra is altered by local changes in extracellular levels of dopamine. Neurochem. Int. 1996, 29, 629–635. [Google Scholar] [CrossRef]
- Taylor, S.J.; Greenfield, S.A. Release of acetylcholinesterase from the guinea-pig substantia nigra during peripheral nerve stimulation. Brain Res. 1989, 482, 356–358. [Google Scholar] [CrossRef]
- Taylor, S.J.; Greenfield, S.A. Pulsatile release of acetylcholinesterase from the substantia nigra following electrical stimulation of the striatum. Brain Res. 1989, 505, 153–156. [Google Scholar] [CrossRef]
- Taylor, S.J.; Bartlett, M.J.; Greenfield, S.A. Release of acetylcholinesterase within the guinea-pig substantia nigra: Effects of 5-hydroxytryptamine and amphetamine. Neuropharmacology 1988, 27, 507–514. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Chubb, I.W.; Grunewald, R.A.; Henderson, Z.; May, J.; Portnoy, S.; Weston, J.; Wright, M.C. A non-cholinergic function for acetylcholinesterase in the substantia nigra: Behavioural evidence. Exp. Brain Res. 1984, 54, 513–520. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Grunewald, R.A.; Foley, P.; Shaw, S.G. Origin of various enzymes released from the substantia nigra and caudate nucleus: Effects of 6-hydroxydopamine lesions of the nigro-striatal pathway. J. Comp. Neurol. 1983, 214, 87–92. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Shaw, S.G. Release of acetylcholinesterase and aminopeptidase in vivo following infusion of amphetamine into the substantia nigra. Neuroscience 1982, 7, 2883–2893. [Google Scholar] [CrossRef]
- Greenfield, S.; Cheramy, A.; Leviel, V.; Glowinski, J. In vivo release of acetylcholinesterase in cat substantia nigra and caudate nucleus. Nature 1980, 284, 355–357. [Google Scholar] [CrossRef]
- Llinas, R.R.; Greenfield, S.A. On-line visualization of dendritic release of acetylcholinesterase from mammalian substantia nigra neurons. Proc. Natl. Acad. Sci. USA 1987, 84, 3047–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.A.; Ellis, J.R.; Klegeris, A.; Greenfield, S.A. The relationship between visual stimulation, behaviour and continuous release of protein in the substantia nigra. Brain Res. 1991, 560, 163–166. [Google Scholar] [CrossRef]
- Taylor, S.J.; Jones, S.A.; Haggblad, J.; Greenfield, S.A. “On-line” measurement of acetylcholinesterase release from the substantia nigra of the freely-moving guinea-pig. Neuroscience 1990, 37, 71–76. [Google Scholar] [CrossRef]
- Webb, C.P.; Nedergaard, S.; Giles, K.; Greenfield, S.A. Involvement of the NMDA receptor in a non-cholinergic action of acetylcholinesterase in guinea-pig substantia nigra pars compacta neurons. Eur. J. Neurosci. 1996, 8, 837–841. [Google Scholar] [CrossRef]
- Webb, C.P.; Greenfield, S.A. Non-cholinergic effects of acetylcholinesterase in the substantia nigra: A possible role for an ATP-sensitive potassium channel. Exp. Brain Res. 1992, 89, 49–58. [Google Scholar] [CrossRef]
- Hajos, M.; Greenfield, S. Differential actions of acetylcholinesterase on the soma and dendrites of dopaminergic substantia nigra neurons in vitro. Brain Res. 1992, 585, 416–420. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Nedergaard, S.; Webb, C.; French, M. Pressure ejection of acetylcholinesterase within the guinea-pig substantia nigra has non-classical actions on the pars compacta cells independent of selective receptor and ion channel blockade. Neuroscience 1989, 29, 21–25. [Google Scholar] [CrossRef]
- Last, A.T.; Greenfield, S.A. Acetylcholinesterase has a non-cholinergic neuromodulatory action in the guinea-pig substantia nigra. Exp. Brain Res. 1987, 67, 445–448. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Stein, J.F.; Hodgson, A.J.; Chubb, I.W. Depression of nigral pars compacta cell discharge by exogenous acetylcholinesterase. Neuroscience 1981, 6, 2287–2295. [Google Scholar] [CrossRef]
- Klegeris, A.; Korkina, L.G.; Greenfield, S.A. A possible interaction between acetylcholinesterase and dopamine molecules during autoxidation of the amine. Free Radic. Biol. Med. 1995, 18, 223–230. [Google Scholar] [CrossRef]
- Dickie, B.G.; Greenfield, S.A. Release of acetylcholinesterase from guinea-pig substantia nigra: Effects of tryptaminergic drugs and dorsal raphe nucleus stimulation. Neuropharmacology 1995, 34, 1191–1200. [Google Scholar] [CrossRef]
- Dajas, F.; Silveira, R.; Costa, G.; Castello, M.E.; Jerusalinsky, D.; Medina, J.; Levesque, D.; Greenfield, S. Differential cholinergic and non-cholinergic actions of acetylcholinesterase in the substantia nigra revealed by fasciculin-induced inhibition. Brain Res. 1993, 616, 1–5. [Google Scholar] [CrossRef]
- Hawkins, C.A.; Greenfield, S.A. Non-cholinergic action of exogenous acetylcholinesterase in the rat substantia nigra. II. Long-term interactions with dopamine metabolism. Behav. Brain Res. 1992, 48, 159–163. [Google Scholar] [CrossRef]
- Hawkins, C.A.; Greenfield, S.A. Recombinant acetylcholinesterase has behavioural effects in the rat substantia nigra not attributable to its enzymatic activity. Neurosci. Lett. 1995, 197, 203–206. [Google Scholar] [CrossRef]
- Hawkins, C.A.; Greenfield, S.A. Comparison of the behavioural effects of infusion of carbachol and acetylcholinesterase into the rat substantia nigra. Pharmacol. Biochem. Behav. 1996, 55, 67–80. [Google Scholar] [CrossRef]
- Weston, J.; Greenfield, S.A. Application of acetylcholinesterase to the substantia nigra induces stereotypy in rats. Behav. Brain Res. 1985, 18, 71–74. [Google Scholar] [CrossRef]
- Greenfield, S.A. A noncholinergic action of acetylcholinesterase (AChE) in the brain: From neuronal secretion to the generation of movement. Cell Mol. Neurobiol. 1991, 11, 55–77. [Google Scholar] [CrossRef]
- Chubb, I.W.; Hodgson, A.J.; White, G.H. Acetylcholinesterase hydrolyzes substance P. Neuroscience 1980, 5, 2065–2072. [Google Scholar] [CrossRef]
- Greenfield, S.; Vaux, D.J. Parkinson’s disease, Alzheimer’s disease and motor neurone disease: Identifying a common mechanism. Neuroscience 2002, 113, 485–492. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Day, T.; Mann, E.O.; Bermudez, I. A novel peptide modulates alpha7 nicotinic receptor responses: Implications for a possible trophic-toxic mechanism within the brain. J. Neurochem. 2004, 90, 325–331. [Google Scholar] [CrossRef]
- Bond, C.E.; Zimmermann, M.; Greenfield, S.A. Upregulation of alpha7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides. PLoS ONE 2009, 4, e4846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, T.; Greenfield, S.A. A peptide derived from acetylcholinesterase induces neuronal cell death: Characterisation of possible mechanisms. Exp. Brain Res. 2003, 153, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Compta, Y.; Revesz, T. Neuropathological and Biomarker Findings in Parkinson’s Disease and Alzheimer’s Disease: From Protein Aggregates to Synaptic Dysfunction. J. Parkinsons Dis. 2021, 11, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Kazee, A.M.; Cox, C.; Richfield, E.K. Substantia nigra lesions in Alzheimer disease and normal aging. Alzheimer Dis. Assoc. Disord. 1995, 9, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rates, S.; Morrill, P.; Tu, H.; Pottiez, G.; Badin, A.S.; Tormo-Garcia, C.; Heffner, C.; Coen, C.W.; Greenfield, S.A. (I) Pharmacological profiling of a novel modulator of the alpha7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains. Neuropharmacology 2016, 105, 487–499. [Google Scholar] [CrossRef]
- Day, T.; Greenfield, S.A. Bioactivity of a peptide derived from acetylcholinesterase in hippocampal organotypic cultures. Exp. Brain Res. 2004, 155, 500–508. [Google Scholar] [CrossRef]
- Badin, A.S.; Morrill, P.; Devonshire, I.M.; Greenfield, S.A. (II) Physiological profiling of an endogenous peptide in the basal forebrain: Age-related bioactivity and blockade with a novel modulator. Neuropharmacology 2016, 105, 47–60. [Google Scholar] [CrossRef]
- Badin, A.S.; Eraifej, J.; Greenfield, S. High-resolution spatio-temporal bioactivity of a novel peptide revealed by optical imaging in rat orbitofrontal cortex in vitro: Possible implications for neurodegenerative diseases. Neuropharmacology 2013, 73, 10–18. [Google Scholar] [CrossRef]
- Greenfield, S.A.; Badin, A.S.; Ferrati, G.; Devonshire, I.M. Optical imaging of the rat brain suggests a previously missing link between top-down and bottom-up nervous system function. Neurophotonics 2017, 4, 031213. [Google Scholar] [CrossRef] [Green Version]
- Grinvald, A.; Hildesheim, R. VSDI: A new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 2004, 5, 874–885. [Google Scholar] [CrossRef]
- Brai, E.; Simon, F.; Cogoni, A.; Greenfield, S.A. Modulatory Effects of a Novel Cyclized Peptide in Reducing the Expression of Markers Linked to Alzheimer’s Disease. Front. Neurosci. 2018, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, S.A.; Cole, G.M.; Coen, C.W.; Frautschy, S.; Singh, R.P.; Mekkittikul, M.; Garcia-Rates, S.; Morrill, P.; Hollings, O.; Passmore, M.; et al. A novel process driving Alzheimer’s disease validated in a mouse model: Therapeutic potential. Alzheimers Dement. 2022, 8, e12274. [Google Scholar] [CrossRef]
- Taly, A.; Corringer, P.J.; Guedin, D.; Lestage, P.; Changeux, J.P. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 2009, 8, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Henderson, Z.; Greenfield, S.A. Ultrastructural localization of acetylcholinesterase in substantia nigra: A comparison between rat and guinea pig. J. Comp. Neurol. 1984, 230, 278–286. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sandberg, A.; Greenfield, S.A. Differential dynamics of transient neuronal assemblies in visual compared to auditory cortex. Exp. Brain Res. 2007, 182, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Ramon-Moliner, E.; Nauta, W.J. The isodendritic core of the brain stem. J. Comp. Neurol. 1966, 126, 311–335. [Google Scholar] [CrossRef]
- Woolf, N.J. Global and serial neurons form a hierarchically arranged interface proposed to underlie memory and cognition. Neuroscience 1996, 74, 625–651. [Google Scholar] [CrossRef]
- Theofilas, P.; Dunlop, S.; Heinsen, H.; Grinberg, L.T. Turning on the Light within: Subcortical Nuclei of the Isodentritic Core and their Role in Alzheimer’s Disease Pathogenesis. J. Alzheimers Dis. 2015, 46, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Attems, J.; Thal, D.R.; Jellinger, K.A. The relationship between subcortical tau pathology and Alzheimer’s disease. Biochem. Soc. Trans. 2012, 40, 711–715. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr. Opin. Neurol. 2012, 25, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Szot, P. Common factors among Alzheimer’s disease, Parkinson’s disease, and epilepsy: Possible role of the noradrenergic nervous system. Epilepsia 2012, 53 (Suppl. 1), 61–66. [Google Scholar] [CrossRef] [PubMed]
- Trillo, L.; Das, D.; Hsieh, W.; Medina, B.; Moghadam, S.; Lin, B.; Dang, V.; Sanchez, M.M.; De Miguel, Z.; Ashford, J.W.; et al. Ascending monoaminergic systems alterations in Alzheimer’s disease. translating basic science into clinical care. Neurosci. Biobehav. Rev. 2013, 37, 1363–1379. [Google Scholar] [CrossRef]
- Weinshenker, D. Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr. Alzheimer Res. 2008, 5, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Zarow, C.; Lyness, S.A.; Mortimer, J.A.; Chui, H.C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 2003, 60, 337–341. [Google Scholar] [CrossRef]
- Rossor, M.N. Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br. Med. J. (Clin. Res. Ed.) 1981, 283, 1588–1590. [Google Scholar] [CrossRef] [Green Version]
- Matsubayashi, H.; Amano, T.; Seki, T.; Sasa, M.; Sakai, N. Postsynaptic alpha 4 beta 2 and alpha 7 type nicotinic acetylcholine receptors contribute to the local and endogenous acetylcholine-mediated synaptic transmissions in nigral dopaminergic neurons. Brain Res. 2004, 1005, 1–8. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Inoue, A.; Amano, T.; Seki, T.; Nakata, Y.; Sasa, M.; Sakai, N. Involvement of alpha7- and alpha4beta2-type postsynaptic nicotinic acetylcholine receptors in nicotine-induced excitation of dopaminergic neurons in the substantia nigra: A patch clamp and single-cell PCR study using acutely dissociated nigral neurons. Brain Res. Mol. Brain Res. 2004, 129, 1–7. [Google Scholar] [CrossRef]
- Ferrati, G.; Bion, G.; Harris, A.J.; Greenfield, S. Protective and reversal actions of a novel peptidomimetic against a pivotal toxin implicated in Alzheimer’s disease. Biomed. Pharmacother. 2019, 109, 1052–1061. [Google Scholar] [CrossRef]
- Standen, N.B. Ca channel inactivation by intracellular Ca injection into Helix neurones. Nature 1981, 293, 158–159. [Google Scholar] [CrossRef]
- Butcher, L.L.; Woolf, N.J. Neurotrophic agents may exacerbate the pathologic cascade of Alzheimer’s disease. Neurobiol. Aging 1989, 10, 557–570. [Google Scholar] [CrossRef]
- Gasperini, R.J.; Pavez, M.; Thompson, A.C.; Mitchell, C.B.; Hardy, H.; Young, K.M.; Chilton, J.K.; Foa, L. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol. Cell. Neurosci. 2017, 84, 29–35. [Google Scholar] [CrossRef]
- Eimerl, S.; Schramm, M. The quantity of calcium that appears to induce neuronal death. J. Neurochem. 1994, 62, 1223–1226. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Ferrati, G.; Brai, E.; Stuart, S.; Marino, C.; Greenfield, S.A. A Multidisciplinary Approach Reveals an Age-Dependent Expression of a Novel Bioactive Peptide, Already Involved in Neurodegeneration, in the Postnatal Rat Forebrain. Brain Sci. 2018, 8, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandy, T.H.; Greenfield, S.A.; Devonshire, I.M. An evaluation of in vivo voltage-sensitive dyes: Pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J. Neurophysiol. 2012, 108, 2931–2945. [Google Scholar] [CrossRef]
- Bourgeois, E.B.; Johnson, B.N.; McCoy, A.J.; Trippa, L.; Cohen, A.S.; Marsh, E.D. A toolbox for spatiotemporal analysis of voltage-sensitive dye imaging data in brain slices. PLoS ONE 2014, 9, e108686. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenfield, S.A.; Ferrati, G.; Coen, C.W.; Vadisiute, A.; Molnár, Z.; Garcia-Rates, S.; Frautschy, S.; Cole, G.M. Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease. Int. J. Mol. Sci. 2022, 23, 13119. https://doi.org/10.3390/ijms232113119
Greenfield SA, Ferrati G, Coen CW, Vadisiute A, Molnár Z, Garcia-Rates S, Frautschy S, Cole GM. Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease. International Journal of Molecular Sciences. 2022; 23(21):13119. https://doi.org/10.3390/ijms232113119
Chicago/Turabian StyleGreenfield, Susan Adele, Giovanni Ferrati, Clive W. Coen, Auguste Vadisiute, Zoltan Molnár, Sara Garcia-Rates, Sally Frautschy, and Gregory M. Cole. 2022. "Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease" International Journal of Molecular Sciences 23, no. 21: 13119. https://doi.org/10.3390/ijms232113119
APA StyleGreenfield, S. A., Ferrati, G., Coen, C. W., Vadisiute, A., Molnár, Z., Garcia-Rates, S., Frautschy, S., & Cole, G. M. (2022). Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease. International Journal of Molecular Sciences, 23(21), 13119. https://doi.org/10.3390/ijms232113119