Computational Tactics for Precision Cancer Network Biology
Abstract
:1. Introduction
2. Gene Regulatory Network Estimation
3. Sample-Specific Gene Network Estimation
3.1. NetworkProfiler
- Limitation:
- The NetworkProfiler cannot perform well when the modulator is not uniformly distributed, especially when modelling the target cell line with a rare characteristic located in a sparse region of its distribution, because the method is based on the constant bandwidth () of Gaussian kernel function. In the NetworkProfiler, the bandwidth specifies the length-scale of the kernel function and controls the weights of cell lines. It implies that the NetworkProfiler based on the constant bandwidth performs cell line characteristic-specific modelling without consideration of the distribution of the modulator and location of the modulator value of the target sample in the distribution. Thus, the NetworkProfiler imposes a small amount of weight to almost all samples for modelling a target sample in a sparse region. Figure 2 shows the values of the Gaussian kernel function (i.e., weight for cell lines) with a constant bandwidth for a target sample in both sparse and dense regions, where y-axis and x-axis indicate weights and modulator values of cell-lines, respectively. As shown in Figure 2, the Gaussian kernel function based on the constant bandwidth imposes the non-zero weight on only a few samples for the modelling of the target sample in a sparse region. It leads to extremely high dimensional data situations; thus, gene regulatory network estimation (i.e., edges selection and edge size estimation) cannot be appropriately performed.
3.2. Adaptive NetworkProfiler
- Limitation:
- The NetworkProfiler and Adaptive NetworkProfiler construct the cancer characteristics-specific gene network based on a specific cancer characteristic. That is, the methods consider a characteristic and measure similarity of cell lines in one-dimensional cell line characteristic space based only on one characteristic. Thus, the cancer characteristic-specific gene networks estimated by the methods cannot described gene regulatory system under varying conditions of various cancer characteristics because the methods are based on a characteristic.
3.3. Gene Network Analysis in Multi-Dimensional Cell Line Space
- Limitation:
- The precision cancer gene networks estimation provides hundreds of matrices with more than 2000 rows for regulator genes and more than 10,000 columns for target genes. Although various computational tactics have been developed and successfully applied to gene regulatory network estimation, the interpretation of the large-scale gene networks remains a challenge. The existing studies on the cell line characteristic-specific gene networks focused only on the known markers and then interpreted the massive networks based on the neighbourhoods of the known markers, i.e., only narrow interpretation was performed. However, comprehensive analysis of the multiple massive networks is essential to understand the complex mechanism of cancer. The interpretation of the multi-layer massive network was the bottle network of the existing studies on the precision cancer gene networks analysis.
4. Interpretation of the Multi-Layer Massive Networks
4.1. Network Constrained Sparse Common Component Analysis (NetSCCA)
Algorithm 1 NetSCCA: Network constrained sparse common component analysis. |
1: Compute jaccard similarity: . |
2: For q target genes, compute the regulator effect matrices as for and |
. |
3: For the square root of (i.e., ), compute sparse common loadings of q |
regulator effect matrices . |
3.1: Start at , which is the loading matrix from ordinary PCA of . |
3.2: Given a fixed , solving the following problem, |
where . Update . |
3.3: For a fixed , perform the singular value decomposition of and |
update (see Zou et al. [25]). |
3.4: Repeat Steps 3.2–3.3, until convergence. |
4: Sparse common loading is given by for . |
- Limitation:
- As pointed out by existing studies on network-based regularization [26,27], the network-constrained regularisation cannot perform well when the connected genes have opposite signs of coefficients. The limitation of the NetSCCA can be overcome by use of the advanced network-constrained regularization methods that incorporate signs of the regression coefficients [27].
4.2. Explainable AI for Gene Network-Based Prediction (Xprediction)
Algorithm 2 Xprediction: explainable prediction. | |
1: | Construct prediction models based on the kernel support vector machine (kSVM), |
Random Forest (RF), and Neural Network (NN). | |
2: | Compute prediction accuracies based on k-fold cross-validation (CV). The average of |
the prediction accuracies of k validation sets was given as: Acc. | |
3: | Step 2 is iterated N times for randomly constructed k-fold CV datasets. |
4: | If , then |
5: | If , then |
6: | Delete elements from regulatory effect matrices: |
7: | Compuate prediction accuracy of the model without elements: Acc. |
8: | Step 7 is iterated times for randomly constructed k-fold CV datasets. |
9: | Perform t-test between Acc and Acc obtained from N and iterations |
and compute p value. | |
10: | Cruciality of molecular interplays for AI-based prediction results are measured by on |
p value of the t-test. |
- Limitation:
- The Xprediction constructs prediction models, because prediction accuracies of the model based on the regulatory effect without the element should be compared with the model based on the regulatory effect with all elements. This leads to a great amount of computation. The computational complexity is one of limitations of the Xprediction.
5. Applications
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ristevski, B. Overview of Computational Approaches for Inference of MicroRNA-Mediated and Gene Regulatory Networks. Advan. Comp. 2015, 97, 111–145. [Google Scholar]
- Aittokallio, T.; Schwikowski, B. Graph-based methods for analysing networks in cell biology. Brief Bioinform. 2006, 7, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Park, S.; Jiang, Q.; Yeu, Y.; Hwang, T.; Zhang, W. Network-based drug sensitivity prediction. BMC Med. Genom. 2020, 13 (Suppl. 11), 193. [Google Scholar] [CrossRef] [PubMed]
- Epskamp, S.; Waldorp, L.; Mottus, R.; Borsboom, D. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data. Multivariate Behav. Res. 2018, 53, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, E.; Li, J.; Kinnebrew, G.; Zhang, P.; Zhang, Y.; Cheng, L.; Li, L. A Fast and Furious Bayesian Network and Its Application of Identifying Colon Cancer to Liver Metastasis Gene Regulatory Networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hwang, K.; Chung, C.; Roy, D.; Yoo, C. Causal Bayesian gene networks associated with bone, brain and lung metastasis of breast cancer. Clin. Exp. Metastasis 2020, 37, 657–674. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, C.; Zhang, X.; Cheng, Z.; Yang, Z.; Hao, Y.; Shen, J. The Usefulness of Bayesian Network in Assessing the Risk of Triple-Negative Breast Cancer. Acad. Radiol. 2020, 37, 282–291. [Google Scholar] [CrossRef]
- Xiao, Y. A tutorial on analysis and simulation of boolean gene regulatory network models. Curr. Genom. 2009, 10, 511–525. [Google Scholar] [CrossRef] [Green Version]
- Biane, C.; Delaplace, F. Causal Reasoning on Boolean Control Networks Based on Abduction: Theory and Application to Cancer Drug Discovery. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 574–1585. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Wan, Y. Network-based identification of biomarkers coexpressed with multiple pathways. Cancer Inform. 2014, 16, 37–47. [Google Scholar] [CrossRef]
- Montagud, A.; Beal, J.; Tobalina, L.; Traynard, P.; Subramanian, V.; Szalai, B.; Alfoldi, R.; Puskas, L.; Valencia, A.; Barillot, E.; et al. Patient-specific Boolean models of signalling networks guide personalised treatments. eLife 2022, 11, e72626. [Google Scholar] [CrossRef] [PubMed]
- Daoud, M.; Mayo, M. A survey of neural network-based cancer prediction models from microarray data. Artif. Intell. Med. 2019, 97, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Kovacs, I.; Barabasi, A. Network-based prediction of drug combinations. Nat. Comm. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fout, A.; Byrd, J.; Shariat, B.; Ben-Hur, A. Protein interface prediction using graph convolutional networks. In Proceedings of the NIPS’17: 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6533–6542. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Techonometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R. Varying-coefficient models. J. R. Stat. Soc. Ser. B 1993, 55, 757–796. [Google Scholar] [CrossRef]
- Shimamura, T.; Imoto, S.; Shimada, Y.; Hosono, Y.; Niida, A.; Nagasaki, M.; Yamaguchi, R.; Takahashi, T.; Miyano, S. A novel network profiling analysis reveals system changes in epithelial-mesenchymal transition. PLoS ONE 2011, 6, e20804. [Google Scholar] [CrossRef]
- Park, H.; Shimamura, T.; Imoto, S.; Miyano, S. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks. J. Comput. Biol. 2018, 25, 130–145. [Google Scholar] [CrossRef]
- Terrell, G.; Scott, D. Variable kernel density estimation. Ann. Stat. 1992, 20, 1236–1265. [Google Scholar] [CrossRef]
- Park, H.; Yamaguchi, R.; Imoto, S.; Miyano, S. Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification. J. Comput. Biol. 2022, 29, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Banerjee, A.; Boley, D. Common component analysis for multiple covariance matrices. In Proceedings of the Publication: KDD 11: 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 956–964. [Google Scholar]
- Li, Y.; Luo, P.; Wu, C. A new network node similarity measure method and its applications. arXiv 2014, arXiv:1403.4303. [Google Scholar]
- Zou, H.; Hastie, T.; Tibshirani, R. Sparse principal component analysis. J. Comput. Graph. Stat. 2006, 15, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008, 24, 1175–1182. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Lin, W.; Feng, R.; Li, H. Network-regularized high dimensional cox regression for analysis of genomic data. Stat. Sin. 2014, 24, 1433–1459. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Yamaguchi, R.; Imoto, S.; Miyano, S. Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks. PLoS ONE 2022, 17, e0261630. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, T.; Ikeda, M.; Kato, T.; Ikeda, A.; Nishimura, J.; Hata, T.; Matsuda, C.; Satoh, T.; Mori, M.; Doki, M. Postoperative XELOX therapy for patients with curatively resected high-risk stage II and stage III rectal cancer without preoperative chemoradiation: A prospective, multicenter, open-label, single-arm phase II study. BMC Cancer 2019, 19, 929. [Google Scholar] [CrossRef]
- Satake, H.; Yasui, H.; Kotake, T.; Okita, Y.; Hatachi, Y.; Kotaka, Y.; Kato, T.; Tsuji, A. First-line chemotherapy with capecitabine/oxaliplatin for advanced gastric cancer: A phase I study. Mol. Clin. Oncol. 2017, 7, 347–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quek, R.; Lim, W.; Foo, K.; Koo, W.; A-Manaf, A.; Toh, H. Capecitabine and oxaliplatin (XELOX) is safe and effective in patients with advanced gastric cancer. Acta. Oncol. 2007, 46, 1032–1034. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Gao, N.; Wu, T. Expression and clinical significance of SYNE1 and MAGI2 gene promoter methylation in gastric cancer. Medicine 2021, 100, e23788. [Google Scholar] [CrossRef] [PubMed]
- Ogony, J.; Choi, H.; Lui, A.; Cristofanilli, M.; Lewis-Wambi, J. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res. 2016, 18, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.; Han, B.; Lee, M. Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells. Biomol. Ther. 2015, 23, 320–326. [Google Scholar] [CrossRef]
- Li, Y.; Umbach, D.; Krahn, J.; Shats, I.; Li, X.; Li, L. Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genom. 2021, 22, 272. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ke, M.; Wang, X.; Yin, M.; Wei, J.; Xu, L.; Tian, X.; Wang, F.; Zhang, H.; Fu, S.; et al. FAP high α-SMA low cancer-associated fibroblast-derived SLPI protein encapsulated in extracellular vesicles promotes ovarian cancer development via activation of PI3K/AKT and downstream signaling pathways. Mol. Carcinog. 2022; online ahead of print. [Google Scholar]
- Sasaki, T.; Fujiwara-Tani, R.; Kishi, S.; Mori, S.; Luo, Y.; Ohmori, H.; Kawahara, I.; Goto, K.; Nishiguchi, Y.; Mori, T.; et al. Targeting claudin-4 enhances chemosensitivity of pancreatic ductal carcinomas. Cancer Med. 2019, 15, 6700–6708. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Sumi, T.; Zhi, X.; Yasui, T.; Honda, K.; Ishiko, O. Claudin-4: A potential therapeutic target in chemotherapy-resistant ovarian cancer. Anticancer Res. 2011, 31, 1271–1277. [Google Scholar]
- Breed, C.; Hicks, D.; Webb, P.; Galimanis, C.; Bitler, B.; Behbakht, K.; Baumgartner, H. Ovarian Tumor Cell Expression of Claudin-4 Reduces Apoptotic Response to Paclitaxel. Mol. Cancer. Res. 2019, 17, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.; Galimanis, C.; Webb, P.; Spillman, M.; Behbakht, K.; Neville, M.; Baumgartner, H. Claudin-4 activity in ovarian tumor cell apoptosis resistance and migration. BMC Cancer 2016, 16, 788. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, Y.; Fujiwara-Tani, R.; Sasaki, T.; Luo, Y.; Ohmori, H.; Kishi, S.; Mori, S.; Goto, K.; Yasui, W.; Sho, M.; et al. Targeting claudin-4 enhances CDDP-chemosensitivity in gastric cancer. Oncotarget 2019, 10, 2189–2202. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, K.; Bai, X.; Liu, M.; Lin, S.; Xu, T.; Wei, J.; Li, D.; Xiong, Y.; Xin, W.; et al. ZEB1 Induces Ddr1 Promoter Hypermethylation and Contributes to the Chronic Pain in Spinal Cord in Rats Following Oxaliplatin Treatment. Neuroch. Res. 2021, 46, 2181–2191. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, R.; Lai, Q.; Wu, Q.; Wang, Y.; Jiang, X.; Zeng, L.; Zhou, S.; Li, Z.; Yang, T.; et al. Targeting of DDR1 with antibody-drug conjugates has antitumor effects in a mouse model of colon carcinoma. Mol. Oncol. 2019, 13, 1855–1873. [Google Scholar] [CrossRef]
- Hur, H.; Ham, I.; Lee, D.; Jin, H.; Aguilera, K.; Oh, H.; Han, S.; Kwon, J.; Kim, Y.; Ding, K.; et al. Discoidin domain receptor 1 activity drives an aggressive phenotype in gastric carcinoma. BMC Cancer 2017, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menor, M.; Zhu, Y.; Wang, Y.; Zhang, J.; Jiang, B.; Deng, Y. Development of somatic mutation signatures for risk stratification and prognosis in lung and colorectal adenocarcinomas. BMC Med. Genom. 2019, 12 (Suppl. 1), 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yuan, D.; Hao, Q.; Zhu, D.; Chen, Z. LncRNA PCGEM1 mediates oxaliplatin resistance in hepatocellular carcinoma via miR-129-5p/ETV1 axis in vitro. Adv. Clin. Exp. Med. 2021, 30, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Na, D.; Chae, J.; Cho, S.; Kang, W.; Lee, A.; Min, S.; Kang, J.; Kim, M.; Choi, J.; Lee, W.; et al. Predictive biomarkers for 5-fluorouracil and oxaliplatin-based chemotherapy in gastric cancers via profiling of patient-derived xenografts. Nat. Commun. 2021, 12, 4840. [Google Scholar] [CrossRef] [PubMed]
- Giri, A. ETV5 expression positively correlates with promoter methylation and predicts response for 5-FU-based adjuvant therapy response in proximal colon cancer. bioRxiv 2020. [Google Scholar] [CrossRef]
- Borg, D.; Hedner, C.; Gaber, A.; Nodin, B.; Fristedt, R.; Jirstrom, K.; Eberhard, J.; Johnsson, A. Expression of IFITM1 as a prognostic biomarker in resected gastric and esophageal adenocarcinoma. Biomark. Res. 2016, 58, 10. [Google Scholar] [CrossRef] [Green Version]
- Virag, P.; Fischer-Fodor, E.; Perde-Schrepler, M.; Brie, I.; Tatomir, C.; Balacescu, L.; Berindan-Neagoe, I.; Victor, B.; Balacescu, O. Oxaliplatin induces different cellular and molecular chemoresistance patterns in colorectal cancer cell lines of identical origins. BMC Genom. 2013, 14, 480. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zhang, T.; Chen, M.; Shen, J. Novel biomarkers for the diagnosis and prognosis of gallbladder cancer. J. Dig. Dis. 2021, 22, 62–71. [Google Scholar] [CrossRef]
- Mohanty, A.; Nam, A.; Pozhitkov, A.; Yang, L.; Srivastava, S.; Nathan, A.; Wu, X.; Mambetsariev, I.; Nelson, M.; Subbalakshmi, A.; et al. A Non-genetic Mechanism Involving the Integrin β4/Paxillin Axis Contributes to Chemoresistance in Lung Cancer. iScience 2022, 23, 101496. [Google Scholar] [CrossRef]
- Penzvalto, Z.; Tegze, B.; Szasz, A.; Sztupinszki, Z.; Liko, I.; Szendroi, A.; Schafer, R.; Gyorffy, B. Identifying resistance mechanisms against five tyrosine kinase inhibitors targeting the ERBB/RAS pathway in 45 cancer cell lines. PLoS ONE 2013, 8, e59503. [Google Scholar] [CrossRef] [Green Version]
- Riedesser, J.; Ebert, M. Precision medicine for metastatic colorectal cancer in clinical practice. Ther. Adv. Med. Oncol. 2022, 14, 17588359211072703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, F.; Liu, X.; Yu, X.; Xie, L.; Liu, L.; Chen, C.; Jiang, H.; Hao, X.; He, X.; et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/β-catenin/CCND1 signaling. J. Clin. Investig. 2018, 128, 1737–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xu, Z.; Sun, Y.; Chi, P.; Lu, X. Knockdown of KLK11 reverses oxaliplatin resistance by inhibiting proliferation and activating apoptosis via suppressing the PI3K/AKT signal pathway in colorectal cancer cell. Onco. Targets Ther. 2018, 11, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Li, T.; Liu, Y.; Shen, X.; Zhu, X.; Xu, P. Upregulation of KLK8 Predicts Poor Prognosis in Pancreatic Cancer. Front. Oncol. 2021, 11, 624837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lee, J.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.; Rho, J.; et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 2012, 44, 852–860. [Google Scholar] [CrossRef]
- Masica, D.; Karchin, R. Collections of simultaneously altered genes as biomarkers of cancer cell drug response. Cancer Res. 2013, 73, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; McGarvey, P.; Madhavan, S.; Kumar, R.; Gusev, Y.; Upadhyay, G. Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome. Oncotarget 2016, 7, 11165–11193. [Google Scholar] [CrossRef]
- AlHossiny, M.; Luo, L.; Frazier, W.; Steiner, N.; Gusev, Y.; Kallakury, B.; Glasgow, E.; Creswell, K.; Madhavan, S.; Kumar, R.; et al. Ly6E/K Signaling to TGFβ Promotes Breast Cancer Progression, Immune Escape, and Drug Resistance. Cancer Res. 2016, 76, 3376–3386. [Google Scholar] [CrossRef] [Green Version]
- Burg, S. Correlates of immune and clinical activity of novel cancer vaccines. Semin. Immunol. 2018, 39, 119–136. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, Y.; Yang, T.; He, Q.; Zhao, M. LYPD3, a New Biomarker and Therapeutic Target for Acute Myelogenous Leukemia. Front. Genet. 2022, 13, 795820. [Google Scholar] [CrossRef]
- Das, D.; Satapathy, S.; Siddharth, S.; Nayak, A.; Kundu, C. NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother. Pharmacol. 2015, 76, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, S. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target Ther. 2022, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Fu, D.; Kong, X.; Huang, Z.; Hwang, M.; Zhu, Y.; Chen, L.; Jiang, K.; Li, X.; Wu, Y.; et al. FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms. Cancer Med. 2020, 9, 419–1429. [Google Scholar] [CrossRef]
- Zhou, M.; Dong, J.; Huang, J.; Ye, W.; Zheng, Z.; Huang, K.; Pan, Y.; Cen, J.; Liang, Y.; Shu, G.; et al. Chitosan-Gelatin-EGCG Nanoparticle-Meditated LncRNA TMEM44-AS1 Silencing to Activate the P53 Signaling Pathway for the Synergistic Reversal of 5-FU Resistance in Gastric Cancer. Adv. Sci. 2022, 9, e2105077. [Google Scholar] [CrossRef]
- Allert, C.; Waclawiczek, A.; Zimmermann, S.; Gollner, S.; Heid, D.; Janssen, M.; Renders, S.; Rohde, C.; Bauer, M.; Bruckmann, M.; et al. Maximilian Felix Blank 9 Protein tyrosine kinase 2b inhibition reverts niche-associated resistance to tyrosine kinase inhibitors in AML. Leukemia, 2022; online ahead of print. [Google Scholar]
- Zhang, Q.; Zhu, M.; Cheng, W.; Xing, R.; Li, W.; Zhao, W.; Xu, L.; Li, E.; Luo, G.; Lu, Y. Downregulation of 425G>a variant of calcium-binding protein S100A14 associated with poor differentiation and prognosis in gastric cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wu, C.; Shiau, A.; Lee, J.; Chang, J.; Lu, P.; Tung, C.; Feng, L.; Huang, W.; Tsao, C. MicroRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells. Int. J. Mol. Med. 2012, 39, 920–926. [Google Scholar]
- Luo, J.; Chen, J.; Zhou, J.; Han, K.; Li, S.; Duan, J.; Cao, C.; Lin, J.; Xie, X.; Wang, F. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ-mediated DNA repair. Cancer Sci. 2022, 113, 2008–2021. [Google Scholar] [CrossRef]
- Tasaka, R.; Fukuda, T.; Shimomura, M.; Inoue, Y.; Wada, T.; Kawanishi, M.; Yasui, T.; Sumi, T. TBX2 expression is associated with platinum-sensitivity of ovarian serous carcinoma. Oncol. Lett. 2018, 14, 3085–3090. [Google Scholar] [CrossRef] [Green Version]
- Esposito, A.; Bardelli, A.; Criscitiello, C.; Colombo, N.; Gelao, L.; Fumagalli, L.; Minchella, I.; Locatelli, M.; Goldhirsch, A.; Curigliano, G. Monitoring tumor-derived cell-free DNA in patients with solid tumors: Clinical perspectives and research opportunities. Cancer Treat. Rev. 2014, 40, 648–655. [Google Scholar] [CrossRef]
- Sreekumar, R.; Al-Saihati, H.; Emaduddin, M.; Moutasim, K.; Mellone, M.; Patel, A.; Kilic, S.; Cetin, M.; Erdemir, S.; Navio, S.; et al. The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol. Oncol. 2021, 15, 2065–2083. [Google Scholar] [CrossRef]
- Guo, Q.; Jing, F.; Xu, W.; Li, X.; Li, X.; Sun, J.; Xing, X.; Zhou, C.; Jing, F. Ubenimex induces autophagy inhibition and EMT suppression to overcome cisplatin resistance in GC cells by perturbing the CD13/EMP3/PI3K/AKT/NF-κβ axis. Aging 2019, 12, 80–105. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Men, X.; Zhao, R.; Han, J.; Fan, Z.; Wang, Y.; Lv, Y.; Zuo, J.; Zhao, L.; Sang, M.; et al. miR-200c inhibits TGF-β-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer. Cancer Gene Ther. 2018, 25, 68–76. [Google Scholar] [CrossRef] [PubMed]
Interaction | p Value | Interaction | p Value |
---|---|---|---|
MPZL2→SH2D3A | 0.003 | TP63→ITGB4 | 0.039 |
JUP→DDR1 | 0.008 | EHF→C6orf132 | 0.040 |
DMKN→SH2D3A | 0.018 | PPP1R13L→LYPD3 | 0.040 |
DMKN→MPP1 | 0.019 | IFITM1→TBX2 | 0.040 |
KRT16→S100A14 | 0.019 | JAM3→FMN2 | 0.042 |
PRSS8→TMEM265 | 0.029 | S100A7→KRT14 | 0.044 |
SLPI→PTK2B | 0.032 | KLK8→IFITM1 | 0.046 |
PI3→CALB1 | 0.033 | EYA4→RHOD | 0.046 |
SPRY2→ETV1 | 0.033 | SYNE1→ZEB2 | 0.048 |
LY6K→PKP3 | 0.034 | NECTIN4→CLDN4 | 0.049 |
SYTL1→KLK8 | 0.035 |
Genes | RG/TG | Drugs | Cancer | Resistant | Evidences |
---|---|---|---|---|---|
C6orf132 | TG | - | - | ||
CALB1 | TG | - | - | ||
CLDN4 | TG | 5-FU, cisplatin, Paclitaxel, cDDP | PDC, GS, CRC | * | [37,38,39,40,41] |
DDR1 | TG | Oxaliplatin | GS, CRC | [42,43,44] | |
DMKN | RG | - | CRC | [45] | |
EHF | RG | - | - | ||
ETV1 | TG | oxaliplatin, 5-FU | HCC, GS, CRC | * | [46,47,48] |
EYA4 | RG | - | - | - | |
FMN2 | TG | - | - | - | |
IFITM1 | RG, TG | - | GS, CRC, EAC, GBC | [49,50,51] | |
ITGB4 | TG | cisplatin, erlotinib, 5-Fu | LC | * | [52,53,54] |
JAM3 | RG | - | LIC | [55] | |
JUP | RG | - | - | - | |
KLK8 | RG, TG | oxaliplatin | CRC, PC | * | [56,57] |
KRT14 | TG | Erlotinib | LC, BC | [58,59] | |
KRT16 | RG | Erlotinib | BC | [59] | |
LY6K | RG | - | GC, BC | * | [60,61,62] |
LYPD3 | TG | - | AML | [63] | |
MPZL2 | RG | - | - | - | |
NECTIN4 | RG | 5-FU, Enfortumab Vedotin | CC, BC, GC, LC | * | [64,65] |
PI3 | RG | - | - | - | |
PKP3 | TG | 5-FU, leucovorin, oxaliplatin | CRC | [66] | |
PPP1R13L | RG | 5-FU | GS | * | [67] |
PRSS8 | RG | - | - | - | |
PTK2B | TG | Midostaurin, gilteritinib/defactinib, TKI | AML | * | [68] |
RHOD | TG | - | - | - | |
S100A14 | TG | - | GS | [69] | |
S100A7 | RG | - | - | - | |
SH2D3A | TG | - | - | - | |
SLPI | RG | - | - | - | |
SPRY2 | RG | 5-FU | CC | [70] | |
SYNE1 | RG | - | GC | [32] | |
SYTL1 | RG | - | - | - | |
TBX2 | TG | platinum-ased chemotherapy | OC, CRC | [71,72] | |
TMEM265 | TG | - | - | - | |
TP63 | RG | apatinib and capecitabine | BC | [73] | |
ZEB2 | TG | oxaliplatin and 5-FU, cisplatin, trastuzumab | CRC, GC | * | [74,75,76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Miyano, S. Computational Tactics for Precision Cancer Network Biology. Int. J. Mol. Sci. 2022, 23, 14398. https://doi.org/10.3390/ijms232214398
Park H, Miyano S. Computational Tactics for Precision Cancer Network Biology. International Journal of Molecular Sciences. 2022; 23(22):14398. https://doi.org/10.3390/ijms232214398
Chicago/Turabian StylePark, Heewon, and Satoru Miyano. 2022. "Computational Tactics for Precision Cancer Network Biology" International Journal of Molecular Sciences 23, no. 22: 14398. https://doi.org/10.3390/ijms232214398
APA StylePark, H., & Miyano, S. (2022). Computational Tactics for Precision Cancer Network Biology. International Journal of Molecular Sciences, 23(22), 14398. https://doi.org/10.3390/ijms232214398