The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants
Abstract
:1. Introduction
2. Methods
3. Results
3.1. The Role of Perinatal Infection and Inflammation in PDA
3.1.1. Chorioamnionitis
3.1.2. Inflammation and PDA
3.2. Antenatal Steroid Usage and Its Impact on PDA Closure
3.3. Potential Biomarkers Involved in PDA Pathogenesis
3.4. Pharmacological Treatment in PDA Closure
3.4.1. Indomethacin
3.4.2. Ibuprofen
3.4.3. Acetaminophen
3.4.4. Resistance to Pharmacological Treatment
3.4.5. Drugs in the Future
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamrick, S.E.; Hansmann, G. Patent ductus arteriosus of the preterm infant. Pediatrics 2010, 125, 1020–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, M.M.; Freedom, R.M.; Silver, M.D.; Olley, P.M. The morphology of the human newborn ductus arteriosus: A reappraisal of its structure and closure with special reference to prostaglandin E1 therapy. Hum. Pathol. 1981, 12, 1123–1136. [Google Scholar] [CrossRef]
- Tynan, M. The ductus arteriosus and its closure. N. Engl. J. Med. 1993, 329, 1570–1572. [Google Scholar] [CrossRef] [PubMed]
- Olley, P.M.; Coceani, F. Prostaglandins and the ductus arteriosus. Annu. Rev. Med. 1981, 32, 375–385. [Google Scholar] [CrossRef]
- Fay, F.S. Guinea pig ductus arteriosus. I. Cellular and metabolic basis for oxygen sensitivity. Am. J. Physiol. 1971, 221, 470–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, R.; Stevenson, G.; Dooley, T.; Franklin, D.; Kawabori, I.; Pearlman, A. Pulsed Doppler echocardiographic determination of time of ductal closure in normal newborn infants. J. Pediatr. 1981, 98, 443–448. [Google Scholar] [CrossRef]
- Clyman, R.I.; Couto, J.; Murphy, G.M. Patent ductus arteriosus: Are current neonatal treatment options better or worse than no treatment at all? Semin Perinatol. 2012, 36, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Connuck, D.; Sun, J.P.; Super, D.M.; Kirchner, H.L.; Fradley, L.G.; Harcar-Sevcik, R.A.; Salvator, A.; Singer, L.; Mehta, S.K. Incidence of patent ductus arteriosus and patent foramen ovale in normal infants. Am. J. Cardiol. 2002, 89, 244–247. [Google Scholar] [CrossRef]
- Ovali, F. Molecular and Mechanical Mechanisms Regulating Ductus Arteriosus Closure in Preterm Infants. Front. Pediatr. 2020, 8, 516. [Google Scholar] [CrossRef]
- Ferguson, J.M. Pharmacotherapy for patent ductus arteriosus closure. Congenit. Heart Dis. 2019, 14, 52–56. [Google Scholar] [CrossRef]
- Noori, S.; McCoy, M.; Friedlich, P.; Bright, B.; Gottipati, V.; Seri, I.; Sekar, K. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics 2009, 123, e138–e144. [Google Scholar] [CrossRef] [PubMed]
- Finlay, E.R.; Subhedar, N.V. Pulmonary haemorrhage in preterm infants. Eur. J. Pediatr. 2000, 159, 870–871. [Google Scholar] [CrossRef]
- Fowlie, P.W.; Davis, P.G. Prophylactic indomethacin for preterm infants: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal. Ed. 2003, 88, F464–F466. [Google Scholar] [CrossRef]
- Redline, R.W. Placental and Other Perinatal Risk Factors for Chronic Lung Disease in Very Low Birth Weight Infants. Pediatr. Res. 2002, 52, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Kluckow, M.; Evans, N. Ductal shunting, high pulmonary blood flow, and pulmonary hemorrhage. J. Pediatr. 2000, 137, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.; Poindexter, B.B.; Perritt, R.; Lemons, J.A.; Bauer, C.R.; Ehrenkranz, R.A.; Stoll, B.J.; Poole, K.; Wright, L.L.; Neonatal Research, N. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J. Pediatr. 2005, 147, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Fowlie, P.W.; Davis, P.G. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst. Rev. 2002, 7, Cd000174. [Google Scholar] [CrossRef]
- Jones, R.W.; Pickering, D. Persistent ductus arteriosus complicating the respiratory distress syndrome. Arch. Dis. Child. 1977, 52, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Dollberg, S.; Lusky, A.; Reichman, B. Patent ductus arteriosus, indomethacin and necrotizing enterocolitis in very low birth weight infants: A population-based study. J. Pediatr. Gastroenterol. Nutr. 2005, 40, 184–188. [Google Scholar] [CrossRef]
- Drougia, A.; Giapros, V.; Krallis, N.; Theocharis, P.; Nikaki, A.; Tzoufi, M.; Andronikou, S. Incidence and risk factors for cerebral palsy in infants with perinatal problems: A 15-year review. Early Hum. Dev. 2007, 83, 541–547. [Google Scholar] [CrossRef]
- Evans, N.; Kluckow, M. Early ductal shunting and intraventricular haemorrhage in ventilated preterm infants. Arch. Dis. Child. Fetal Neonatal. Ed. 1996, 75, F183–F186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pararas, M.V.; Skevaki, C.L.; Kafetzis, D.A. Preterm birth due to maternal infection: Causative pathogens and modes of prevention. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Sosenko, I.R.S.; Chandar, J.; Hummler, H.; Claire, N.; Bancalari, E. Influence of infection on patent ductus arteriosus and chronic lung disease in premature infants weighing 1000 grams or less. J. Pediatr. 1996, 128, 470–478. [Google Scholar] [CrossRef]
- Chiang, P.J.; Hsu, J.F.; Tsai, M.H.; Lien, R.; Chiang, M.C.; Huang, H.R.; Chiang, C.C.; Liang, H.F.; Chu, S.M. The impact of patent ductus arteriosus in neonates with late onset sepsis: A retrospective matched-case control study. Pediatr. Neonatol. 2012, 53, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Humberg, A.; Fortmann, I.; Siller, B.; Kopp, M.V.; Herting, E.; Gopel, W.; Hartel, C.; German Neonatal Network; German Neonatal Network, German Center for Lung Research and Priming Immunity at the beginning of life (PRIMAL) Consortium. Preterm birth and sustained inflammation: Consequences for the neonate. Semin Immunopathol. 2020, 42, 451–468. [Google Scholar] [CrossRef]
- Chinn, J.; Sedighim, S.; Kirby, K.A.; Hohmann, S.; Hameed, A.B.; Jolley, J.; Nguyen, N.T. Characteristics and Outcomes of Women with COVID-19 Giving Birth at US Academic Centers During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2120456. [Google Scholar] [CrossRef]
- Lin, T.T.; Zhang, C.; Chen, L.; Jin, L.; Lin, X.H.; Pan, J.X.; Dennis, C.L.; Mol, B.W.; Huang, H.F.; Wu, Y.T. COVID-19 Lockdown Increased the Risk of Preterm Birth. Front. Med. 2021, 8, 705943. [Google Scholar] [CrossRef]
- Chmielewska, B.; Barratt, I.; Townsend, R.; Kalafat, E.; van der Meulen, J.; Gurol-Urganci, I.; O'Brien, P.; Morris, E.; Draycott, T.; Thangaratinam, S.; et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: A systematic review and meta-analysis. Lancet Glob. Health 2021, 9, e759–e772. [Google Scholar] [CrossRef]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; do Vale, M.S.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality among Pregnant Women with and without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef]
- Souza, R.T.; Cecatti, J.G.; Pacagnella, R.C.; Ribeiro-Do-Valle, C.C.; Luz, A.G.; Lajos, G.J.; Nobrega, G.M.; Griggio, T.B.; Charles, C.M.; Bento, S.F.; et al. The COVID-19 pandemic in Brazilian pregnant and postpartum women: Results from the REBRACO prospective cohort study. Sci. Rep. 2022, 12, 11758. [Google Scholar] [CrossRef]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. CMAJ 2021, 193, E540–E548. [Google Scholar] [CrossRef] [PubMed]
- Greenbury, S.F.; Longford, N.; Ougham, K.; Angelini, E.D.; Battersby, C.; Uthaya, S.; Modi, N. Changes in neonatal admissions, care processes and outcomes in England and Wales during the COVID-19 pandemic: A whole population cohort study. BMJ Open 2021, 11, e054410. [Google Scholar] [CrossRef] [PubMed]
- Yasa, B.; Memur, S.; Ozturk, D.Y.; Bagci, O.; Uslu, S.I.; Polat, I.; Cetinkaya, M. Severity of Maternal SARS-CoV-2 Infection in Pregnancy Predicts Neonatal Outcomes. Am. J. Perinatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.S.; Duff, P. Progress in pathogenesis and management of clinical intraamniotic infection. Am. J. Obs. Gynecol. 1991, 164, 1317–1326. [Google Scholar] [CrossRef]
- Higgins, R.D.; Saade, G.; Polin, R.A.; Grobman, W.A.; Buhimschi, I.A.; Watterberg, K.; Silver, R.M.; Raju, T.N.K. Evaluation and Management of Women and Newborns With a Maternal Diagnosis of Chorioamnionitis: Summary of a Workshop. Obs. Gynecol. 2016, 127, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Redline, R.W.; Faye-Petersen, O.; Heller, D.; Qureshi, F.; Savell, V.; Vogler, C. Amniotic Infection Syndrome: Nosology and Reproducibility of Placental Reaction Patterns. Pediatr. Dev. Pathol. 2003, 6, 435–448. [Google Scholar] [CrossRef]
- SALAFIA, C.M.; WEIGL, C.; SILBERMAN, L. The Prevalence and Distribution of Acute Placental Inflammation in Uncomplicated Term Pregnancies. Obstet. Gynecol. 1989, 73, 383–389. [Google Scholar] [CrossRef]
- Blanc, W.A. Pathology of the placenta, membranes, and umbilical cord in bacterial, fungal, and viral infections in man. Monogr. Pathol. 1981, 22, 67–132. [Google Scholar]
- Gomez, R.; Romero, R.; Ghezzi, F.; Yoon, B.H.; Mazor, M.; Berry, S.M. The fetal inflammatory response syndrome. Am. J. Obstet. Gynecol. 1998, 179, 194–202. [Google Scholar] [CrossRef]
- Won Choi, C.; Il Kim, B.; Kim, H.S.; Dong Park, J.; Choi, J.H.; Woo Son, D. Increase of interleukin-6 in tracheal aspirate at birth: A predictor of subsequent bronchopulmonary dysplasia in preterm infants. Acta Pædiatrica 2006, 95, 38–43. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, E.-K.; Choi, C.W.; Kim, H.-S.; Kim, B.I.; Choi, J.-H.; Park, J.S.; Moon, K.C. Intrauterine inflammation as a risk factor for persistent ductus arteriosus patency after cyclooxygenase inhibition in extremely low birth weight infants. J. Pediatr. 2010, 157, 745–750.e741. [Google Scholar] [CrossRef] [PubMed]
- Park, H.W.; Choi, Y.S.; Kim, K.S.; Kim, S.N. Chorioamnionitis and Patent Ductus Arteriosus: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seon, H.-S.; Lee, J.-B.; Kim, I.-U.; Kim, S.-H.; Lee, J.-H.; Kim, D.-H.; Kim, H.-S. Association with Ductus Arteriosus Closure by Ibuprofen and Intrauterine Inflammation in Very Low Birth Weight Infants. Korean J. Perinatol. 2013, 24, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Galinsky, R.; Polglase, G.R.; Hooper, S.B.; Black, M.J.; Moss, T.J. The consequences of chorioamnionitis: Preterm birth and effects on development. J. Pregnancy 2013, 2013, 412831. [Google Scholar] [CrossRef] [Green Version]
- Behbodi, E.; Villamor-Martínez, E.; Degraeuwe, P.L.J.; Villamor, E. Chorioamnionitis appears not to be a Risk Factor for Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 37967. [Google Scholar] [CrossRef] [Green Version]
- Hartling, L.; Liang, Y.; Lacaze-Masmonteil, T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal. Ed. 2012, 97, F8–F17. [Google Scholar] [CrossRef]
- Yamada, N.; Sato, Y.; Moriguchi-Goto, S.; Yamashita, A.; Kodama, Y.; Sameshima, H.; Asada, Y. Histological severity of fetal inflammation is useful in predicting neonatal outcome. Placenta 2015, 36, 1490–1493. [Google Scholar] [CrossRef]
- Vucovich, M.M.; Cotton, R.B.; Shelton, E.L.; Goettel, J.A.; Ehinger, N.J.; Poole, S.D.; Brown, N.; Wynn, J.L.; Paria, B.C.; Slaughter, J.C.; et al. Aminoglycoside-mediated relaxation of the ductus arteriosus in sepsis-associated PDA. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H732–H740. [Google Scholar] [CrossRef] [Green Version]
- Clyman, R.I. The role of patent ductus arteriosus and its treatments in the development of bronchopulmonary dysplasia. Semin Perinatol. 2013, 37, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Tita, A.T.; Andrews, W.W. Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Pugni, L.; Pietrasanta, C.; Acaia, B.; Merlo, D.; Ronchi, A.; Ossola, M.W.; Bosari, S.; Mosca, F. Chorioamnionitis and neonatal outcome in preterm infants: A clinical overview. J. Matern. Fetal Neonatal. Med. 2016, 29, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Elimian, A.; Verma, U.; Beneck, D.; Cipriano, R.; Visintainer, P.; Tejani, N. Histologic chorioamnionitis, antenatal steroids, and perinatal outcomes. Obs. Gynecol. 2000, 96, 333–336. [Google Scholar] [CrossRef]
- Otsubo, Y.; Hashimoto, K.; Kanbe, T.; Sumi, M.; Moriuchi, H. Association of cord blood chemokines and other biomarkers with neonatal complications following intrauterine inflammation. PLoS ONE 2017, 12, e0175082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrasanta, C.; Pugni, L.; Merlo, D.; Acaia, B.; Consonni, D.; Ronchi, A.; Ossola, M.W.; Ghirardi, B.; Bottino, I.; Cribiù, F.M. Impact of different stages of intrauterine inflammation on outcome of preterm neonates: Gestational age-dependent and-independent effect. PLoS ONE 2019, 14, e0211484. [Google Scholar] [CrossRef] [PubMed]
- Pham, J.; Moran, K.; Patel, S.; Srinivasan, N. Maternal and Neonatal Factors Associated with Indomethacin-induced Ductal Closure in Extremely-Low-Birth-Weight Infants. Pediatr. Res. Child Health 2020, 3, 1–8. [Google Scholar]
- Ognean, M.L.; Boantă, O.; Kovacs, S.; Zgârcea, C.; Dumitra, R.; Olariu, E.; Andreicuţ, D. Persistent Ductus Arteriosus in Critically Ill Preterm Infants. J. Crit. Care Med. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Green, C.A.; Westreich, D.; Laughon, M.M.; Stamilio, D.M.; Strauss, R.A.; Reese, J.; Shelton, E.L.; Venkatesh, K.K. Association of chorioamnionitis and patent ductus arteriosus in a national U.S. cohort. J. Perinatol. 2021, 41, 119–125. [Google Scholar] [CrossRef]
- Greenberg, M.B.; Anderson, B.L.; Schulkin, J.; Norton, M.E.; Aziz, N. A first look at chorioamnionitis management practice variation among US obstetricians. Infect. Dis. Obs. Gynecol. 2012, 2012, 628362. [Google Scholar] [CrossRef] [Green Version]
- Galán, G.M. Chorioamnionitis and neonatal morbidity: Current perspectives. Notes 2017, 43, 009. [Google Scholar]
- Çakir, U.; Yildiz, D.; Kahvecioğlu, D.; Okulu, E.; Alan, S.; Erdeve, Ö.; Heper, A.O.; Atasay, B.; Arsan, S. Placenta, secret witness of infant morbidities: The relationship between placental histology and outcome of the premature infant. Turk Patoloji. Derg. 2019, 35, 28–35. [Google Scholar]
- Lee, J.A.; Sohn, J.A.; Oh, S.; Choi, B.M. Perinatal risk factors of symptomatic preterm patent ductus arteriosus and secondary ligation. Pediatr. Neonatol. 2020, 61, 439–446. [Google Scholar] [CrossRef]
- Miracle, X.; Di Renzo, G.C.; Stark, A.; Fanaroff, A.; Carbonell-Estrany, X.; Saling, E. Guideline for the use of antenatal corticosteroids for fetal maturation. J. Perinat. Med. 2008, 36, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilstrap, L.C.; Christensen, R.; Clewell, W.H.; D'Alton, M.E.; Davidson, E.C., Jr.; Escobedo, M.B.; Gjerdingen, D.K.; Goddard-Finegold, J.; Goldenberg, R.L.; Grimes, D.A.; et al. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA J. Am. Med. Assoc. 1995, 273, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Been, J.; Degraeuwe, P.; Kramer, B.; Zimmermann, L. Antenatal steroids and neonatal outcome after chorioamnionitis: A meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Been, J.V.; Rours, I.G.; Kornelisse, R.F.; Lima Passos, V.; Kramer, B.W.; Schneider, T.A.; de Krijger, R.R.; Zimmermann, L.J. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: Effects on neonatal outcome in preterm infants. Am. J. Obs. Gynecol. 2009, 201, 587.e1–587.e8. [Google Scholar] [CrossRef]
- Ahn, H.M.; Park, E.A.; Cho, S.J.; Kim, Y.J.; Park, H.S. The association of histological chorioamnionitis and antenatal steroids on neonatal outcome in preterm infants born at less than thirty-four weeks’ gestation. Neonatology 2012, 102, 259–264. [Google Scholar] [CrossRef]
- Clyman, R.I. Mechanisms Regulating the Ductus Arteriosus. Neonatology 2006, 89, 330–335. [Google Scholar] [CrossRef]
- Clyman, R.I. Ibuprofen and Patent Ductus Arteriosus. N. Engl. J. Med. 2000, 343, 728–730. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, X.; Li, D.; Shi, Y. Related Factors of Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-Analysis. Front. Pediatr. 2020, 8, 605879. [Google Scholar] [CrossRef]
- Yeung, M.Y. Hypotension, persistent ductus arteriosus and the underlying adrenal insufficiency in low gestation newborns. World J. Pediatr. 2006, 1, 8–13. [Google Scholar]
- Shelton, E.L.; Waleh, N.; PLoSa, E.J.; Benjamin, J.T.; Milne, G.L.; Hooper, C.W.; Ehinger, N.J.; Poole, S.; Brown, N.; Seidner, S.; et al. Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: Comparison with baboon data. Pediatr. Res. 2018, 84, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Cheong, J.L.; Ehrenkranz, R.A.; Halliday, H.L. Early (<8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2017, 10, CD001146. [Google Scholar] [CrossRef] [PubMed]
- Halliday, H.L.; Ehrenkranz, R.A. Early postnatal (<96 hours) corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst. Rev. 2003, 1, CD001146. [Google Scholar] [CrossRef]
- Sorokin, Y.; Romero, R.; Mele, L.; Iams, J.D.; Peaceman, A.M.; Leveno, K.J.; Harper, M.; Caritis, S.N.; Mercer, B.M.; Thorp, J.M. Umbilical cord serum interleukin-6, C-reactive protein, and myeloperoxidase concentrations at birth and association with neonatal morbidities and long-term neurodevelopmental outcomes. Am. J. Perinatol. 2014, 31, 717–726. [Google Scholar] [PubMed] [Green Version]
- Hofer, N.; Kothari, R.; Morris, N.; Müller, W.; Resch, B. The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am. J. Obstet. Gynecol. 2013, 209, 542.e511–542.e541. [Google Scholar] [CrossRef]
- Yoon, B.H.; Park, C.W.; Chaiworapongsa, T. Intrauterine infection and the development of cerebral palsy. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 124–127. [Google Scholar] [CrossRef]
- Yoon, B.H.; Romero, R.; Kim, K.S.; Park, J.S.; Ki, S.H.; Kim, B.I.; Jun, J.K. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am. J. Obstet. Gynecol. 1999, 181, 773–779. [Google Scholar] [CrossRef]
- Yoon, B.H.; Romero, R.; Yang, S.H.; Jun, J.K.; Kim, I.-O.; Choi, J.-H.; Syn, H.C. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am. J. Obstet. Gynecol. 1996, 174, 1433–1440. [Google Scholar] [CrossRef]
- Olsson, K.W.; Larsson, A.; Jonzon, A.; Sindelar, R. Exploration of potential biochemical markers for persistence of patent ductus arteriosus in preterm infants at 22–27 weeks’ gestation. Pediatr. Res. 2019, 86, 333–338. [Google Scholar] [CrossRef]
- Akkaya Fırat, A.; Alıcı Davutoğlu, E.; Özel, A.; Güngör, Z.B.; Madazlı, R.; Ulakoğlu Zengin, E. Hypoxia-inducible factor-1α, hepcidin and interleukin-6 levels in pregnancies with preterm labour. J. Obstet. Gynaecol. 2020, 40, 813–819. [Google Scholar] [CrossRef]
- Romero, R.; Chaemsaithong, P.; Chaiyasit, N.; Docheva, N.; Dong, Z.; Kim, C.J.; Kim, Y.M.; Kim, J.-S.; Qureshi, F.; Jacques, S.M.; et al. CXCL10 and IL-6: Markers of two different forms of intra-amniotic inflammation in preterm labor. Am. J. Reprod. Immunol. 2017, 78, e12685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.D.; Dudley, D.J.; Edwin, S.S.; Schiller, S.L. Interleukin-6 stimulates prostaglandin production by human amnion and decidual cells. Eur. J. Pharmacol. 1991, 192, 189–191. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Ishita Bhavsar, C.S.M.; Al-Sabbagh, M. Macrophage Inflammatory Protein-1 Alpha (MIP-1 alpha)/CCL3: As a Biomarker. Gen. Methods Biomark. Res. Appl. 2015, 1, 223–249. [Google Scholar]
- Pacora, P.; Chaiworapongsa, T.; Maymon, E.; Kim, Y.M.; Gomez, R.; Yoon, B.H.; Ghezzi, F.; Berry, S.M.; Qureshi, F.; Jacques, S.M.; et al. Funisitis and chorionic vasculitis: The histological counterpart of the fetal inflammatory response syndrome. J. Matern. Fetal Neonatal. Med. 2002, 11, 18–25. [Google Scholar] [CrossRef]
- Guo, L.; Liu, M.F.; Huang, J.N.; Li, J.M.; Jiang, J.; Wang, J.A. Role of interleukin-15 in cardiovascular diseases. J. Cell Mol. Med. 2020, 24, 7094–7101. [Google Scholar] [CrossRef]
- Iwasaki, S.; Minamisawa, S.; Yokoyama, U.; Akaike, T.; Quan, H.; Nagashima, Y.; Nishimaki, S.; Ishikawa, Y.; Yokota, S. Interleukin-15 inhibits smooth muscle cell proliferation and hyaluronan production in rat ductus arteriosus. Pediatr. Res. 2007, 62, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, S.M.; Ruoss, J.L.; Wynn, J.L. IL-17 in neonatal health and disease. Am. J. Reprod. Immunol. 2018, 79, e12800. [Google Scholar] [CrossRef]
- Maione, F.; Cicala, C.; Liverani, E.; Mascolo, N.; Perretti, M.; D'Acquisto, F. IL-17A increases ADP-induced platelet aggregation. Biochem. Biophys. Res. Commun. 2011, 408, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Oncel, M.Y.; Erdeve, O. Oral medications regarding their safety and efficacy in the management of patent ductus arteriosus. World J. Clin. Pediatr. 2016, 5, 75–81. [Google Scholar] [CrossRef]
- Evans, P.; O'Reilly, D.; Flyer, J.N.; Mitra, S.; Soll, R. Indomethacin for symptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst. Rev. 2018, 2018, CD013133. [Google Scholar] [CrossRef]
- Hirt, D.; Van Overmeire, B.; Treluyer, J.M.; Langhendries, J.P.; Marguglio, A.; Eisinger, M.J.; Schepens, P.; Urien, S. An optimized ibuprofen dosing scheme for preterm neonates with patent ductus arteriosus, based on a population pharmacokinetic and pharmacodynamic study. Br. J. Clin. Pharm. 2008, 65, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardanzellu, F.; Neroni, P.; Dessì, A.; Fanos, V. Paracetamol in Patent Ductus Arteriosus Treatment: Efficacious and Safe? Biomed. Res. Int. 2017, 2017, 1438038. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; Anderson, B.; Simons, S.; van Overmeire, B. Paracetamol to induce ductus arteriosus closure: Is it valid? Arch. Dis. Child. 2013, 98, 462–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaleh, K.; Smyth, J.A.; Roberts, R.S.; Solimano, A.; Asztalos, E.V.; Schmidt, B. Prevention and 18-month outcomes of serious pulmonary hemorrhage in extremely low birth weight infants: Results from the trial of indomethacin prophylaxis in preterms. Pediatrics 2008, 121, e233–e238. [Google Scholar] [CrossRef]
- Evans, N. Preterm patent ductus arteriosus: A continuing conundrum for the neonatologist? Semin Fetal Neonatal. Med. 2015, 20, 272–277. [Google Scholar] [CrossRef]
- Fanos, V.; Marcialis, M.A.; Bassareo, P.P.; Antonucci, R.; Zaffanello, M.; Dessì, A.; Iacovidou, N. Renal safety of Non Steroidal Anti Inflammatory Drugs (NSAIDs) in the pharmacologic treatment of patent ductus arteriosus. J. Matern. Fetal Neonatal. Med. 2011, 24 (Suppl. S1), 50–52. [Google Scholar] [CrossRef]
- Fujii, A.M.; Brown, E.; Mirochnick, M.; O'Brien, S.; Kaufman, G. Neonatal necrotizing enterocolitis with intestinal perforation in extremely premature infants receiving early indomethacin treatment for patent ductus arteriosus. J. Perinatol. 2002, 22, 535–540. [Google Scholar] [CrossRef] [Green Version]
- El-Mashad, A.E.; El-Mahdy, H.; El Amrousy, D.; Elgendy, M. Comparative study of the efficacy and safety of paracetamol, ibuprofen, and indomethacin in closure of patent ductus arteriosus in preterm neonates. Eur. J. Pediatr. 2017, 176, 233–240. [Google Scholar] [CrossRef]
- Hanna, M.H.; Askenazi, D.J.; Selewski, D.T. Drug-induced acute kidney injury in neonates. Curr. Opin. Pediatr. 2016, 28, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, A.; Walia, R.; Shah, S.S. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst. Rev. 2015, 18, CD003481. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Florez, I.D.; Tamayo, M.E.; Mbuagbaw, L.; Vanniyasingam, T.; Veroniki, A.A.; Zea, A.M.; Zhang, Y.; Sadeghirad, B.; Thabane, L. Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen with Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-analysis. JAMA 2018, 319, 1221–1238. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical pharmacology of ibuprofen in preterm infants: A meta-analysis of published data. MedicalExpress 2014, 1, 55–61. [Google Scholar] [CrossRef]
- Treluyer, J.M.; Gueret, G.; Cheron, G.; Sonnier, M.; Cresteil, T. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: In-vivo/in-vitro correlation and inducibility. Pharmacogenetics 1997, 7, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Marconi, E.; Bettiol, A.; Ambrosio, G.; Perduca, V.; Vannacci, A.; Troiani, S.; Dani, C.; Mugelli, A.; Lucenteforte, E. Efficacy and safety of pharmacological treatments for patent ductus arteriosus closure: A systematic review and network meta-analysis of clinical trials and observational studies. Pharm. Res. 2019, 148, 104418. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Conte, F.; Oncel, M.Y.; Scipione, A.; McNamara, P.J.; Simons, S.; Sinha, R.; Erdeve, O.; Tekgunduz, K.S.; Dogan, M.; et al. Paracetamol for the treatment of patent ductus arteriosus in preterm neonates: A systematic review and meta-analysis. Arch. Dis. Child.-Fetal Neonatal. Ed. 2016, 101, F127–F136. [Google Scholar] [CrossRef]
- Alan, S.; Kahvecioglu, D.; Erdeve, O.; Atasay, B.; Arsan, S. Is paracetamol a useful treatment for ibuprofen-resistant patent ductus arteriosus? Concerning the article by M.Y. Oncel et al: Intravenous paracetamol treatment in the management of patent ductus arteriosus in extremely low birth weight infants. Neonatology 2013, 104, 168–169. [Google Scholar] [CrossRef]
- Lewis, T.R.; Shelton, E.L.; Van Driest, S.L.; Kannankeril, P.J.; Reese, J. Genetics of the patent ductus arteriosus (PDA) and pharmacogenetics of PDA treatment. Semin Fetal Neonatal. Med. 2018, 23, 232–238. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert. Opin. Drug Deliv. 2017, 14, 851–864. [Google Scholar] [CrossRef]
- Cicha, I.; Lyer, S.; Alexiou, C.; Garlichs, C.D. Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging. Nanotechnol. Rev. 2013, 2, 449–472. [Google Scholar] [CrossRef]
- Paul, J.W.; Hua, S.; Ilicic, M.; Tolosa, J.M.; Butler, T.; Robertson, S.; Smith, R. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am. J. Obs. Gynecol. 2017, 216, 283.e1–283.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, P.M.; Caruthers, S.D.; Zhang, H.; Williams, T.A.; Wickline, S.A.; Lanza, G.M. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc. Imaging 2008, 1, 624–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, P.M.; Neubauer, A.M.; Caruthers, S.D.; Harris, T.D.; Robertson, J.D.; Williams, T.A.; Schmieder, A.H.; Hu, G.; Allen, J.S.; Lacy, E.K. Endothelial ανβ3 integrin–targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2103–2109. [Google Scholar] [CrossRef] [Green Version]
- Luderer, F.; Löbler, M.; Rohm, H.W.; Gocke, C.; Kunna, K.; Köck, K.; Kroemer, H.K.; Weitschies, W.; Schmitz, K.-P.; Sternberg, K. Biodegradable sirolimus-loaded poly (lactide) nanoparticles as drug delivery system for the prevention of in-stent restenosis in coronary stent application. J. Biomater. Appl. 2011, 25, 851–875. [Google Scholar] [CrossRef]
- Oduk, Y.; Zhu, W.; Kannappan, R.; Zhao, M.; Borovjagin, A.V.; Oparil, S.; Zhang, J.J. VEGF nanoparticles repair the heart after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H278–H284. [Google Scholar] [CrossRef]
- Shelton, E.L.; Singh, G.K.; Nichols, C.G. Novel drug targets for ductus arteriosus manipulation: Looking beyond prostaglandins. Semin Perinatol. 2018, 42, 221–227. [Google Scholar] [CrossRef]
Reference | Maternal Pathology | Pathogens | Outcome |
---|---|---|---|
Gomez et al. [39] | Clinical or histological chorioamnionitis Microbial invasion of amniotic cavity | U. urealyticum (70%) M. hominis (24%) Fusobacterium (9%) Strp. Viridans (9%) | Elevation of IL-6 in fetus |
Gibbs et al. [34] | Intraamniotic infection | U. urealyticum (47%), M. hominis (31%), B. bivius (29%), G. vaginalis (24%) GBS (15%), E. coli (8%) | Poor neonatal outcomes in intraamniotic fluid with E. coli or GBS |
Chang et al. [40] | Histological chorioamnionitis | U. urealyticum | U. urealyticum was more frequent in infant with BPD |
Biomarker | Potential Pathological or Clinical Role That May Relate to Perinatal Inflammation and PDA | References |
---|---|---|
TNF-α | Mediators in the early inflammatory response | [25] |
IL-1 | Mediators in the early inflammatory response Risk of preterm birth | [25,84] |
IL-6 | Mediators in the early inflammatory response Risk of preterm birth Clinically related to persistent PDA | [25,39,74,79,84] |
IL-8, IL-10, MIP-1α | Related to persistent PDA Clinical risk of preterm birth | [79,84] |
IL-15 | Attenuates smooth muscle cell proliferation Involved in atherogenesis | [86,87] |
IL-17 | Risk of preterm birth Involved in vascular remodeling and prostaglandin expression Increases platelet aggregation | [84,88] |
GDF-15 | Related to persistent PDA Associated with tissue hypoxia, inflammation, acute injury, and oxidative stress. | [79] |
ΜCP-1 | Clinically related to persistent PDA Regulates migration and infiltration of monocytes and macrophages Risk of preterm birth Related to thrombus formation | [79] |
PGDH | Risk of preterm birth | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.-J.; Hsu, R.; Lin, Y.-C.; Wong, T.-W.; Kan, C.-D.; Wang, J.-N. The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants. Int. J. Mol. Sci. 2022, 23, 13877. https://doi.org/10.3390/ijms232213877
Wei Y-J, Hsu R, Lin Y-C, Wong T-W, Kan C-D, Wang J-N. The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants. International Journal of Molecular Sciences. 2022; 23(22):13877. https://doi.org/10.3390/ijms232213877
Chicago/Turabian StyleWei, Yu-Jen, Rosie Hsu, Yung-Chieh Lin, Tak-Wah Wong, Chung-Dann Kan, and Jieh-Neng Wang. 2022. "The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants" International Journal of Molecular Sciences 23, no. 22: 13877. https://doi.org/10.3390/ijms232213877