Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis
Abstract
:1. Introduction
2. Results
2.1. The Ratio of Neutrophils in Vaginal Discharge Smear
2.2. Histopathological Examination
2.3. Proinflammatory Cytokines Increased in Endometritis Tissues
2.4. NET Formation in Endometrial Tissue during Cow Endometritis
2.5. Endometrial Tissue Undergoes Pyroptosis in Cows with Endometritis
2.6. NETs Induce BEEC Cytotoxicity
2.7. Proinflammatory Effects of NETs on BEECs
2.8. NETs Induced BEEC Pyroptosis through the Activation of NLRP3, ASC, Caspase-1, and Caspase-4
3. Discussion
4. Materials and Methods
4.1. Animals and Grouping
4.2. Vaginal Discharge Smear
4.3. Endometrial Tissue Collection
4.4. HE Staining
4.5. Immunohistochemistry
4.6. BEEC Isolation
4.7. Neutrophil Isolation and Induction of NET Formation
4.8. BEECs Stimulated with NETs and Cytotoxicity Assay
4.9. Immunofluorescence
4.10. Enzyme-Linked Immunosorbent Assay (ELISA)
4.11. Western Blotting
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sheldon, I.M. Diagnosing postpartum endometritis in dairy cattle. Vet. Rec. 2020, 186, 88–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadarwal, D.; González-Cano, P.; Dickinson, R.; Griebel, P.; Palmer, C. Characterization of cytokine gene expression in uterine cytobrush samples of non-endometritic versus endometritic postpartum dairy cows. Theriogenology 2019, 126, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, X.; Yang, J.; Wu, X.; Yan, Z.; He, B. Expression Pattern of Cathelicidins in Dairy Cows During Endometritis and Role of Bovine Endometrial Epithelial Cells in Production of Cathelicidins. Front. Vet. Sci. 2021, 8, 675669. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.G.; Kanamarlapudi, V.; Thornton, C.A.; Sheldon, I.M. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells. Mucosal Immunol. 2016, 9, 1125–1136. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.-J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Kumar, H.; Singh, G.; Krishnan, B.B.; Dey, S. Depressed polymorphonuclear cell functions in periparturient cows that develop postpartum reproductive diseases. Vet. Res. Commun. 2017, 41, 201–209. [Google Scholar] [CrossRef]
- Fine, N.; Tasevski, N.; McCulloch, C.A.; Tenenbaum, H.C.; Glogauer, M. The Neutrophil: Constant Defender and First Responder. Front. Immunol. 2020, 11, 571085. [Google Scholar] [CrossRef]
- Skarzynski, D.J.; Szóstek-Mioduchowska, A.Z.; Rebordão, M.R.; Jalali, B.M.; Piotrowska-Tomala, K.K.; Leciejewska, N.; Łazarczyk, M.; Ferreira-Dias, G.M. Neutrophils, monocytes and other immune components in the equine endometrium: Friends or foes? Theriogenology 2020, 150, 150–157. [Google Scholar] [CrossRef]
- Vorobjeva, N.V. Neutrophil Extracellular Traps: New Aspects. Moscow Univ. Biol. Sci. Bull. 2020, 75, 173–188. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-L.; Lyu, X.; Werth, V.P. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J. 2021, 289, 3954–3966. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Yu, H.; Sun, H.; Zhao, C.; Zhang, N.; Hu, X.; Fu, Y. DNaseI protects lipopolysaccharide-induced endometritis in mice by inhibiting neutrophil extracellular traps formation. Microb. Pathog. 2021, 150, 104686. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, L.; Wang, Y.; Guo, H.; Fan, H.; Zhang, C.; Hou, L.; Liu, Z. Autophagy-driven NETosis is a double-edged sword—Review. Biomed. Pharmacother. 2020, 126, 110065. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Lai, D.; Zhang, P.; Yang, Y.; Li, Y.; Fei, K.; Jiang, G.; Fan, J. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018, 9, 597. [Google Scholar] [CrossRef]
- Lachowicz-Scroggins, M.E.; Dunican, E.M.; Charbit, A.R.; Raymond, W.; Looney, M.R.; Peters, M.C.; Gordon, E.D.; Woodruff, P.G.; Lefrançais, E.; Phillips, B.R.; et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1076–1085. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, K.; Fatima, S.; Ambreen, S.; Zimmermann, S.; Younis, R.; Krishnan, S.; Rana, R.; Gadi, I.; Schwab, C.; et al. Neutrophil Extracellular Traps Promote NLRP3 Inflammasome Activation and Glomerular Endothelial Dysfunction in Diabetic Kidney Disease. Nutrients 2022, 14, 2965. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Wang, Y.; Wang, C.; Liu, X.; Han, Z.; Fu, Y.; Yang, Z. Effects of Neutrophil Extracellular Traps on Bovine Mammary Epithelial Cells in vitro. Front. Immunol. 2019, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zeyu, W.; Liu, B.; Jang, S.; Zhang, Z.; Jiang, Y. Pyroptosis in liver disease. Rev. Esp. Enferm. Dig. 2021, 113, 280–285. [Google Scholar] [CrossRef]
- Magna, M.; Pisetsky, D.S. The Role of Cell Death in the Pathogenesis of SLE: Is Pyroptosis the Missing Link? Scand. J. Immunol. 2015, 82, 218–224. [Google Scholar] [CrossRef]
- Wang, K.; Sun, Q.; Zhong, X.; Zeng, M.; Zeng, H.; Shi, X.; Li, Z.; Wang, Y.; Zhao, Q.; Shao, F.; et al. Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell 2020, 180, 941–955.e20. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ma, W.; Gao, W.; Xing, Y.; Chen, L.; Xia, Z.; Zhang, Z.; Dai, Z. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis. 2019, 10, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matikainen, S.; Nyman, T.A.; Cypryk, W. Function and Regulation of Noncanonical Caspase-4/5/11 Inflammasome. J. Immunol. 2020, 204, 3063–3069. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.M.; Price, S.B.; Cronin, J.; Gilbert, R.O.; Gadsby, J.E. Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle. Reprod. Domest. Anim. 2009, 44 (Suppl. 3), 1–9. [Google Scholar] [CrossRef]
- Zerbe, H.; Schuberth, H.-J.; Engelke, F.; Frank, J.; Klug, E.; Leibold, W. Development and comparison of in vivo and in vitro models for endometritis in cows and mares. Theriogenology 2003, 60, 209–223. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Review: Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal 2020, 14, s44–s54. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Rebordão, M.R.; Carneiro, C.; Alexandre-Pires, G.; Brito, P.; Pereira, C.; Nunes, T.; Galvão, A.; Leitão, A.; Vilela, C.; Ferreira-Dias, G. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare. J. Reprod. Immunol. 2014, 106, 41–49. [Google Scholar] [CrossRef]
- Merza, M.; Hartman, H.; Rahman, M.; Hwaiz, R.; Zhang, E.; Renström, E.; Luo, L.; Mörgelin, M.; Regner, S.; Thorlacius, H. Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice With Severe Acute Pancreatitis. Gastroenterology 2015, 149, 1920–1931.e8. [Google Scholar] [CrossRef]
- Li, T.; Wang, C.; Liu, Y.; Li, B.; Zhang, W.; Wang, L.; Yu, M.; Zhao, X.; Du, J.; Zhang, J.; et al. Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. J. Crohns. Colitis 2020, 14, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Berkes, E.; Oehmke, F.; Tinneberg, H.-R.; Preissner, K.T.; Saffarzadeh, M. Association of neutrophil extracellular traps with endometriosis-related chronic inflammation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 183, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.-X.; Wang, Y.; Chen, Q.; Jiao, F.-Z.; Pei, M.-H.; Gong, Z.-J. Extracellular Histone H3 Induces Pyroptosis During Sepsis and May Act Through NOD2 and VSIG4/NLRP3 Pathways. Front. Cell. Infect. Microbiol. 2020, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, M.; Del Barrio, L.; Miller, M.A.; Re, F. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species. PLoS Pathog. 2014, 10, e1004327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, Y.; Song, C.; Hu, Y.; Dai, M.; Liu, B.; Pan, P. Neutrophil Extracellular Traps Augmented Alveolar Macrophage Pyroptosis via AIM2 Inflammasome Activation in LPS-Induced ALI/ARDS. J. Inflamm. Res. 2021, 14, 4839–4858. [Google Scholar] [CrossRef]
- Kelly, P.; Meade, K.G.; O’Farrelly, C. Non-canonical Inflammasome-Mediated IL-1β Production by Primary Endometrial Epithelial and Stromal Fibroblast Cells Is NLRP3 and Caspase-4 Dependent. Front. Immunol. 2019, 10, 102. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, Y.; Yang, Y.; Xu, J. Calcitriol Alleviates Hyperosmotic Stress-Induced Corneal Epithelial Cell Damage via Inhibiting the NLRP3–ASC–Caspase-1–GSDMD Pyroptosis Pathway in Dry Eye Disease. J. Inflamm. Res. 2021, 14, 2955–2962. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Tang, Y.; Li, W.; Wang, X.; Zhang, R.; Zhang, X.; Zhao, X.; Liu, J.; Tang, C.; Liu, Z.; et al. The Endotoxin Delivery Protein HMGB1 Mediates Caspase-11-Dependent Lethality in Sepsis. Immunity 2018, 49, 740–753.e7. [Google Scholar] [CrossRef]
- Peng, H.-H.; Liu, Y.-J.; Ojcius, D.M.; Lee, C.-M.; Chen, R.-H.; Huang, P.-R.; Martel, J.; Young, J.D. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci. Rep. 2017, 7, 16628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
- Metzler, K.D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014, 8, 883–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thulborn, S.J.; Mistry, V.; Brightling, C.E.; Moffitt, K.L.; Ribeiro, D.; Bafadhel, M. Neutrophil elastase as a biomarker for bacterial infection in COPD. Respir. Res. 2019, 20, 170. [Google Scholar] [CrossRef] [Green Version]
Reagents or Antibodies | Source | Identifier |
---|---|---|
DAB Chromogenic Kit | Zsgb-Bio, Beijing, China | Zli-9017 |
Water-Soluble Sealer | Zsgb-Bio, Beijing, China | Zli-9551 |
Cyquant LDH Cytotoxicity Assay Kit | Invitrogen, Carlsbad, CA, USA | C20300 |
QuickBlockTM Western Blocker | Beyotime Biotechnology, Shanghai, China | P0252 |
5× Loading Buffer | Beyotime Biotechnology, Shanghai, China | P0015 |
Il-1β Elisa Kit | Jinma Co., Ltd., Shanghai, China | Jb207-Bv |
Il-6 Elisa Kit | Jinma Co., Ltd., Shanghai, China | Jb204-Bv |
Il-18 Elisa Kit | Jinma Co., Ltd., Shanghai, China | Jb307-Bv |
TNF-α Elisa Kit | Jinma Co., Ltd., Shanghai, China | Jb010-Bv |
Annexin V-FITC/PI Kit | Roche, Basel, Swiss | 11858777001 |
FuturePAGETM 4–20% Precast-Gel | ACE Biotechnology, Nanjing, China | F11420lgel |
Diff-Quick Staining Kit | Solarbio, Beijing, China | G15540 |
Hematoxylin Staining Solution | Solarbio, Beijing, China | G1080 |
0.45 μm Nitrocellulose Membrane | Solarbio, Beijing, China | Ya1711 |
DNase I | Solarbio, Beijing, China | D8070 |
DAPI | Solarbio, Beijing, China | C0065 |
RIPA Lysis Solution | Solarbio, Beijing, China | R0010 |
Collagenase I | Sigma-Aldrich, Chicago, IL, USA | C2674 |
Histopaque 1077 | Sigma-Aldrich, Chicago, IL, USA | 10771 |
Histopaque 1119 | Sigma-Aldrich, Chicago, IL, USA | 11191 |
Phorbol Myristate Acetate (PMA) | Sigma-Aldrich, Chicago, IL, USA | P8139 |
Fetal Bovine Serum | Gibco, Grand Island, NY, USA | 10100147 |
RPMI 1640 | Gibco, Grand Island, NY, USA | 11835030 |
DMEM/F12 | Hyclone Laboratories Inc., Logan, Utah, USA | Sh30023.Fs |
RNAiso Plus | Takara, Tokyo, Japan | 9109 |
BCA Protein Assay Kit | Takara, Tokyo, Japan | T9300A |
Evo Reverse Transcription Kit | Accurate Biology, Changsha, China | AG11705 |
SYBR®® Green Hs Master Mix qPCR | Accurate Biology, Changsha, China | AG11701 |
Mouse Anti-β-Actin Antibody | Abcam, Cambridge, UK | ab8226 |
Anti-Neutrophil Elastase Polyclonal | Abcam, Cambridge, UK | ab68672 |
Goat Anti-Rabbit IgG H&L (HRP) | Abcam, Cambridge, UK | ab97051 |
Alexa Fluor®® 488 Anti-Rabbit H&L | Abcam, Cambridge, UK | ab150077 |
Mouse Anti-DNA-Histone1 Monoclonal | Millipore, Billerica MA, USA | Mab3864 |
Alexa Fluor 594 Anti-Mouse H&L | Proteintech, Chicago, IL, USA | SA00013-3 |
Rabbit Anti-Caspase-1 Antibody | Proteintech, Chicago, IL, USA | 22915-1-Ap |
Rabbit Anti-ASC Antibody | Proteintech, Chicago, IL, USA | 10500-1-Ap |
Rabbit Anti-NLRP3 Antibody | Proteintech, Chicago, IL, USA | 19771-1-Ap |
Rabbit Cytokeratin-18 Antibody | Proteintech, Chicago, IL, USA | 10830-1-Ap |
Rabbit Anti-Caspase-4 Antibody | Affinity Bioscience, Liyang, China | AF5130 |
Rabbit Anti-GSDMD Antibody | Affinity Bioscience, Liyang, China | Df12275 |
IRDye 800cw Rabbit IgG (H + L) | Gene Company Limited, HongKong, China | 926-68070 |
IRDye 680rd Mouse IgG (H + L) | Gene Company Limited, HongKong, China | 926-32211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Ma, X.; Shao, D.; Wu, X.; Wang, S.; Zheng, J.; Lv, Y.; Ding, X.; Ma, B.; Yan, Z. Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis. Int. J. Mol. Sci. 2022, 23, 14013. https://doi.org/10.3390/ijms232214013
Shen W, Ma X, Shao D, Wu X, Wang S, Zheng J, Lv Y, Ding X, Ma B, Yan Z. Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis. International Journal of Molecular Sciences. 2022; 23(22):14013. https://doi.org/10.3390/ijms232214013
Chicago/Turabian StyleShen, Wenxiang, Xiaoyu Ma, Dan Shao, Xiaohu Wu, Shengyi Wang, Juanshan Zheng, Yanan Lv, Xuezhi Ding, Baohua Ma, and Zuoting Yan. 2022. "Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis" International Journal of Molecular Sciences 23, no. 22: 14013. https://doi.org/10.3390/ijms232214013
APA StyleShen, W., Ma, X., Shao, D., Wu, X., Wang, S., Zheng, J., Lv, Y., Ding, X., Ma, B., & Yan, Z. (2022). Neutrophil Extracellular Traps Mediate Bovine Endometrial Epithelial Cell Pyroptosis in Dairy Cows with Endometritis. International Journal of Molecular Sciences, 23(22), 14013. https://doi.org/10.3390/ijms232214013