Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant
Abstract
:1. Introduction
2. Results
2.1. Identification and Sequence Analysis of GmPP2C-A and GmSnRK2 Genes
2.2. Analysis of Stress-Related Cis-Elements of GmPP2C-A and GmSnRK2 Genes
2.3. Chromosomal Distribution and Expansion Patterns of GmPP2C-A and GmSnRK2 Genes
2.4. Gene Ontology (GO) Annotation
2.5. Prediction of GmPP2C-A and GmSnRK2 Genes Targeted by miRNAs
2.6. Expression Profiles of GmPP2C-As in Response to Exogenous ABA Treatment and Drought Stress
2.7. Expression Profiles of GmSnRK2s in Response to Exogenous ABA Treatment and Drought Stress
2.8. Soybean GmPP2C-As Interact with GmSnRK2s
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Exogenous ABA and Drought Stress Treatments
4.2. Gene Cloning and Sequence Analysis
4.3. Chromosomal Location and Gene Duplication Analysis
4.4. Differentially Methylated Region (DMR) Detection
4.5. Prediction of GmPP2C-A and GmSnRK2 Genes Targeted by miRNAs
4.6. RNA Extraction and cDNA Synthesis
4.7. qPCR Analysis
4.8. Y2H Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
PYLs | PYR/PYL/RCAR ABA receptors |
SnRK2 | Class III SNF–1–related protein kinase 2 |
PP2C-As | Group A Type 2C protein phosphatase |
ATP | Adenosine triphosphate |
TIS | Transcription initiation site |
MW | Molecular weight |
kDa | Kilodalton |
GRAVY | Grand average of hydropathy |
UTR | Untranslated regions |
ROS | Reactive oxygen species |
GA | Gibberellin |
IAA | Indole–3–acetic acid |
AbA | Aureobasidin A |
Leu | Leucine |
Trp | Tryptophan |
His | Histidine |
Ade | Adenine |
MYA | Million years ago |
MBS | MYB–binding site involved in drought-inducibility |
ABF | ABA response element-binding factors |
ABRE | ABA responsive elements |
ABI | ABA INSENSITIVE transcription factor |
AREB | ABA-responsive element binding protein |
ARE | Anaerobic induce element |
HSE | Heat stress response element |
ERE | Ethylene response element |
GARE | Gibberellin response element |
LTR | Low-temperature response element |
WUN-motif | Wound-responsive element |
O2-site | cis-acting regulatory element involved in zein metabolism regulation |
TC-rich repeats | Defense and stress response element |
CGTCA-motif | MeJA response element |
P-box | Gibberellin response element |
Box-W1 | Fungal elicitor response element |
CE3 | ABA and VP1 response element |
CCAAT-box | MYBHv1 binding site |
qPCR | Quantitative real-time polymerase chain reaction |
MeJA | Methyl jasmonic acid |
JA | Jasmonic acid |
SA | Salicylic acid |
PI | Isoelectric point |
Bp | Base pair |
Y2H | Yeast two hybrid |
GO | Gene ontology |
DMR | Differentially methylated region |
Dos-DMR | Process of soybean domestication with differentially methylated region |
Imp-DMR | In the improvement process with differentially methylated region |
ML | Maximum Likelihood |
References
- Xu, N.; Chu, Y.L.; Chen, H.L.; Li, X.X.; Wu, Q.; Jin, L.; Wang, G.X.; Huang, J.L. Rice Transcription Factor OsMADS25 Modulates Root Growth and Confers Salinity Tolerance via the ABA-mediated Regulatory Pathway and ROS Scavenging. PloS Genet. 2018, 14, e1007662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nee, G.; Kramer, K.; Nakabayashi, K.; Yuan, B.; Xiang, Y.; Miatton, E.; Finkemeier, I.; Soppe, W.J.J. DELAY OF GERMINATION1 Requires PP2C Phosphatases of the ABA Signalling Pathway to Control Seed Dormancy. Nat. Commun. 2017, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavendra, A.S.; Gonugunta, V.K.; Christmann, A.; Grill, E. ABA Perception and Signalling. Trends Plant Sci. 2010, 15, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic Acid: Emergence of a Core Signaling Network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-responsive Gene Expression. Plant Cell 2006, 18, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.Y.; Liu, D.F.; Chong, K. Cold Signaling in Plants: Insights into Mechanisms and Regulation. J. Integr. Plant Biol. 2018, 60, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Du, H.L.; Li, P.C.; Shen, Y.T.; Peng, H.; Liu, S.L.; Zhou, G.A.; Zhang, H.K.; Liu, Z.; Shi, M.; et al. Pan-genome of Wild and Cultivated Soybeans. Cell 2020, 182, 162–176. [Google Scholar] [CrossRef]
- Chi, C.; Xu, X.C.; Wang, M.Q.; Zhang, H.; Fang, P.P.; Zhou, J.; Xia, X.J.; Shi, K.; Zhou, Y.H.; Yu, J.Q. Strigolactones Positively Regulate Abscisic Acid-dependent Heat and Cold Tolerance in Tomato. Hortic. Res. 2021, 8, 237. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, L.; Jia, J.; Song, L.; Wang, L. Management of drought risk under global warming. Theor. Appl. Climatol. 2016, 125, 187–196. [Google Scholar] [CrossRef]
- Dong, H.; Bai, L.; Zhang, Y.; Zhang, G.Z.; Mao, Y.Q.; Min, L.L.; Xiang, F.Y.; Qian, D.D.; Zhu, X.H.; Song, C.P. Modulation of Guard Cell Turgor and Drought Tolerance by a Peroxisomal Acetate-malate Shunt. Mol. Plant 2018, 11, 1278–1291. [Google Scholar] [CrossRef]
- Rowe, J.H.; Topping, J.F.; Liu, J.; Lindsey, K. Abscisic Acid Regulates Root Growth under Osmotic Stress Conditions via an Interacting Hormonal Network with Cytokinin, Ethylene and Auxin. New Phytol. 2016, 211, 222–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.S.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and Selection Strategies to Improve Root Systems and Water Uptake in Waterlimited Wheat Crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Hua, D.P.; He, J.N.; Duan, Y.; Chen, Z.Z.; Hong, X.H.; Gong, Z.Z. Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis. PloS Genet. 2011, 7, e1002172. [Google Scholar] [CrossRef] [Green Version]
- Vanstraelen, M.; Benková, E. Hormonal Interactions in the Regulation of Plant Development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef]
- Shohat, H.; Iiiouz-Eliaz, N.; Kanno, Y.; Seo, M.; Weiss, D. The Tomato DELLA Protein PROCERA Promotes Abscisic Acid Responses in Guard Cells by Upregulating an Abscisic Acid Transporter. Plant Physiol. 2020, 184, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Leng, P.; Yuan, B.; Guo, Y.D. The Role of Abscisic Acid in Fruit Ripening and Responses to Abiotic Stress. J. Exp. Bot. 2014, 65, 4577–4588. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Seo, P.J. The Arabidopsis MIEL1 E3 Ligase Negatively Regulates ABA Signalling by Promoting Protein Turnover of MYB96. Nat. Commun. 2016, 7, 12525. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pei, L.; Xiao, S.; Peng, L.; Liu, Z.; Li, X.; Yang, Y.; Wang, J. AtPPRT1 Negatively Regulates Salt Stress Response in Arabidopsis Seedlings. Plant Signal. Behav. 2020, 15, 1732103. [Google Scholar] [CrossRef]
- Jin, X.; Wang, R.S.; Zhu, M.; Jeon, B.W.; Albert, R.; Chen, S.; Assmann, S.M. Abscisic Acid-responsive Guard Cell Metabolomes of Arabidopsis Wild-type and Gpa1 G-protein Mutants. Plant Cell 2013, 25, 4789–4811. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Zhang, D.; Zhou, H.; Zheng, T.; Yin, Y.; Lin, H. Transcription Factor HAT1 is a Substrate of SnRK2.3 Kinase and Negatively Regulates ABA Synthesis and Signaling in Arabidopsis Responding to Drought. PLoS Genet. 2018, 14, e1007336. [Google Scholar] [CrossRef]
- Wang, X.; Guo, C.; Peng, J.; Li, C.; Wan, F.; Zhang, S.; Zhou, Y.; Yan, Y.; Qi, L.; Sun, K.; et al. ABRE-BINDING FACTORS Play a Role in the Feedback Regulation of ABA Signaling by Mediating Rapid ABA Induction of ABA Co-receptor Genes. New Phytol. 2019, 221, 341–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Pandey, A.; Srivastava, A.K.; Tran, L.S.P.; Pandey, G.K. Plant Protein Phosphatases 2C: From Genomic Diversity to Functional Multiplicity and Importance in Stress Management. Crit. Rev. Biotechnol. 2016, 36, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Sun, X.; Gao, S.; Qin, F.; Dai, M. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Mol. Plant 2017, 10, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; He, J.; Zhao, Y.; Wu, T.; Zhou, X.; Ding, Y.; Kong, L.; Wang, X.; Wang, Y.; Li, J.; et al. EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. Plant Cell 2018, 30, 815–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, B.; Brodsky, D.; Xue, S.W.; Negi, J.; Iba, K.; Kangasjärvi, J.; Ghassemian, M.; Stephan, A.B.; Hu, H.H.; Schroeder, J.I. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. Sci. USA 2012, 109, 10593–10598. [Google Scholar] [CrossRef] [Green Version]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The Roles of Segmental and Tandem Gene Duplication in the Evolution of Large Gene Families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Soon, F.F.; Ng, L.M.; Zhou, X.E.; West, G.M.; Kovach, A.; Tan, M.H.; Suino-Powell, K.M.; He, Y.; Xu, Y.; Chalmers, M.J.; et al. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science 2012, 335, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Cheng, Y.H.; Zhang, C.; Shen, X.J.; You, Q.B.; Guo, W.; Li, X.; Song, X.J.; Zhou, X.A.; Jiao, Y.Q. Genome–Wide Identification and Characterization of the GmSnRK2 Family in Soybean. Int. J. Mol. Sci. 2017, 18, 1834. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Ali, S.; Zhang, T.X.; Wang, W.P.; Xie, L.A. Identification, Evolutionary and Expression Analysis of PYL–PP2C–SnRK2s Gene Families in Soybean. Plants 2020, 9, 1356. [Google Scholar] [CrossRef]
- Wei, W.; Liang, D.W.; Bian, X.H.; Shen, M.; Xiao, J.H.; Zhang, W.K.; Ma, B.; Lin, Q.; Lv, J.; Chen, X.; et al. GmWRKY54 Improves Drought Tolerance Through Activating Genes in Abscisic Acid and Ca2+ Signaling Pathways in Transgenic Soybean. Plant J. 2019, 100, 384–398. [Google Scholar] [CrossRef]
- Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009, 324, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Kulik, A.; Wawer, I.; Krzywinska, E.; Bucholc, M.; Dobrowolska, G. SnRK2 Protein Kinases––key Regulators of Plant Response to Abiotic Stresses. OMIC. 2011, 15, 859–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnowski, K.; Klimecka, M.; Ciesielski, A.; Goch, G.; Kulik, A.; Fedak, H.; Poznanski, J.; Lichocka, M.; Pierechod, M.; Engh, R.A.; et al. Two SnRK2–Interacting Calcium Sensor Isoforms Negatively Regulate SnRK2 Activity by Different Mechanisms. Plant Physiol. 2020, 182, 1142–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.; Chen, Y.; Mao, Z.; Fang, Y.; Li, Z.; Lin, W.; Zhang, Y.; Liu, J.; Huang, J.; Lin, W. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max. BMC Genom. 2020, 21, 465. [Google Scholar] [CrossRef] [PubMed]
- Kawa, D.; Meyer, A.J.; Dekker, H.L.; Abd-El-Haliem, A.; Gevaert, K.; Van De Slijke, E.; Maszkowska, J.; Bucholc, M.; Dobrowolska, G.; De Jaeger, G.; et al. SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. Plant Physiol. 2019, 182, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Li, Y.; Wang, Y.; Liu, X.; Ma, L.; Zhang, Z.; Mu, C.; Zhang, Y.; Peng, L.; Xie, S.; et al. Initiation and Amplification of SnRK2 Activation in Abscisic Acid Signaling. Nat. Commun. 2021, 12, 2456. [Google Scholar] [CrossRef]
- Deng, J.; Kong, L.; Zhu, Y.; Pei, D.; Chen, X.; Wang, Y.; Qi, J.; Song, C.; Yang, S.; Gong, Z. BAK1 Plays Contrasting Roles in Regulating Abscisic Acid-induced Stomatal Closure and Abscisic Acid-inhibited Primary Root Growth in Arabidopsis. J. Integr. Plant Biol. 2022, 64, 1264–1280. [Google Scholar] [CrossRef]
- Baek, W.; Lim, C.W.; Luan, S.; Lee, S.C. The RING Finger E3 Ligases PIR1 and PIR2 Mediate PP2CA Degradation to Enhance Abscisic Acid Response in Arabidopsis. Plant J. 2019, 100, 473–486. [Google Scholar] [CrossRef]
- Albalat, R.; Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 2016, 17, 379–391. [Google Scholar] [CrossRef]
- Otto, S.P. The evolutionary consequences of polyploidy. Cell 2007, 131, 452–462. [Google Scholar] [CrossRef]
- Samad, A.F.; Rahnamaie-Tajadod, R.; Sajad, M.; Jani, J.; Murad, A.M.A.; Noor, N.M.; Ismail, I. Regulation of Terpenoid Biosynthesis by miRNA in Persicaria Minor Induced by Fusarium Oxysporum. BMC Genom. 2019, 20, 586. [Google Scholar]
- Xu, J.; Xian, Q.Q.; Zhang, N.Y.; Wang, K.; Zhou, X.; Li, Y.S.; Dong, J.P.; Chen, X.H. Identification of miRNA-Target Gene Pairs Responsive to Fusarium Wilt of Cucumber via an Integrated Analysis of miRNA and Transcriptome Profiles. Biomolecules 2021, 11, 1620. [Google Scholar] [CrossRef]
- Dong, S.-m.; Xiao, L.; Li, Z.-b.; Shen, J.; Yan, H.-b.; Li, S.-x.; Liao, W.-b.; Peng, M. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression. J. Integr. Agric. 2022, 21, 2588–2602. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van De Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a Database of Plant Cis-acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-mapper v2, Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Tae-Ho, L.; Jin, H.; Barry, M.; Guo, H. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhang, J.; Liu, Y.; Liu, S.; Liu, Z.; Duan, Z.; Wang, Z.; Zhu, B.; Guo, Y.L.; Tian, Z. DNA Methylation Footprints During Soybean Domestication and Improvement. Genome Biol. 2018, 19, 128. [Google Scholar] [CrossRef]
- Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget V2, A high-performance plant small rna target analysis server. In Proceedings of the Plant and Animal Genome XXVII Conference, San Diego, CA, USA, 12–16 January 2019. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2−△△Ct Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Nan, H.; Jiang, Y.; Zhou, Y.; Pan, X. Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant. Int. J. Mol. Sci. 2022, 23, 13166. https://doi.org/10.3390/ijms232113166
Shen X, Nan H, Jiang Y, Zhou Y, Pan X. Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant. International Journal of Molecular Sciences. 2022; 23(21):13166. https://doi.org/10.3390/ijms232113166
Chicago/Turabian StyleShen, Xinjie, Hong Nan, Yuzhuang Jiang, Yujia Zhou, and Xuejun Pan. 2022. "Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant" International Journal of Molecular Sciences 23, no. 21: 13166. https://doi.org/10.3390/ijms232113166
APA StyleShen, X., Nan, H., Jiang, Y., Zhou, Y., & Pan, X. (2022). Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant. International Journal of Molecular Sciences, 23(21), 13166. https://doi.org/10.3390/ijms232113166