Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Samples
3.2. Extraction of DF-Rich Fraction
3.3. Nutritional Composition
3.4. Proportion of Neutral Sugars and Uronic Acids in the DF
3.5. Physicochemical Properties
3.6. Analysis of EPP and NEPP
3.7. Identification and Quantification of Glucosinolates
3.8. Antioxidant Capacity
3.9. In Vitro Human Faecal Fermentation
3.10. Analysis of SCFAs after in vitro Fermentation by GCL
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, M.; Hlaing, M.M.; Ying, D.Y.; Ye, J.H.; Sanguansri, L.; Augustin, M.A. New food ingredients from broccoli by-products: Physical, chemical and technological properties. Int. J. Food Sci. Technol. 2019, 54, 1423–1432. [Google Scholar] [CrossRef]
- FAO. (Food and Agriculture Organization of the United Nations) Crops Data FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 26 May 2021).
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.M. Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baye, K.; Guyot, J.P.; Mouquet-Rivier, C. The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr. 2017, 57, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hümmer, W.; Schreier, P. Analysis of proanthocyanidins. Mol. Nutr. Food Res. 2008, 52, 1381–1398. [Google Scholar] [CrossRef]
- Martínez-Meza, Y.; Reynoso-Camacho, R.; Pérez-Jiménez, J. Nonextractable Polyphenols: A Relevant Group with Health Effects. Diet. Polyphenols 2020, 31–83. [Google Scholar] [CrossRef]
- Pathania, S.; Kaur, N. Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioact. Carbohydrates Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Perez-Pirotto, C.; Moraga, G.; Quiles, A.; Hernando, I.; Cozzano, S.; Arcia, P. Techno functional characterization of green-extracted soluble fibre from orange by-product. LWT 2022, 166, 113765. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Benito, M.J.; Martín, A.; de Guía Córdoba, M.; Ruíz-Moyano, S.; Casquete, R. Improve the functional properties of dietary fibre isolated from broccoli by-products by using different technologies. Innov. Food Sci. Emerg. Technol. 2022, 80, 103075. [Google Scholar] [CrossRef]
- Rezende, E.S.V.; Lima, G.C.; Naves, M.M.V. Dietary fibers as beneficial microbiota modulators: A proposal classification by prebiotic categories. Nutrition 2021, 89, 111217. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Yegin, S.; Kopec, A.; Kitts, D.D.; Zawistowski, J. Dietary fiber: A functional food ingredient with physiological benefits. In Dietary Sugar, Salt and Fat in Human Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 531–555. [Google Scholar]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Laínez, M.; Periago, M.J. The Bioeconomy: An Opportunity for the Spanish Economy. In Elements of Bioeconomy; IntechOpen: London, UK, 2019; ISBN 978-1-78923-862-4. [Google Scholar]
- Dong, W.; Wang, D.; Hu, R.; Long, Y.; Lv, L. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Res. Int. 2020, 136, 109497. [Google Scholar] [CrossRef]
- Li, B.; Akram, M.; Al-Zuhair, S.; Elnajjar, E.; Munir, M.T. Subcritical water extraction of phenolics, antioxidants and dietary fibres from waste date pits. J. Environ. Chem. Eng. 2020, 8, 104490. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef]
- United States Department of Agriculture of Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169331/nutrients (accessed on 13 July 2021).
- Schäfer, J.; Stanojlovic, L.; Trierweiler, B.; Bunzel, M. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var italica) stems. Food Res. Int. 2017, 93, 43–51. [Google Scholar] [CrossRef]
- Campas-Baypoli, O.N.; Snchez-Machado, D.I.; Bueno-Solano, C.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; López-Cervantes, J. Biochemical composition and physicochemical properties of broccoli flours. Int. J. Food Sci. Nutr. 2009, 60, 163–173. [Google Scholar] [CrossRef]
- Brito, T.B.N.; Lima, L.R.S.; Santos, M.C.B.; Moreira, R.F.A.; Cameron, L.C.; Fai, A.E.C.; Ferreira, M.S.L. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chem. 2021, 339, 127882. [Google Scholar] [CrossRef]
- Miyada, T.; Nakajima, A.; Ebihara, K. Iron bound to pectin is utilised by rats. Br. J. Nutr. 2011, 106, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Femenia, A.; Bestard, M.J.; Sanjuan, N.; Rosselló, C.; Mulet, A. Effect of rehydration temperature on the cell wall components of broccoli (Brassica oleracea L. Var. italica) plant tissues. J. Food Eng. 2000, 46, 157–163. [Google Scholar] [CrossRef]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Nie, S.; Li, X.; Huang, X.; Li, Q. Characteristics of the water- And alkali-soluble hemicelluloses fractionated by sequential acidification and graded-ethanol from sweet maize stems. Molecules 2019, 24, 212. [Google Scholar] [CrossRef] [Green Version]
- Mendez, D.A.; Fabra, M.J.; Martínez-Abad, A.; Martínez-Sanz, M.; Gorria, M.; López-Rubio, A. Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocoll. 2021, 120, 106957. [Google Scholar] [CrossRef]
- Belkheiri, A.; Forouhar, A.; Ursu, A.V.; Dubessay, P.; Pierre, G.; Delattre, C.; Djelveh, G.; Abdelkafi, S.; Hamdami, N.; Michaud, P. Extraction, Characterization, and Applications of Pectins from Plant By-Products. Appl. Sci. 2021, 11, 6596. [Google Scholar] [CrossRef]
- Baenas, N.; Nuñez-Gómez, V.; Navarro-González, I.; Sánchez-Martínez, L.; García-Alonso, J.; Periago, M.J.; González-Barrio, R. Raspberry dietary fibre: Chemical properties, functional evaluation and prebiotic in vitro effect. LWT 2020, 134, 110140. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zeng, X.; Huang, J.; Yuan, X.; Wang, Q.; Ma, L. Dietary fiber extracted from pomelo fruitlets promotes intestinal functions, both in vitro and in vivo. Carbohydr. Polym. 2021, 252, 117186. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Schiller, L.R.; Pardi, D.S.; Sellin, J.H. Chronic Diarrhea: Diagnosis and Management. Clin. Gastroenterol. Hepatol. 2017, 15, 182–193.e3. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-derived by-products—A promising source of bioactive ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 2: Phenolic acids. Food Chem. 2012, 135, 2287–2292. [Google Scholar] [CrossRef]
- Gupta, P.; De, B. Differential responses of cell wall bound phenolic compounds in sensitive and tolerant varieties of rice in response to salinity. Plant Signal. Behav. 2017, 12, e1379643. [Google Scholar] [CrossRef]
- Lv, Q.; Li, X.; Fan, B.; Zhu, C.; Chen, Z. The Cellular and Subcellular Organization of the Glucosinolate–Myrosinase System against Herbivores and Pathogens. Int. J. Mol. Sci. 2022, 23, 1577. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Raes, K.; Vanhoutte, H.; Coelus, S.; Smagghe, G.; Van Camp, J. Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. J. Chromatogr. A 2015, 1402, 60–70. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Valverde, J.; Kehoe, K.; Reilly, K.; Rai, D.K.; Barry-Ryan, C. Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica oleracea L. ssp. italica) Florets and Byproducts. Food Bioprocess Technol. 2014, 7, 1310–1321. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem. 2018, 245, 1204–1211. [Google Scholar] [CrossRef]
- Blaut, M. Composition and function of the gut microbiome. In The Gut Microbiome in Health and Disease; Springer International Publishing: Berlin, Germany, 2018; pp. 5–30. ISBN 9783319905457. [Google Scholar]
- Rios-Covian, D.; González, S.; Nogacka, A.M.; Arboleya, S.; Salazar, N.; Gueimonde, M.; de los Reyes-Gavilán, C.G. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front. Microbiol. 2020, 11, 973. [Google Scholar] [CrossRef]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef]
- Prandi, B.; Baldassarre, S.; Babbar, N.; Bancalari, E.; Vandezande, P.; Hermans, D.; Bruggeman, G.; Gatti, M.; Elst, K.; Sforza, S. Pectin oligosaccharides from sugar beet pulp: Molecular characterization and potential prebiotic activity. Food Funct. 2018, 9, 1557–1569. [Google Scholar] [CrossRef]
- Gallotti, B.; Galvao, I.; Leles, G.; Quintanilha, M.F.; Souza, R.O.; Miranda, V.C.; Rocha, V.M.; Trindade, L.M.; Jesus, L.C.L.; Mendes, V.; et al. Effects of Dietary Fiber Intake in Chemotherapy-Induced Mucositis in Murine Model. Br. J. Nutr. 2021, 126, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Widaningrum; Flanagan, B.M.; Williams, B.A.; Sonni, F.; Mikkelsen, D.; Gidley, M.J. Fruit and vegetable insoluble dietary fibre in vitro fermentation characteristics depend on cell wall type. Bioact. Carbohydrates Diet. Fibre 2020, 23, 100223. [Google Scholar] [CrossRef]
- Bang, S.-J.; Kim, G.; Lim, M.Y.; Song, E.-J.; Jung, D.-H.; Kum, J.-S.; Nam, Y.-D.; Park, C.-S.; Seo, D.-H. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shock, T.; Badang, L.; Ferguson, B.; Martinez-Guryn, K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J. Nutr. Biochem. 2021, 95, 108631. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, J.L.; Liu, X.; Charron, C.S.; Novotny, J.A.; Jeffery, E.H.; Seifried, H.E.; Ross, S.A.; Miller, M.J.; Swanson, K.S.; Holscher, H.D. Broccoli consumption affects the human gastrointestinal microbiota. J. Nutr. Biochem. 2019, 63, 27–34. [Google Scholar] [CrossRef]
- Alves-Santos, A.M.; Sugizaki, C.S.A.; Lima, G.C.; Naves, M.M.V. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Gómez, V.; Baenas, N.; Navarro-González, I.; García-Alonso, J.; Moreno, D.A.; González-Barrio, R.; Jesús Periago-Castón, M. Seasonal Variation of Health-Promoting Bioactives in Broccoli and Methyl-Jasmonate Pre-Harvest Treatments to Enhance Their Contents. Foods 2020, 9, 1371. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of AOAC International—20th Edition. 2016. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367 (accessed on 3 January 2022).
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; DeVries, J.W.; Furda, I. Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 1988, 71, 1017–1023. [Google Scholar] [CrossRef]
- Englyst, H.N.; Quigley, M.E.; Hudson, G.J.; Cummings, J.H. Determination of dietary fibre as non-starch polysaccharides by gas-liquid chromatography. Analyst 1992, 117, 1707–1714. [Google Scholar] [CrossRef]
- Scott, R.W. Colorimetric Determination of Hexuronic Acids in Plant Materials. Anal. Chem. 1979, 51, 936–941. [Google Scholar] [CrossRef]
- Umaña, M.; Eim-Iznardo, V.; Roselló, M. Cinéticas de extracción y caracterización de pectinas de los subproductos de naranja mediante asistencia acústica. Master’s Thesis, Universitat de les Illes Balears, Palma, Spain, 2016. [Google Scholar]
- Arranz, S.; Saura-Calixto, F.; Shaha, S.; Kroon, P.A. High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J. Agric. Food Chem. 2009, 57, 7298–7303. [Google Scholar] [CrossRef]
- Francisco, M.; Moreno, D.A.; Cartea, M.E.; Ferreres, F.; García-Viguera, C.; Velasco, P. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. J. Chromatogr. A 2009, 1216, 6611–6619. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Moreno, D.A.; García-Viguera, C. Selecting sprouts of Brassicaceae for optimum phytochemical composition. J. Agric. Food Chem. 2012, 60, 11409–11420. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- González-Barrio, R.; Edwards, C.A.; Crozier, A. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: In vivo and in vitro studies. Drug Metab. Dispos. 2011, 39, 1680–1688. [Google Scholar] [CrossRef]
Parameters | DBS | TFB | IFB |
---|---|---|---|
Moisture | 0.3 ± 0.0 a | 0.2 ± 0.0 b | 0.2 ± 0.0 b |
Protein | 5.6 ± 0.2 a | 4.0 ± 0.8 b | 3.8 ± 0.0 b |
Total carbohydrates ** | 43.9 ± 0.4 a | 19.3 ± 1.2 c | 24.4 ± 0.7 b |
Total dietary fibre (TDF) | 38.0 ± 0.4 c | 68.9 ± 0.4 a | 60.8 ± 0.4 b |
Insoluble dietary fibre (IDF) | 34.9 ± 0.1 b | 54.3 ± 0.4 a | 54.0 ± 0.1 a |
Soluble dietary fibre (SDF) | 3.2 ± 0.5 c | 14.7 ± 0.1 a | 6.8 ± 1.0 b |
Total ash | 12.2 ± 0.2 a | 7.5 ± 0.0 c | 10.8 ± 0.2 b |
K | 47365.8 ± 371.7 a | 14540.0 ± 294.8 c | 31724.1 ± 1613.2 b |
Ca | 4887.8 ± 56.4 b | 6472.4 ± 308.9 a | 6234.7 ± 331.9 a |
P | 4118.5 ± 31.2 a | 4138.5 ± 170.4 a | 2650.5 ± 145.3 b |
Na | 2920.1 ± 34.2 b | 887.1 ± 56.7 c | 8166.1 ± 464.5 a |
Mg | 2555.2 ± 39.2 a | 1332.7 ± 73.6 b | 2629.3 ± 148.9 a |
Mn | 39.6 ± 0.6 a | 24.4 ± 1.2 b | 39.9 ± 1.4 a |
Zn | 23.1 ± 0.8 b | 14.6 ± 0.7 c | 27.9 ± 2.9 a |
Fe | 15.7 ± 0.8 c | 25.0 ± 1.8 a | 18.9 ± 1.4 b |
% Neutral Sugars | DBS | TFB | IFB |
---|---|---|---|
Rhamnose | 1.8 ± 0.1 b | 1.7 ± 0.1 b | 2.3 ± 0.4 a |
Fucose | 0.8 ± 0.0 b | 0.7 ± 0.1 b | 1.1 ± 0.1 a |
Arabinose | 15.9 ± 0.6 b | 16.7 ± 0.8 b | 18.5 ± 0.5 a |
Xylose | 16.4 ± 0.5 b | 14.3 ± 0.8 c | 20.2 ± 0.6 a |
Mannose | 4.5 ± 0.1 a | 2.4 ± 0.2 c | 2.7 ± 0.1 b |
Galactose | 10.0 ± 0.3 b | 11.4 ± 0.2 a | 10.7 ± 0.7 ab |
Glucose | 20.6 ± 2.3 a | 3.6 ± 0.3 b | 4.0 ± 0.3 b |
Uronic acids | 30.1 ± 2.8 c | 49.3 ± 1.6 a | 40.6 ± 1.0 b |
% NSP ** | |||
Cellulose 1 | 18.5 ± 2.1 a | 3.3 ± 0.2 b | 3.6 ± 0.3 b |
Hemicellulose 2 | 24.1 ± 0.3 a | 17.6 ± 1.2 b | 24.4 ± 0.6 a |
Pectin 3 | 57.8 ± 2.8 c | 79.1 ± 1.2 a | 72.1 ± 0.7 b |
Ratios | DBS | TFB | IFB |
---|---|---|---|
Man contribution 1 | 0.3 ± 0.0 a | 0.2 ± 0.0 b | 0.1 ± 0.0 c |
Linearity of pectins 2 | 0.7 ± 0.1 c | 1.1 ± 0.1 a | 0.8 ± 0.0 b |
Rha/Uro contribution 3 | 0.1 ± 0.0 a | 0.03 ± 0.00 b | 0.1 ± 0.0 a |
RG-I branching 4 | 14.7± 1.0 ab | 16.7 ± 1.3 a | 12.9 ± 1.9 b |
Physicochemical Properties | DBS | TFB | IFB |
---|---|---|---|
Water retention capacity (g of water/g) | 6.4 ± 0.9 b | 3.9 ± 0.3 c | 8.2 ± 0.8 a |
Swelling capacity (mL of water/g) | 17.1 ± 0.8 b | 10.2 ± 0.8 c | 20.3 ± 0.8 a |
Fat absorption capacity (g of oil/g) | 4.0 ± 0.0 a | 3.7 ± 0.0 b | 2.6 ± 0.1 c |
Osmotic pressure (mmol/kg) | 225.0 ± 1.0 a | 157.0 ± 1.0 c | 187.3 ± 3.8 b |
Total phenolic compounds(mg GAE/100 g of d.w.) | 154.7 ± 8.3 a | 39.3 ± 2.4 c | 139.0 ± 8.7 b |
FRAP (µmol TE/100 g of d.w.) | 264.0 ± 9.6 a | 102.7 ± 2.1 c | 229.6 ± 10.4 b |
ORAC (µmol TE/100 g of d.w.) | 2821.7 ± 96.5 a | 1666.9 ± 40.8 c | 1856.4 ± 19.0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Gómez, V.; González-Barrio, R.; Baenas, N.; Moreno, D.A.; Periago, M.J. Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. Int. J. Mol. Sci. 2022, 23, 13309. https://doi.org/10.3390/ijms232113309
Núñez-Gómez V, González-Barrio R, Baenas N, Moreno DA, Periago MJ. Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. International Journal of Molecular Sciences. 2022; 23(21):13309. https://doi.org/10.3390/ijms232113309
Chicago/Turabian StyleNúñez-Gómez, Vanesa, Rocío González-Barrio, Nieves Baenas, Diego A. Moreno, and Mª Jesús Periago. 2022. "Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates" International Journal of Molecular Sciences 23, no. 21: 13309. https://doi.org/10.3390/ijms232113309
APA StyleNúñez-Gómez, V., González-Barrio, R., Baenas, N., Moreno, D. A., & Periago, M. J. (2022). Dietary-Fibre-Rich Fractions Isolated from Broccoli Stalks as a Potential Functional Ingredient with Phenolic Compounds and Glucosinolates. International Journal of Molecular Sciences, 23(21), 13309. https://doi.org/10.3390/ijms232113309