Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices
Abstract
:1. Introduction
2. Results
2.1. Mechanical Properties of Different Composite Films
2.2. Morphological Characterization
2.3. XRD Structure Analysis
2.4. Stability Analysis
2.5. Chemical Structure Analysis
2.6. Chemical Structure Analysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.3. Film Preparation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serge, S.; Stephen, W.; Sonia, A.; Conny, J.; Jody, H.; Lise, K.; Reimund, P.; Goedele, V.B. Revisiting food security in 2021: An overview of the past year. Food Secur. 2022, 14, 1–7. [Google Scholar]
- Jin, T.; Zhong, T.Y. Changing rice cropping patterns and their impact on food security in southern China. Food Secur. 2022, 14, 907–917. [Google Scholar] [CrossRef]
- He, C.Y.; Liu, Z.F.; Xu, M.; Ma, Q.; Dou, Y.Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Ramankutty, N. Hidden linkages between urbanization and food systems. Science 2016, 352, 943–945. [Google Scholar] [CrossRef]
- Liu, S.; Hou, M.Y. Spatiotemporal differences, dynamic evolution and trend of the coupled coordination relationship between urbanization and food security in China. Foods 2022, 11, 2526. [Google Scholar] [CrossRef]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, Q.; Zhou, J.; Fang, H.C.; Yang, H.F.; Wang, F. Investigation of pesticide residue removal effect of gelatinized starch using surface-enhanced Raman scattering mapping. Food Chem. 2021, 365, 130448. [Google Scholar] [CrossRef]
- Yesim, O.; Nariman, E.A.; Fatih, O. Antimicrobial effect of laurel essential oil nano-emulsion on food-borne pathogens and fish spoilage bacteria. Food Chem. 2022, 368, 130831. [Google Scholar]
- Wang, L.; Huang, X.Y.; Wang, C.Q.; Tian, X.Y.; Chang, X.H.; Ren, Y.; Yu, S.S. Applications of surface functionalized Fe3O4 NPs-based detection methods on food safety. Food Chem. 2021, 342, 128343. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhang, Y.L.; Yuan, Z.L.; Lou, Z.M.; Xu, X.H.; Wang, X.K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef]
- Martins, G.C.; Coutinho, T.E.; Silva, T.L.; Andreani, T.; Silva, A.M. Neurotoxicity assessment of four different pesticides using in vitro enzymatic inhibition assays. Toxics 2022, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, B.L.M.E.; Hernandez, S.R.; Kergaravat, S.V. Glyphosate detection from commercial formulations: Comparison of screening analytic methods based on enzymatic inhibition. Int. J. Environ. Anal. Chem. 2021, 101, 1821–1835. [Google Scholar] [CrossRef]
- Patil, D.Y.; Khadke, N.B.; Patil, A.A.; Borhade, A.V. Amino-quinoline based colorimetric chemosensor for Cu2+ detection. J. Anal. Chem. 2022, 77, 18–25. [Google Scholar] [CrossRef]
- Wang, W.Z.; You, Y.S.; Gunasekaran, S. LSPR-based colorimetric biosensing for food quality and safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5829–5855. [Google Scholar] [CrossRef]
- Jin, Q.; Feng, L.; Wang, D.D.; Wu, J.J.; Hou, J.; Dai, Z.R.; Sun, S.G.; Wang, J.Y.; Ge, G.B.; Cui, J.N.; et al. A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals. Biosens. Bioelectron. 2016, 83, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Wafula, E.N.; Onduso, M.; Wainaina, I.N.; Buve, C.; Kinyanjui, P.K. Antinutrient to mineral molar ratios of raw common beans and their rapid prediction using near-infrared spectroscopy. Food Chem. 2022, 368, 130773. [Google Scholar] [CrossRef]
- Simona, D.; Volha, S.; Valeria, T.; Achim, K.; Dana, B.; Martin, S.; Ivana, M.; Boris, Z. Assessment of biotechnologically important filamentous fungal biomass by Fourier transform Raman spectroscopy. Int. J. Mol. Sci. 2021, 22, 6710. [Google Scholar]
- Lima, T.K.; Musso, M.; Bertoldo, M.D. Using Raman spectroscopy and an exponential equation approach to detect adulteration of olive oil with rapeseed and corn oil. Food Chem. 2020, 333, 127454. [Google Scholar] [CrossRef]
- Orzel, J.; Swit, P. Comparison of quantitative detection methods based on molecular fluorescence spectroscopy and chromatographic techniques used for the determination of bisphenol compounds. Int. J. Mol. Sci. 2021, 22, 10569. [Google Scholar] [CrossRef]
- Wang, S.M.; Yang, C.Y.; Liu, Y.Q.; Wang, Y.R.; Zhao, Q. Determination of heterocyclic aromatic amines in various fried food by HPLC-MS/MS based on magnetic cation-exchange resins. Food Anal. Method. 2022, 15, 2902–2916. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, C.Y.; Peng, D.P.; Zhou, Y.Z.; Zhuang, J.L.; Zhang, X.J.; Lei, B.F.; Liu, Y.L.; Hu, C.F. pH-responsive carbon dots with red emission for real-time and visual detection of amines. J. Mater. Chem. C 2020, 8, 11563–11571. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, H.L.; Li, L.L.; Wang, Q.; Jiang, S.W.; Chen, M.M.; Li, X.J.; Jiang, S.T. pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Res. Int. 2021, 147, 110532. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.H.; Xu, Z.F.; Kuang, Y.F. Electrochemically reduced graphene oxide modified acetylene black paste electrode for the sensitive determination of bisphenol A. J. Electroanal. Chem. 2013, 707, 7–14. [Google Scholar] [CrossRef]
- Hao, W.X.; Ge, Y.; Qu, M.R.; Wen, Y.P.; Liang, H. A simple rapid portable immunoassay of trace zearalenone in feed ingredients and agricultural food. J. Food Compos. Anal. 2022, 107, 104292. [Google Scholar] [CrossRef]
- Kundan, S.; Kenneth, S.; Joseph, A.K.; Ailing, T.; Yong, Z.; Gregory, L.R.; Alan, X.W. Biological photonic crystal-enhanced plasmonic mesocapsules: Approaching single-molecule optofluidic-SERS sensing. Adv. Opt. Mater. 2019, 7, 1900415. [Google Scholar]
- Kim, H.Y.; Jane, J.L.; Lamsal, B. Hydroxypropylation improves film properties of high amylose corn starch. Ind. Crops Prod. 2017, 95, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.; Gu, J.; Yang, L.; Yang, L.; Qiao, Z.B.; Tan, H.Y.; Zhang, Y.H. Synthesis and characterization of maleic anhydride esterified corn starch by the dry method. Int. J. Biol. Macromol. 2013, 62, 241–247. [Google Scholar] [CrossRef]
- Li, C.; Gong, B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int. J. Biol. Macromol. 2020, 155, 721–729. [Google Scholar] [CrossRef]
- Maria, J.B.; Valeria, C.B.; Delia, E.L.; Maria, A.G. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids. 2015, 51, 281–294. [Google Scholar]
- Ren, L.L.; Yan, X.X.; Zhou, J.; Tong, J. Influence of chitosan concentration on mechanical and barrier properties of core starch/chitosan films. Int. J. Biol. Macromol. 2017, 105, 1636–1643. [Google Scholar] [CrossRef]
- Tedeschi, A.M.; Caprio, F.D.; Piozzi, A.; Pagnanelli, F.; Francolini, I. Sustainable bioactive packaging based on thermoplastic starch and microalgae. Int. J. Mol. Sci. 2022, 23, 178. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Bian, Q.B.; Li, Y.; Wang, Y.R.; Xiang, A.M.; Tian, H.F. Effect of oxidation degrees of graphene oxide on the structure and properties of poly(vinyl alcohol) composite films. Compos. Sci. Technol. 2016, 129, 146–152. [Google Scholar] [CrossRef]
- Yu, B.Y.; Kwak, S.Y. Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J. Mater. Chem. A 2012, 22, 8345–8353. [Google Scholar] [CrossRef]
- Luo, Z.G.; Zou, J.F.; Chen, H.M.; Cheng, W.W.; Fu, X.; Xiao, Z.G. Synthesis and characterization of amylose-zinc inclusion complexes. Carbohydr. Polym. 2016, 137, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Ding, X.T.; Shao, C.X.; Song, L.; Lin, T.Y. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, e1704473. [Google Scholar] [CrossRef]
CS | CS/AgNO3-1.0 | CA | CA/AgNO3-1.0 | |
---|---|---|---|---|
C1s | 59.75% | 59.87% | 62.20% | 68.27% |
O1s | 40.22% | 40.1% | 37.78% | 31.69% |
C-C | 24.84% | 27.88% | 34.08% | 37.63% |
C-O | 62.11% | 60.61% | 55.87% | 53.76% |
C=O | 13.04% | 11.52% | 10.06% | 4.62% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, S.; Wu, Y.; Tian, H.; Liu, Y.; Kan, H.; Hou, D.; Lin, X.; Zheng, Y.; Zheng, Z.; Liu, C. Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices. Int. J. Mol. Sci. 2022, 23, 14732. https://doi.org/10.3390/ijms232314732
Qin S, Wu Y, Tian H, Liu Y, Kan H, Hou D, Lin X, Zheng Y, Zheng Z, Liu C. Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices. International Journal of Molecular Sciences. 2022; 23(23):14732. https://doi.org/10.3390/ijms232314732
Chicago/Turabian StyleQin, Shijiao, Yujia Wu, Hao Tian, Yun Liu, Huan Kan, Defa Hou, Xu Lin, Yunwu Zheng, Zhifeng Zheng, and Can Liu. 2022. "Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices" International Journal of Molecular Sciences 23, no. 23: 14732. https://doi.org/10.3390/ijms232314732
APA StyleQin, S., Wu, Y., Tian, H., Liu, Y., Kan, H., Hou, D., Lin, X., Zheng, Y., Zheng, Z., & Liu, C. (2022). Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices. International Journal of Molecular Sciences, 23(23), 14732. https://doi.org/10.3390/ijms232314732