Polyphenon E Effects on Gene Expression in PC-3 Prostate Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Poly E Treatment of PC-3 Cell Cultures
2.2. DNA Microarray Analyses of Poly E-Treated PC-3 Cells
2.3. Quantitative Real Time-PCR
3. Discussion
3.1. Comparison of Microarray and Quantitative Real Time-PCR Data
3.2. Implications for Poly E-Induced Gene Expression Changes in PC-3 Cells
3.3. Study Limitations and Future Experimental Directions
4. Materials and Methods
4.1. PC-3 Cell Cultures and Poly E Treatments
4.2. DNA Microarray
4.3. Quantitative Real-Time PCR
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Cancer Stat Facts: Prostate Cancer. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 24 October 2022).
- Miyoshi, N.; Tanabe, H.; Suzuki, T.; Saeki, K.; Hara, Y. Applications of a Standardized Green Tea Catechin Preparation for Viral Warts and Human Papilloma Virus-Related and Unrelated Cancers. Molecules 2020, 25, 2588. [Google Scholar] [CrossRef]
- Tyring, S.K. Effect of Sinecatechins on HPV-Activated Cell Growth and Induction of Apoptosis. J. Clin. Aesthet. Dermatol. 2012, 5, 34–41. [Google Scholar] [PubMed]
- Hara, Y. Tea Catechins and their Applications as Supplements and Pharmaceutics. Pharmacol. Res. 2011, 64, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int. J. Mol. Sci. 2022, 23, 10713. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A.; Adhami, V.M.; Saleem, M.; Mukhtar, H. Beneficial Effects of Tea and its Polyphenols Against Prostate Cancer. Mol. Nutr. Food Res. 2006, 50, 130–143. [Google Scholar] [CrossRef]
- Kumar, N.B.; Hogue, S.; Pow-Sang, J.; Poch, M.; Manley, B.J.; Li, R.; Dhillon, J.; Yu, A.; Byrd, D.A. Effects of Green Tea Catechins on Prostate Cancer Chemoprevention: The Role of the Gut Microbiome. Cancers 2022, 14, 3988. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Ohishi, T.; Nakamura, Y.; Fukutomi, R.; Miyoshi, N. Anti-Cancer Effects of Dietary Polyphenols Via ROS-Mediated Pathway with their Modulation of MicroRNAs. Molecules 2022, 27, 3816. [Google Scholar] [CrossRef]
- Kim, S.J.; Amankwah, E.; Connors, S.; Park, H.Y.; Rincon, M.; Cornnell, H.; Chornokur, G.; Hashim, A.I.; Choi, J.; Tsai, Y.Y.; et al. Safety and Chemopreventive Effect of Polyphenon E in Preventing Early and Metastatic Progression of Prostate Cancer in TRAMP Mice. Cancer Prev. Res. 2014, 7, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.B.; Pow-Sang, J.; Egan, K.M.; Spiess, P.E.; Dickinson, S.; Salup, R.; Helal, M.; McLarty, J.; Williams, C.R.; Schreiber, F.; et al. Randomized, Placebo-Controlled Trial of Green Tea Catechins for Prostate Cancer Prevention. Cancer Prev. Res. 2015, 8, 879–887. [Google Scholar] [CrossRef]
- Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021, 12, 710304. [Google Scholar] [CrossRef] [PubMed]
- Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018, 10, 1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, A.L.; Stephens, C.A.; Bigelow, R.L.; Coleman, D.T.; Cardelli, J.A. The Polyphenols (-)-Epigallocatechin-3-Gallate and Luteolin Synergistically Inhibit TGF-Β-Induced Myofibroblast Phenotypes through RhoA and ERK Inhibition. PLoS ONE 2014, 9, e109208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivarelli, S.; Costa, C.; Teodoro, M.; Giambò, F.; Tsatsakis, A.M.; Fenga, C. Polyphenols: A Route from Bioavailability to Bioactivity Addressing Potential Health Benefits to Tackle Human Chronic Diseases. Arch. Toxicol. 2022. [Google Scholar] [CrossRef] [PubMed]
- McLarty, J.; Bigelow, R.L.; Smith, M.; Elmajian, D.; Ankem, M.; Cardelli, J.A. Tea Polyphenols Decrease Serum Levels of Prostate-Specific Antigen, Hepatocyte Growth Factor, and Vascular Endothelial Growth Factor in Prostate Cancer Patients and Inhibit Production of Hepatocyte Growth Factor and Vascular Endothelial Growth Factor In Vitro. Cancer Prev. Res. 2009, 2, 673–682. [Google Scholar]
- Safari, F.; Rayat Azad, N.; Alizadeh Ezdiny, A.; Pakizehkar, S.; Khazaei Koohpar, Z.; Ranji, N. Antitumor Activities of Green Tea by Up-Regulation of miR-181a Expression in LNCaP Cells using 3D Cell Culture Model. Avicenna J. Med. Biotechnol. 2022, 14, 89–94. [Google Scholar] [CrossRef]
- Beylerli, O.; Beilerli, A.; Shumadalova, A.; Wang, X.; Yang, M.; Sun, H.; Teng, L. Therapeutic Effect of Natural Polyphenols Against Glioblastoma. Front. Cell Dev. Biol. 2022, 10, 1036809. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Epigallocatechin 3-Gallate and Green Tea Catechins: United they Work, Divided they Fail. Cancer Prev. Res. 2009, 2, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Deb, G.; Shankar, E.; Thakur, V.S.; Ponsky, L.E.; Bodner, D.R.; Fu, P.; Gupta, S. Green Tea-Induced Epigenetic Reactivation of Tissue Inhibitor of Matrix Metalloproteinase-3 Suppresses Prostate Cancer Progression through Histone-Modifying Enzymes. Mol. Carcinog. 2019, 58, 1194–1207. [Google Scholar] [CrossRef]
- Prochownik, E.V.; Wang, H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022, 11, 747. [Google Scholar] [CrossRef]
- Diolaiti, D.; McFerrin, L.; Carroll, P.A.; Eisenman, R.N. Functional Interactions among Members of the MAX and MLX Transcriptional Network during Oncogenesis. Biochim. Biophys. Acta 2015, 1849, 484–500. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Dong, D.; Zhang, X.; Jia, J. MXD1 is a Potential Prognostic Biomarker and Correlated with Specific Molecular Change and Tumor Microenvironment Feature in Esophageal Squamous Cell Carcinoma. Technol. Cancer Res. Treat. 2021, 20, 15330338211052142. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, Q.; A, J.; Li, L.; Li, X.; Zhang, Z.; Dong, J.T. The Cardiac Glycoside Deslanoside Exerts Anticancer Activity in Prostate Cancer Cells by Modulating Multiple Signaling Pathways. Cancers 2021, 13, 5809. [Google Scholar] [CrossRef] [PubMed]
- Squires, K.E.; Montanez-Miranda, C.; Pandya, R.R.; Torres, M.P.; Hepler, J.R. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and their Role in Human Physiology and Disease. Pharmacol. Rev. 2018, 70, 446–474. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Cifelli, C.; Wang, S.; Heximer, S.P. RGS Proteins: Identifying New GAPs in the Understanding of Blood Pressure Regulation and Cardiovascular Function. Clin. Sci. 2009, 116, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Yue, W.; Li, L.; Li, S.; Gao, C.; Si, L.; Tian, H. Regulator of G-Protein Signaling 4: A Novel Tumor Suppressor with Prognostic Significance in Non-Small Cell Lung Cancer. Biochem. Biophys. Res. Commun. 2016, 469, 384–391. [Google Scholar] [CrossRef]
- Guda, M.R.; Velpula, K.K.; Asuthkar, S.; Cain, C.P.; Tsung, A.J. Targeting RGS4 Ablates Glioblastoma Proliferation. Int. J. Mol. Sci. 2020, 21, 3300. [Google Scholar] [CrossRef]
- Nikolova, D.N.; Zembutsu, H.; Sechanov, T.; Vidinov, K.; Kee, L.S.; Ivanova, R.; Becheva, E.; Kocova, M.; Toncheva, D.; Nakamura, Y. Genome-Wide Gene Expression Profiles of Thyroid Carcinoma: Identification of Molecular Targets for Treatment of Thyroid Carcinoma. Oncol. Rep. 2008, 20, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Hurst, J.H.; Mendpara, N.; Hooks, S.B. Regulator of G-Protein Signaling Expression and Function in Ovarian Cancer Cell Lines. Cell. Mol. Biol. Lett. 2009, 14, 153–174. [Google Scholar] [CrossRef]
- Xue, X.; Wang, L.; Meng, X.; Jiao, J.; Dang, N. Regulator of G Protein Signaling 4 Inhibits Human Melanoma Cells Proliferation and Invasion through the PI3K/AKT Signaling Pathway. Oncotarget 2017, 8, 78530–78544. [Google Scholar] [CrossRef] [Green Version]
- Sethakorn, N.; Dulin, N.O. RGS Expression in Cancer: Oncomining the Cancer Microarray Data. J. Recept. Signal Transduct. Res. 2013, 33, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Qin, J.; Xie, Y.; Khan, O.; Dowd, F.; Scofield, M.; Lin, M.F.; Tu, Y. Regulator of G-Protein Signaling 2 (RGS2) Inhibits Androgen-Independent Activation of Androgen Receptor in Prostate Cancer Cells. Oncogene 2006, 25, 3719–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzi, F.; Naponelli, V.; Silva, A.; Modernelli, A.; Ramazzina, I.; Bonacini, M.; Tardito, S.; Gatti, R.; Uggeri, J.; Betuzzi, S. Polyphenon E, a Standardized Green Tea Extract, Induces Endoplasmic Reticulum Stress, Leading to Death of Immortalized PNT1a Cells by Anoikis and Tumorigenic PC-3 Cells by Necroptosis. Carcinogenesis 2014, 35, 828–839. [Google Scholar] [CrossRef] [PubMed]
Affymetrix Probe ID | Gene Symbol | Log2-Fold Change |
---|---|---|
213373_s_at | CASP8 | −2.23 |
1553306_at | −3.2 | |
208348_s_at | CBLB | 19.01 |
209682_at | 3.83 | |
214710_s_at | CCNB1 | −2.77 |
228729_at | −3.47 | |
1554322_a_at | HDAC4 | −2.47 |
204225_at | −3.23 | |
228813_at | −4.45 | |
206877_at | MXD1 | 13.36 |
228846_at | 7.35 | |
226275_at | 1.91 * | |
211540_s_at | RB1 | 1.85 * |
203132_at | −1.43 * | |
218723_s_at | RGCC | 23.12 |
239827_at | 1.22 * | |
204338_s_at | RGS4 | 20.54 |
204337_at | 6.12 | |
204339_s_at | 3.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carastro, L.M.; Vallebuona, E.J.; Cordova, R.; Gannon, A.N.; Kim, S.J.; Costello, C.M.; Declet-Bauzo, R.A.; Kumar, N.; Park, J.Y. Polyphenon E Effects on Gene Expression in PC-3 Prostate Cancer Cells. Int. J. Mol. Sci. 2022, 23, 14328. https://doi.org/10.3390/ijms232214328
Carastro LM, Vallebuona EJ, Cordova R, Gannon AN, Kim SJ, Costello CM, Declet-Bauzo RA, Kumar N, Park JY. Polyphenon E Effects on Gene Expression in PC-3 Prostate Cancer Cells. International Journal of Molecular Sciences. 2022; 23(22):14328. https://doi.org/10.3390/ijms232214328
Chicago/Turabian StyleCarastro, L. Michael, Ethan J. Vallebuona, Ricardo Cordova, Ashley N. Gannon, Seung Joon Kim, Corrine M. Costello, Ricardo A. Declet-Bauzo, Nagi Kumar, and Jong Y. Park. 2022. "Polyphenon E Effects on Gene Expression in PC-3 Prostate Cancer Cells" International Journal of Molecular Sciences 23, no. 22: 14328. https://doi.org/10.3390/ijms232214328
APA StyleCarastro, L. M., Vallebuona, E. J., Cordova, R., Gannon, A. N., Kim, S. J., Costello, C. M., Declet-Bauzo, R. A., Kumar, N., & Park, J. Y. (2022). Polyphenon E Effects on Gene Expression in PC-3 Prostate Cancer Cells. International Journal of Molecular Sciences, 23(22), 14328. https://doi.org/10.3390/ijms232214328