Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu2+ in the Active Site of Lysyl Oxidase-like 2
Abstract
:1. Introduction
2. Results
2.1. UV−Vis Spectroscopy of 2HP−Inhibited LOXL2
2.2. UV−Vis Spectroscopic pKa Determination of the LTQ−2HP Model Compound 1
2.3. Effect of Cu2+ and Zn2+ on UV−Vis Spectrum of 1 at pH 8.0
2.4. X−ray Crystallography of the Complex of 1 and Cu(II), Complex 3
2.5. Electron Paramagnetic Resonance (EPR) Spectroscopy of Complex 3 in Solid State and in Solution
2.6. Resonance Raman Spectroscopy
2.7. Titration of Active Site Cu2+ in LOXL2 by 4−(2−Pyridilazo) Resorcinol, PAR
2.8. Assessing the Importance of the Conserved His Residues in the Active Site of LOXL2
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Transient Transfection and LOXL2 Purification
4.3. Site−Directed Mutagenesis and Preparation of Recombinant LOXL2s
4.4. Amine Oxidase Activity Assay
4.5. Preparation of the Wild−Type AGAO
4.6. Synthesis of Model Compounds, Crystallization and X-ray Crystallography
4.7. UV−Vis Spectroscopy
4.7.1. UV−Vis Spectroscopic LTQ Titration with 2HP in LOXL2
4.7.2. UV−Vis Spectroscopic pKa Determination of LTQ−2HP Model (1)
4.7.3. UV−Vis Spectroscopic Titration of 1 with Cu2+ at pH 8.0
4.7.4. UV−vis Spectroscopy of a Mixture of 1 and 1,10−Phenanthroline Cu(II), Complex 2
4.7.5. UV−Vis Spectroscopic Titration of the Active Site Cu2+ with PAR in LOXL2
4.7.6. UV−Vis Spectroscopic Titration of the Active site Cu2+ with PAR in AGAO
4.8. EPR Spectroscopy
4.9. Resonance Raman Spectroscopy
4.10. Molecular Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Csiszar, K. Lysyl oxidases: A novel multifunctional amine oxidase family. Prog. Nucleic Acid. Res. Mol. Biol. 2001, 70, 1–32. [Google Scholar] [PubMed]
- Smith−Mungo, L.I.; Kagan, H.M. Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biol. 1998, 16, 387–398. [Google Scholar] [CrossRef]
- Moon, H.J.; Finney, J.; Ronnebaum, T.; Mure, M. Human lysyl oxidase−like 2. Bioorg. Chem. 2014, 57, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Mure, M.; Medzihradszky, K.F.; Burlingame, A.L.; Brown, D.E.; Dooley, D.M.; Smith, A.J.; Kagan, H.M.; Klinman, J.P. A crosslinked cofactor in lysyl oxidase: Redox function for amino acid side chains. Science 1996, 273, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Dubois, J.L.; Klinman, J.P. Mechanism of post−translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover. Arch. Biochem. Biophys. 2005, 433, 255–265. [Google Scholar] [CrossRef]
- Klema, V.J.; Wilmot, C.M. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 2012, 13, 5375–5405. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Okajima, T.; Kishishita, S.; Yoshimura, M.; Kawamori, A.; Tanizawa, K.; Yamaguchi, H. X−ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase. Nat. Struct. Biol. 2002, 9, 591–596. [Google Scholar]
- Ruggiero, C.E.; Dooley, D.M. Stoichiometry of the Topa Quinone Biogenesis Reaction in Copper Amine Oxidases. Biochemistry 1999, 38, 9556. [Google Scholar] [CrossRef] [Green Version]
- Adelson, C.N.; Johnston, E.M.; Hilmer, K.M.; Watts, H.; Dey, S.G.; Brown, D.E.; Broderick, J.B.; Shepard, E.M.; Dooley, D.M.; Solomon, E.I. Characterization of the preprocessed copper site equilibrium in amine oxidase and assignment of the reactive copper site in topaquinone biogenesis. J. Am. Chem. Soc. 2019, 141, 8877–8890. [Google Scholar] [CrossRef]
- Moore, R.H.; Spies, M.A.; Culpepper, M.B.; Murakawa, T.; Hirota, S.; Okajima, T.; Tanizawa, K.; Mure, M. Trapping of a dopaquinone intermediate in the TPQ cofactor biogenesis in a copper−containing amine oxidase from Arthrobacter globiformis. J. Am. Chem. Soc. 2007, 129, 11524–11534. [Google Scholar] [CrossRef]
- Mure, M. Tyrosine−derived quinone cofactors. Acc. Chem. Res. 2004, 37, 131–139. [Google Scholar] [CrossRef]
- Murray, J.M.; Saysell, C.G.; Wilmot, C.M.; Tambyrajah, W.S.; Jaeger, J.; Knowles, P.F.; Phillips, S.E.; McPherson, M.J. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: X−ray crystallographic studies with mutational variants. Biochemistry 1999, 38, 8217–8227. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Wu, J.; Wang, J.; Shi, Y.; Liu, M. Crystal structure of human lysyl oxidase−like 2 (hLOXL2) in a precursor state. Proc. Natl. Acad. Sci. USA 2018, 115, 3828–3833. [Google Scholar] [CrossRef] [Green Version]
- Vallet, S.D.; Guéroult, M.; Belloy, N.; Dauchez, M.; Ricard−Blum, S. A Three−Dimensional Model of Human Lysyl Oxidase, a Cross−Linking Enzyme. ACS Omega 2019, 4, 8495–8505. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Greenaway, F.T. Identification of the disulfide bonds of lysyl oxidase. J. Neural Transm. 2011, 118, 1111–1114. [Google Scholar] [CrossRef]
- Xu, L.; Go, E.P.; Finney, J.; Moon, H.; Lantz, M.; Rebecchi, K.; Desaire, H.; Mure, M. Post−translational Modifications of Recombinant Human Lysyl Oxidase−like 2 (rhLOXL2) Secreted from Drosophila S2 Cells. J. Biol. Chem. 2013, 288, 5357–5363. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.J.; Finney, J.; Xu, L.; Moore, D.; Welch, D.R.; Mure, M. MCF−7 cells expressing nuclear associated lysyl oxidase−like 2 (LOXL2) exhibit an epithelial−to−mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J. Biol. Chem. 2013, 288, 30000–30008. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Moon, H.J.; Finney, J.; Meier, A.; Mure, M. Extracellular Processing of Lysyl Oxidase−like 2 and Its Effect on Amine Oxidase Activity. Biochemistry 2018, 57, 6973–6983. [Google Scholar] [CrossRef]
- Go, E.P.; Moon, H.J.; Mure, M.; Desaire, H. Recombinant Human Lysyl Oxidase−like 2 Secreted from Human Embryonic Kidney Cells Displays Complex and Acidic Glycans at All Three N−Linked Glycosylation Sites. J. Proteome Res. 2018, 17, 1826–1832. [Google Scholar] [CrossRef]
- Wang, S.X.; Nakamura, N.; Mure, M.; Klinman, J.P.; Sanders−Loehr, J. Characterization of the native lysine tyrosylquinone cofactor in lysyl oxidase by Raman spectroscopy. J. Biol. Chem. 1997, 272, 28841–28844. [Google Scholar] [CrossRef] [Green Version]
- Mure, M.; Wang, S.X.; Klinman, J.P. Synthesis and characterization of model compounds of the lysine tyrosyl quinone cofactor of lysyl oxidase. J. Am. Chem. Soc. 2003, 125, 6113–6125. [Google Scholar] [CrossRef] [PubMed]
- Meier, A.A.; Moon, H.J.; Toth, R., IV; Folta−Stogniew, E.; Kuczera, K.; Middaugh, C.R.; Mure, M. Oligomeric States and Hydrodynamic Properties of Lysyl Oxidase−Like 2. Biomolecules 2021, 11, 1846. [Google Scholar] [CrossRef] [PubMed]
- Meier, A.A.; Go, E.P.; Moon, H. −J.; Desaire, H.; Mure, M. Mass spectrometry−based disulfide mapping of lysyl oxidase−like 2. Int. J. Mol. Sci. 2022, 23, 5879. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The oxidation of phenylhydrazine: Superoxide and mechanism. Biochemistry 1976, 15, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.A.; Thornalley, P.J. Phenyl radical production during the oxidation of phenylhydrazine and in phenylphydrazine−induced haemolysis. FEBS Lett. 1981, 125, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Mure, M.; Brown, D.E.; Saysell, C.; Rogers, M.S.; Wilmot, C.M.; Kurtis, C.R.; McPherson, M.J.; Phillips, S.E.; Knowles, P.F.; Dooley, D.M. Role of the interactions between the active site base and the substrate Schiff base in amine oxidase catalysis. Evidence from structural and spectroscopic studies of the 2−hydrazinopyridine adduct of Escherichia coli amine oxidase. Biochemistry 2005, 44, 1568–1582. [Google Scholar] [CrossRef]
- Miličević, A.; Granica, G.; Roas, N. Irving−Williams Order in the Framework of Connectivity Index 3χv Enables Simultaneous Prediction of Stability Constants of Bivalent Transition Metal Complexes. Molecules 2011, 16, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.; Glasfeld, A. Metalation: Nature’s challenge in bioinorganic chemistry. J. Biol. Inorg. Chem. 2020, 25, 542–545. [Google Scholar] [CrossRef] [Green Version]
- Mure, M.; Kurtis, C.R.; Brown, D.E.; Rogers, M.S.; Tambyrajah, W.S.; Saysell, C.; Wilmot, C.M.; Phillips, S.E.; Knowles, P.F.; Dooley, D.M.; et al. Active site rearrangement of the 2−hydrazinopyridine adduct in Escherichia coli amine oxidase to an azo copper(II) chelate form: A key role for tyrosine 369 in controlling the mobility of the TPQ−2HP adduct. Biochemistry 2005, 44, 1583–1594. [Google Scholar] [CrossRef]
- Meier, A.A.; Ou, S.; Mian, M.R.; Lovell, S.W.; Mure, M. Crystal structure of (E)−5−(ethylamino)−4−methyl−2−(pyridin−2−yldiazenyl)phenol complexed with Cu (II). Acta. Crystallogr. E. 2022. submitted. [Google Scholar]
- Janes, S.M.; Mu, D.; Wemmer, D.; Smith, A.J.; Kaur, S.; Maltby, D.; Burlingame, A.L.; Klinman, J.P. A new redox cofactor in eukaryotic enzymes: 6−hydroxydopa at the active site of bovine serum amine oxidase. Science 1990, 248, 981–987. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds containing Nitrogen−Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[1,7−bis(N−methylbenzimidazol−2’−yl)−2,6−dithiaheptane]copper(II) Perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Neuman, N.I.; Franco, V.G.; Ferroni, F.M.; Baggio, R.; Passeggi, M.C.G.; Rizzi, A.C.; Brondino, C.D. Single Crystal EPR of the Mixed−Ligand Complex of Copper(II) with l−Glutamic Acid and 1,10−Phenanthroline: A Study on the Narrowing of the Hyperfine Structure by Exchange. J. Phys. Chem. A 2012, 116, 12314–12320. [Google Scholar] [CrossRef]
- Que, L.J. Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism; University Science Books: Sausalito, CA, USA, 2010. [Google Scholar]
- Moenne−Loccoz, P.; Nakamura, N.; Steinebach, V.; Duine, J.A.; Mure, M.; Klinman, J.P.; Sanders−Loehr, J. Characterization of the topa quinone cofactor in amine oxidase from Escherichia coli by resonance Raman spectroscopy. Biochemistry 1995, 34, 7020–7026. [Google Scholar] [CrossRef]
- Nakamura, N.; Moenne−Loccoz, P.; Tanizawa, K.; Mure, M.; Suzuki, S.; Klinman, J.P.; Sanders−Loehr, J. Topaquinone−dependent amine oxidases: Identification of reaction intermediates by Raman spectroscopy. Biochemistry 1997, 36, 11479–11486. [Google Scholar] [CrossRef]
- Rouhollahi, A.; Kiaie, F.M.; Ghasemi, J. Multiwavelength spectrophotometric determination of protolytic constants of 4−(2−pyridylazo) resorcinol (PAR) in binary DMF−water mixtures. Talanta 2005, 66, 653–658. [Google Scholar] [CrossRef]
- Ghasemi, J.; Paymen, H.; Meloun, M. Study of Complex Formation between 4−(2−Pyridylazo) Resorcinol and Al3+, Fe3+, Zn2+, and Cd2+ Ions in an Aqueous Solution at 0.1 M Ionic Strength. J. Chem. Eng. Data 2007, 52, 1171–1178. [Google Scholar] [CrossRef]
- Mure, M.; Mills, S.A.; Klinman, J.P. Catalytic mechanism of the topa quinone containing copper amine oxidases. Biochemistry 2002, 41, 9269–9278. [Google Scholar] [CrossRef]
- Rodriguez, H.M.; Vaysberg, M.; Mikels, A.; McCauley, S.; Velayo, A.C.; Garcia, C.; Smith, V. Modulation of lysyl oxidase−like 2 enzymatic activity by an allosteric antibody inhibitor. J. Biol. Chem. 2010, 285, 20964–20974. [Google Scholar] [CrossRef] [Green Version]
- Palamakumbura, A.H.; Trackman, P.C. A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal. Biochem. 2002, 300, 245–251. [Google Scholar] [CrossRef]
- MATLAB and Statistics Toolbox Release 2021a; The MathWorks Inc.: Natick, MA, USA, 2021.
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
Complex 3 (Å) | Complex 4 (Å) | Complex 3 (°) | Complex 4 (°) | ||||
---|---|---|---|---|---|---|---|
O4−Cu(II) | 1.9649[15] | O4−Cu(II) | 1.986[4] | O4−Cu(II)−N3 | 160.67[7] | O4−Cu(II)−N3 | 160.3 [9] |
N1−Cu(II) | 1.9569[19] | N1−Cu(II) | 2.007[4] | N1−Cu(II)−Cl1 | 161.09[6] | N1−Cu(II)−N4 | 165.11[4] |
N3−Cu(II) | 1.9906[19] | N3−Cu(II) | 1.933[4] | N1−Cu(II)−Cl2 | 108.48[6] | N1−Cu(II)−N5 | 115.8[9] |
Cl1−Cu(II) | 2.2995[6] | N4−Cu(II) | 2.030[4] | N3−Cu(II)−Cl1 | 92.90[6] | N3−Cu(II)−N4 | 110.1[9] |
Cl2−Cu(II) | 2.6187[6] | N5−Cu(II) | 2.229[4] | N3−Cu(II)−Cl12 | 99.80[6] | N3−Cu(II)−N5 | 98.4[1] |
Compound | g‖ | A‖ (MHz) | g⊥ |
---|---|---|---|
Complex 3 | 2.246 | 553.3 | 2.073 |
Complex 4 | 2.248 | 540.6 | 2.077 |
LOXL2 (0.03 μM) | LTQ (%) | Cu2+ (%) | kcat (min−1) | Km (mM) | kcat/Km (min−1mM−1) | Relative kcat/Km (%) |
---|---|---|---|---|---|---|
WT | 100 | 0.030 (100) | 9.28 ± 0.21 | 0.92 ± 0.07 | 10.09 ± 0.80 | 100 |
H623Q | <50 | 0.029 (97) | 1.28 ± 0.15 | 0.06 ± 0.22 | 2.13 ± 0.82 | 21 |
H626Q | 0 | 0.006 (20) | 0 | − | − | − |
H628Q | 0 | 0.004 (13) | 0 | − | − | − |
H630Q | 0 | 0.011 (37) | 0 | − | − | − |
H637Q | 90 | N.D. | 3.51 ± 0.26 | 0.48 ± 0.12 | 7.31 ± 1.91 | 72 |
H652Q | <50 | 0.016 (53) | 3.06 ± 0.14 | 0.78 ± 0.10 | 3.92 ± 0.53 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, A.A.; Moon, H.-J.; Sabuncu, S.; Singh, P.; Ronnebaum, T.A.; Ou, S.; Douglas, J.T.; Jackson, T.A.; Moënne-Loccoz, P.; Mure, M. Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu2+ in the Active Site of Lysyl Oxidase-like 2. Int. J. Mol. Sci. 2022, 23, 13966. https://doi.org/10.3390/ijms232213966
Meier AA, Moon H-J, Sabuncu S, Singh P, Ronnebaum TA, Ou S, Douglas JT, Jackson TA, Moënne-Loccoz P, Mure M. Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu2+ in the Active Site of Lysyl Oxidase-like 2. International Journal of Molecular Sciences. 2022; 23(22):13966. https://doi.org/10.3390/ijms232213966
Chicago/Turabian StyleMeier, Alex A., Hee-Jung Moon, Sinan Sabuncu, Priya Singh, Trey A. Ronnebaum, Siyu Ou, Justin T. Douglas, Timothy A. Jackson, Pierre Moënne-Loccoz, and Minae Mure. 2022. "Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu2+ in the Active Site of Lysyl Oxidase-like 2" International Journal of Molecular Sciences 23, no. 22: 13966. https://doi.org/10.3390/ijms232213966
APA StyleMeier, A. A., Moon, H. -J., Sabuncu, S., Singh, P., Ronnebaum, T. A., Ou, S., Douglas, J. T., Jackson, T. A., Moënne-Loccoz, P., & Mure, M. (2022). Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu2+ in the Active Site of Lysyl Oxidase-like 2. International Journal of Molecular Sciences, 23(22), 13966. https://doi.org/10.3390/ijms232213966