The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway
Abstract
1. Introduction
2. Results
2.1. Expression of Cx26 Differs in Liver Cancer Samples
2.2. Expression of Cx26 in HepG2 and SK-hep-1 Cells
2.3. The Radiosensitivity of HepG2 and SK-hep-1 Cells
2.4. The Activation of the MAPK and NF-κB Signaling Pathways in HepG2 and SK-hep-1 Cells
2.5. Expression of Cx26 Affects the Radiosensitivity of HepG2 and SK-hep-1 Cells
2.6. Expression of Cx26 Affects the Activation of the MAPK and NF-κB Signaling Pathways in HepG2 and SK-hep-1 Cells
3. Discussion
4. Materials and Methods
4.1. Data Acquisition from Oncomine Database
4.2. Cell Culture
4.3. Irradiation
4.4. Clonogenic Assay
4.5. Micronuclei Assay
4.6. Western Blot Analysis
4.7. Construction of Cx26 Knock-Out and Overexpression Cells
4.8. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.D.; Roberts, L.R. Hepatocellular carcinoma: A global view. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, H. Precision diagnosis and treatment of liver cancer in China. Cancer Lett. 2018, 412, 283–288. [Google Scholar] [CrossRef]
- Liu, D.; Song, T. Changes in and challenges regarding the surgical treatment of hepatocellular carcinoma in China. Biosci. Trends 2021, 15, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Seong, J. Challenge and Hope in Radiotherapy of Hepatocellular Carcinoma. Yonsei Med. J. 2009, 50, 601. [Google Scholar] [CrossRef]
- Dionisi, F.; Widesott, L.; Lorentini, S.; Amichetti, M. Is there a role for proton therapy in the treatment of hepatocellular carcinoma? A systematic review. Radiother. Oncol. 2014, 111, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Fu, S.; Zhang, Q.; Guo, X. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: A systematic review and meta-analysis. Radiother. Oncol. 2015, 114, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Dawson, L.A. Hepatocellular Carcinoma Radiation Therapy: Review of Evidence and Future Opportunities. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 22–32. [Google Scholar] [CrossRef]
- Maes, M.; Decrock, E.; Cogliati, B.; Oliveira, A.G.; Marques, P.E.; Dagli, M.L.Z.; Menezes, G.B.; Mennecier, G.; Leybaert, L.; Vanhaecke, T.; et al. Connexin and pannexin (hemi)channels in the liver. Front. Physiol. 2014, 4, 405. [Google Scholar] [CrossRef] [PubMed]
- Crespo, Y.S.; Willebrords, J.; Maes, M.; Da, S.T.; Veloso, A.P.I.; Cogliati, B.; Zaidan, D.M.; Vinken, M. Connexins and pannexins in liver damage. EXCLI J. 2016, 15, 177–186. [Google Scholar] [CrossRef]
- Maes, M.; Crespo Yanguas, S.; Willebrords, J.; Cogliati, B.; Vinken, M. Connexin and pannexin signaling in gastrointestinal and liver disease. Transl. Res. 2015, 166, 332–343. [Google Scholar] [CrossRef]
- Sheen, I.S.; Jeng, K.S.; Wang, P.C.; Shih, S.C.; Chang, W.H.; Wang, H.Y.; Chen, C.C.; Shyung, L.R. Are gap junction gene connexins 26, 32 and 43 of prognostic values in hepatocellular carcinoma? A prospective study. World J. Gastroenterol. 2004, 10, 2785–2790. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qin, G.; Chen, J. Lentivirus-mediated shRNA interference of Cx26 suppresses epithelial mesenchymal transition and invasion of highly invasive hepatocellular carcinoma cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2014, 34, 1743–1747. [Google Scholar]
- Autsavapromporn, N.; De Toledo, S.M.; Jay-Gerin, J.P.; Harris, A.L.; Azzam, E.I. Human cell responses to ionizing radiation are differentially affected by the expressed connexins. J. Radiat. Res. 2013, 54, 251–259. [Google Scholar] [CrossRef]
- Zhao, Y.; de Toledo, S.M.; Hu, G.; Hei, T.K.; Azzam, E.I. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects. Br. J. Cancer 2014, 111, 125–131. [Google Scholar] [CrossRef]
- Sun, M.; Li, Y.; Qian, J.; Ding, S.; Sun, M.; Tan, B.; Zhao, Y. Connexin26 Modulates the Radiosensitivity of Cutaneous Squamous Cell Carcinoma by Regulating the Activation of the MAPK/NF-κB Signaling Pathway. Front. Cell Dev. Biol. 2021, 9, 672571. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 2007, 94, 120–143. [Google Scholar] [CrossRef] [PubMed]
- Ruttinger, C.; Bergmann, M.; Fink, L.; Pesch, S.; Seitz, K.; Trautmann, A.; Steger, K.; Konrad, L.; Brehm, R. Expression of connexin 43 in normal canine testes and canine testicular tumors. Histochem. Cell Biol. 2008, 130, 537–548. [Google Scholar] [CrossRef]
- Isakson, B.E.; Seedorf, G.J.; Lubman, R.L.; Evans, W.H.; Boitano, S. Cell-cell communication in heterocellular cultures of alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 2003, 29, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Tsujiuchi, T.; Shimizu, K.; Itsuzaki, Y.; Onishi, M.; Sugata, E.; Fujii, H.; Honoki, K. CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats. Mol. Carcinog. 2007, 46, 269–274. [Google Scholar] [CrossRef]
- Seymour, C.B.; Mothersill, C. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat. Res. 2000, 153, 508–511. [Google Scholar] [CrossRef]
- Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature 2001, 410, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Rockwell, P.; Martinez, J.; Papa, L.; Gomes, E. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell. Signal. 2004, 16, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Penninger, J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004, 23, 2838–2849. [Google Scholar] [CrossRef]
- Rummel, A.M.; Trosko, J.E.; Wilson, M.R.; Upham, B.L. Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity. Toxicol. Sci. 1999, 49, 232–240. [Google Scholar] [CrossRef]
- Matesic, D.F.; Rupp, H.L.; Bonney, W.J.; Ruch, R.J.; Trosko, J.E. Changes in gap-junction permeability, phosphorylation, and number mediated by phorbol ester and non-phorbol-ester tumor promoters in rat liver epithelial cells. Mol. Carcinog. 1994, 10, 226–236. [Google Scholar] [CrossRef]
- Hwang, J.W.; Park, J.S.; Jo, E.H.; Kim, S.J.; Yoon, B.S.; Kim, S.H.; Lee, Y.S.; Kang, K.S. Chinese cabbage extracts and sulforaphane can protect H2O2-induced inhibition of gap junctional intercellular communication through the inactivation of ERK1/2 and p38 MAP kinases. J. Agric. Food Chem. 2005, 53, 8205–8210. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Ha, T.Y.; Ahn, J.; Kim, H.K.; Kim, S. Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem. Toxicol. 2009, 47, 404–409. [Google Scholar] [CrossRef]
- Upham, B.L.; Kang, K.S.; Cho, H.Y.; Trosko, J.E. Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis 1997, 18, 37–42. [Google Scholar] [CrossRef]
- Vinken, M.; Henkens, T.; De Rop, E.; Fraczek, J.; Vanhaecke, T.; Rogiers, V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 2008, 47, 1077–1088. [Google Scholar] [CrossRef]
- Gong, G.; Yuan, L.; Cai, L.; Ran, M.; Zhang, Y.; Gong, H.; Dai, X.; Wu, W.; Dong, H. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons. PLoS ONE 2014, 9, e105944. [Google Scholar] [CrossRef]
- Kuan, L.; Chen, W.; Chen, J.; Hsu, F.; Liu, T.; Chen, W.; Wang, K.; Chen, W.; Liu, Y.; Wang, W. Magnolol Induces Apoptosis and Inhibits ERK-modulated Metastatic Potential in Hepatocellular Carcinoma Cells. In Vivo 2018, 32, 1361–1368. [Google Scholar] [CrossRef]
- Weng, M.; Wang, M.; Tsai, J.; Kuo, Y.; Liu, Y.; Hsu, F.; Wang, H. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice. Biosci. Rep. 2018, 38, BSR20171264. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, L.; Tao, R.; Shang, Y.; Sun, M.; Peng, S.; Zhao, G.; Zhao, Y. The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway. Int. J. Mol. Sci. 2022, 23, 14644. https://doi.org/10.3390/ijms232314644
Li Y, Yang L, Tao R, Shang Y, Sun M, Peng S, Zhao G, Zhao Y. The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway. International Journal of Molecular Sciences. 2022; 23(23):14644. https://doi.org/10.3390/ijms232314644
Chicago/Turabian StyleLi, Yuan, Li Yang, Rui Tao, Yajing Shang, Minqiong Sun, Shichao Peng, Guoping Zhao, and Ye Zhao. 2022. "The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway" International Journal of Molecular Sciences 23, no. 23: 14644. https://doi.org/10.3390/ijms232314644
APA StyleLi, Y., Yang, L., Tao, R., Shang, Y., Sun, M., Peng, S., Zhao, G., & Zhao, Y. (2022). The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway. International Journal of Molecular Sciences, 23(23), 14644. https://doi.org/10.3390/ijms232314644